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Lee-Yang theory of the superradiant phase transition in the open Dicke model
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The Dicke model describes an ensemble of two-level atoms that are coupled to a confined light mode of an
optical cavity. Above a critical coupling, the cavity becomes macroscopically occupied, and the system enters
the superradiant phase. This phase transition can be observed by detecting the photons that are emitted from the
cavity; however, it only becomes apparent in the limit of long observation times, while actual experiments are
of a finite duration. To circumvent this problem, we here make use of recent advances in Lee-Yang theories of
phase transitions to show that the superradiant phase transition can be inferred from the factorial cumulants of the
photon emission statistics obtained during a finite measurement time. Specifically, from the factorial cumulants,
we can determine the complex singularities of generating functions that describe the photon emission statistics,
and by extrapolating their positions to the long-time limit one can detect the superradiant phase transition. We
also show that the convergence points determine the tails of the large-deviation statistics of the photon current.
Our paper demonstrates how phase transitions in the Dicke model and in other quantum many-body systems can
be detected from measurements of a finite duration.
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I. INTRODUCTION

The Dicke model, or the Dicke-Hepp-Lieb model, de-
scribes a quantum many-body system that exhibits a superra-
diant phase transition at a critical light-matter coupling [1–4].
It consists of a large ensemble of two-level atoms that interact
with a single light mode of an optical cavity, as illustrated in
Fig. 1(a). It can also be realized using superconducting circuits
[5–14], trapped ions [15], or collective electronic systems
[16]. Above the critical coupling, the system enters the super-
radiant phase, where the ground state acquires a macroscopic
cavity occupation with the photon number being on the order
of the number of atoms. Because of its simplicity, the model
has been used to investigate a range of critical phenomena,
including chaos [17,18] and entanglement [19] at criticality.
Still, a direct experimental observation of the superradiant
phase transition has proven challenging [4].

To observe the superradiant phase transition, effective
physical realizations involving driven-dissipative systems
have been explored. In these setups, internal [20,21] or mo-
tional [22,23] degrees of freedom are pumped to realize
effective strong couplings, but with finite dissipation rates.
The combination of the external driving and dissipation results
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FIG. 1. Lee-Yang theory of the open Dicke model. (a) The sys-
tem consists of an optical cavity with resonance frequency ωc that
is coupled to N two-level atoms with energy splitting h̄ωa. The
coupling amplitude is denoted by λ, while κ is the rate at which
photons are emitted from the cavity. (b) Fourth (dashed, k = 4)
and fifth (solid, k = 5) factorial cumulant of the photon emission
statistics in the normal phase defined in Eqs. (23)–(27). (c) Poles of
the factorial cumulant generating function extracted from the results
in panel (b) using Eq. (46). The black dots mark the convergence
points in the long-time limit, sc. (d) Extracted convergence points as
a function of the coupling. Parameters are ωc = 2κ and ωa = 0.5κ ,
and λ0 denotes the critical point of the closed Dicke model, while λ−
and λ+ are the critical points of the open Dicke model according to
Eqs. (12) and (22).
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in a nonequilibrium phase transition, which is of a different
universality class than for the closed system [4,20,24–26].
However, this phase transition is easier to access experimen-
tally, and it will be the focus of our paper. The phase transition
occurs in the thermodynamic limit of many atoms and is visi-
ble in the photon emission statistics collected over a long time.
For example, the cavity occupation changes abruptly at the
critical coupling [27]. At the same time, however, measure-
ments of the photon counting statistics are of a finite duration,
so practical approaches to predict the long-time behavior from
finite-time statistics are needed.

In this paper, we make use of recent advances in Lee-
Yang theories of phase transitions to observe the superradiant
phase transition in the open Dicke model from the photon
counting statistics measured during a finite observation time.
The theory of phase transitions by Lee and Yang was orig-
inally formulated for equilibrium phase transitions [28–31].
It concerns the zeros of the partition function in the complex
plane of a control parameter, for example, the inverse temper-
ature or an external magnetic field. For systems of finite size,
the zeros are complex. However, if the system exhibits a phase
transition, the zeros will move towards the critical point on
the real axis as the thermodynamic limit is approached. The
theory of Lee and Yang has been extended to other types of
phase transitions, including nonequilibrium phase transitions
[30–32], trajectory phase transitions [33], dynamical quantum
phase transitions [34–37], and quantum phase transitions at
zero temperature [38–40]. Lee-Yang zeros have also been
determined in several experiments [41–44].

In the approach we follow here, the phase transition is
inferred from the photon counting statistics collected during
a finite observation time [33,43]. As illustrated in Fig. 1(b),
we use the high factorial cumulants of the photon counting
statistics to extract the dominant pole of the corresponding
generating function, which plays the role of the partition
function for equilibrium systems. As shown in Fig. 1(c), we
can then determine the convergence point in the limit of long
observation times. Away from the phase transition, the con-
vergence point is nonzero. However, as we tune the coupling
to its critical value, the dominant pole converges to zero, and
we can detect the phase transition, as illustrated in Fig. 1(d).

The rest of our paper is organized as follows. In Sec. II, we
derive a master equation for the open Dicke model in the limit
of many atoms. Here, we follow earlier works on the Dicke
model, and we include this section for the sake of complete-
ness. In Sec. III, we consider the photon emission statistics
from the cavity and derive an analytic expression for the
generating function, which is valid at all times. In Sec. IV, we
describe the Lee-Yang theory to detect the superradiant phase
transition from the photon counting statistics measured during
a finite observation time. In Sec. V, we use this approach to
determine the critical behavior of the open Dicke model from
the high factorial cumulants of the photon counting statistics.
We also show how the extracted convergence points control
the tails of the large-deviation statistics of the photon current.
Finally, in Sec. VI, we conclude on our paper and provide
an outlook on possible developments for the future. A few
technical details are deferred to the Appendix.

II. DICKE MODEL

Figure 1(a) shows a physical implementation of the Dicke
model consisting of a single-mode optical cavity coupled to
an ensemble of two-level atoms, noting that other physical
realizations are also possible [5–16]. Some implementations
are based on driving internal transitions of multilevel atoms
[20,21], or on the motional states of atoms in a Bose-Einstein
condensate [22,23]. The latter implementation involves dissi-
pative effects, which we will also include in our treatment.

We denote the frequency of the cavity by ωc, while ωa

determines the energy splitting of the two-level atoms. The
Hamiltonian of the cavity-atom system reads

Ĥ = h̄ωcĉ†ĉ + h̄ωaĴz + h̄λ√
N

(ĉ† + ĉ)(Ĵ+ + Ĵ−), (1)

where N is the number of atoms, and λ denotes the coupling
between the cavity and the atoms. We have also introduced
the creation and annihilation operators of the cavity, ĉ† and
ĉ. We treat the ensemble of two-level atoms as a pseudospin
of length N/2, and Ĵz and Ĵ± are then collective angular mo-
mentum operators with Ĵz measuring the angular momentum
in the z direction, while Ĵ± are the usual raising and lowering
operators.

As illustrated in Fig. 1(a), photons are emitted from the
cavity at the rate κ . Correspondingly, the density matrix of the
open cavity-atom system evolves according to the Lindblad
equation

d

dt
ρ̂(t ) = − i

h̄
[Ĥ , ρ̂(t )] + κD[ĉ]ρ̂(t ), (2)

where the commutator accounts for the unitary dynamics of
the system if isolated. The dissipator

D[ĉ]ρ̂(t ) = ĉρ̂(t )ĉ† − 1
2 {ĉ†ĉ, ρ̂(t )} (3)

describes the emission of photons from the cavity. Related
to the realizations discussed in Refs. [20,22], the cavity and
atomic frequencies in Eq. (1) are effective frequencies in a
rotating frame of a drive, and the dissipation in Eq. (2) acts
locally on the cavity mode only. In that respect, it is a nonequi-
librium problem as the dissipation will not cool the system to
its ground state, but instead it will lead to a nonequilibrium
steady state.

We now derive an effective model in the thermodynamic
limit of many atoms. To this end, we follow Refs. [18,45]
and repeat the main steps for the sake of completeness. First,
we employ a Holstein-Primakoff transformation [46,47] to
represent the many atoms by a single bosonic mode. Specifi-
cally, we express the angular momentum operators in terms of
bosonic operators as

Ĵ+ = â†
√

N − â†â,

Ĵ− =
√

N − â†ââ, (4)

and

Ĵz = â†â − N/2 (5)
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where the creation and annihilation operators fulfill the
usual bosonic commutation relation [â, â†] = 1. Under this
transformation, the Hamiltonian becomes

Ĥ = h̄ωcĉ†ĉ + h̄ωaâ†â

+ h̄λ(ĉ† + ĉ)

(
â†

√
1 − â†â

N
+

√
1 − â†â

N
â

)
, (6)

having omitted an offset that is proportional to N .
We now consider the thermodynamic limit. For small cou-

plings, the system is in the normal phase, where averages of
â†â do not grow with N , and we obtain

ĤNP = h̄ωcĉ†ĉ + h̄ωaâ†â + h̄λ(ĉ† + ĉ)(â† + â). (7)

The dissipator in Eq. (2) is independent of the number of
atoms. Therefore, the Lindblad equation becomes

d

dt
ρ̂(t ) = − i

h̄
[ĤNP, ρ̂(t )] + κD[ĉ]ρ̂(t ). (8)

Next, we diagonalize the Hamiltonian using eigenvalue de-
compositions such that

ĉ = ε1− d̂1 + ε1+ d̂†
1 + ε2− d̂2 + ε2+ d̂†

2 (9)

with a similar expression for the operator â, which eventually
drops out. The Hamiltonian then becomes

ĤD = h̄ω1d̂†
1 d̂1 + h̄ω2d̂†

2 d̂2 (10)

with the corresponding master equation reading

d

dt
ρ̂(t ) = − i

h̄

[
ĤD, ρ̂(t )

] + κ
(
ε2

1−D[d̂1] + ε2
1+D[d̂†

1 ]

+ ε2
2−D[d̂2] + ε2

2+D[d̂†
2 ]

)
ρ̂(t ), (11)

having omitted fast-rotating terms of the form d̂†
1 d̂†

2 . The co-
efficients ε1±,2± and the frequencies ω1,2 are defined in the
Appendix. The smallest frequency vanishes if

λ− =
√

ωcωa

2
, (12)

which sets an upper limit on λ for the normal phase.
In the superradiant phase, the average occupation of the

cavity and the number of excited atoms increase with N .
We thus employ a mean-field ansatz to find an effective
Hamiltonian in the thermodynamic limit. To this end, we
define the operators

č = ĉ − √
rcN, ǎ = â + √

raN, (13)

which are independent of N , and ra is a real constant, while rc

can be complex. The macroscopic occupation is determined
such that all terms proportional to

√
N vanish in the master

equation, yielding the condition for a stable stationary state
that [18,45]

rc = 4λ2[1 − (λ0/λ)4]

(2ωc − iκ )2
, (14)

and

ra = [1 − (λ0/λ)2]/2. (15)

Here, we have defined the coupling

λ0 =
√(

κ2 + 4ω2
c

)
ωa/16ωc, (16)

above which occupations become macroscopic in the limiting
case of vanishing emission rate, κ = 0.

The Hamiltonian in the superradiant phase now reads

ĤSP = h̄ωcč†č + h̄�aǎ†ǎ + h̄λaa(ǎ† + ǎ)2

+ h̄λca(č† + č)(ǎ† + ǎ), (17)

where we have introduced the frequency

�a = ωa + λ
√

N
2ra√
1 − ra

Re{√rc}, (18)

together with the couplings

λca = λ
1 − 2ra√

1 − ra
, (19)

and

λaa = λ
(2 − ra)

√
ra

2(1 − ra)3/2
Re{√rc}. (20)

Moreover, the master equation becomes

d

dt
ρ̂(t ) = − i

h̄
[ĤSP, ρ̂(t )] + κD[č]ρ̂(t ). (21)

Just as in the normal phase, we can diagonalize the
Hamiltonian using eigenvalue decompositions. We then arrive
at the same Hamiltonian and master equation as in Eqs. (10)
and (11), however, with different coefficients ε1±,2± and fre-
quencies ω1,2 as detailed in the Appendix. In this case, the
smallest frequency vanishes for

λ+ =
(
κ2 + 4ω2

c

)3/4√
ωa

4
√

2ωc

, (22)

which sets a lower limit on λ for the superradiant phase.
We note that λ+ depends on κ , and only when κ � ωc, we
have λ+ = λ−. It will also be important that the master equa-
tion in Eq. (11) describes two uncoupled quantum harmonic
oscillators.

III. PHOTON EMISSION STATISTICS

To observe the phase transitions using our Lee-Yang the-
ory, we consider the probability P(n, t ) that n photons are
emitted during the time span [0, t]. It is useful to introduce
the factorial moment generating function

MF (s, t ) =
∞∑

n=0

P(n, t )(1 + s)n, (23)

which yields the factorial moments upon differentiation with
respect to the counting variable s as

〈nk〉F (t ) = ∂k
s MF (s, t )|s=0. (24)

The factorial moments are given by the ordinary ones as

〈nk〉F = 〈n(n − 1) . . . (n − k + 1)〉. (25)
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For instance, the first two factorial moments read 〈n〉F = 〈n〉
and 〈n2〉F = 〈n2〉 − 〈n〉 in terms of the ordinary ones. We also
define the factorial cumulant generating function

FF (s, t ) = lnMF (s, t ), (26)

which yields the factorial cumulants as

〈〈nk〉〉F (t ) = ∂k
s FF (s, t )|s=0. (27)

The factorial cumulants can also be expressed in terms of the
ordinary ones as

〈〈nk〉〉F = 〈〈n(n − 1) . . . (n − k + 1)〉〉. (28)

Factorial cumulants are useful to characterize discrete quan-
tities, such as the number of photons [48–52]. Indeed, for
a Poisson distribution, only the first factorial cumulant is
nonzero. By contrast, ordinary cumulants are useful to char-
acterize continuous variables, and they are defined so that
only the first two cumulants are nonzero for a Gaussian
distribution.

To find the generating functions, we resolve the density
matrix with respect to the number of emitted photons during
the time span [0, t], which defines ρ̂(n, t ) [53]. We can then
express the photon counting statistics as

P(n, t ) = tr{ρ̂(n, t )}. (29)

These density matrices obey the system of equations

d

dt
ρ̂(n, t ) = − i

h̄
[Ĥ , ρ̂(n, t )]

+ κ

(
ĉρ̂(n − 1, t )ĉ† − 1

2
{ĉ†ĉ, ρ̂(n, t )}

)
. (30)

To solve these coupled equations, we define

ρ̂(s, t ) =
∞∑

n=0

ρ̂(n, t )(1 + s)n, (31)

whose equation of motions reads

d

dt
ρ̂(s, t ) = − i

h̄
[Ĥ , ρ̂(s, t )] + κDs[ĉ]ρ̂(s, t ), (32)

where the counting variable now enters the dissipator as

Ds[ĉ]ρ̂ = (1 + s)ĉρ̂ĉ† − 1
2 {ĉ†ĉ, ρ̂}. (33)

Solving for ρ(s, t ), we obtain the generating function as

MF (s, t ) = tr{ρ̂(s, t )}. (34)

Next, we employ the diagonalization in Eq. (9) and switch
to the interaction picture with respect to the Hamiltonian that
governs the unitary dynamics. In the rotating-wave approx-
imation, we neglect cross terms such as d̂†

1 d̂†
2 , and we thus

arrive at the master equation

d

dt
˜̂ρ(s, t ) = κ

(
ε2

1−Ds[d̂1] + ε2
1+Ds[d̂

†
1 ]

+ ε2
2−Ds[d̂2] + ε2

2+Ds[d̂
†
2 ] + N |rc|s

)
˜̂ρ(s, t ),

(35)

where rc in the superradiant phase is given by Eq. (15), while
it vanishes in the normal phase.

The master equation above describes three independent
processes. There are the photon emissions from two inde-
pendent quantum harmonic oscillators as well as the photon
emission from a Poisson process with rate κN |rc|. As a result,
the generating function factorizes as

MF (s, t ) = M(1)
F (s, t )M(2)

F (s, t )M(p)
F (s, t ), (36)

where M(1,2)
F (s, t ) are the generating functions corresponding

to each of the two harmonic oscillators, while

M(p)
F (s, t ) = exp (κN |rc|ts) (37)

describes the Poissonian emission of photons. In a recent
work, some of us determined the generating function of a
quantum harmonic oscillator, which reads [54]

M( j)
F (s, t ) = ξ

(2)
j eκ j t

ξ
(2)
j cosh

(
ξ

(2)
j κ jt

) + [
ξ

(1)
j

]2
sinh

(
ξ

(2)
j κ jt

) ,

(38)

where we have defined the constants

κ1 = κ
(
ε2

1− − ε2
1+

)
/2,

κ2 = κ
(
ε2

2− − ε2
2+

)
/2,

(39)

together with the functions

ξ
(k)
j =

√
1 − 4n̄ j (1 + n̄ j )[(1 + s)k − 1] (40)

with

n̄1 = ε2
1+/

(
ε2

1− − ε2
1+

)
,

n̄2 = ε2
2+/

(
ε2

2− − ε2
2+

)
.

(41)

These expressions fully characterize the emission statistics of
the Dicke model for all possible observation times.

IV. LEE-YANG THEORY

We are now ready to use our Lee-Yang theory to detect the
superradiant phase transition. In the original theory of equi-
librium phase transitions by Lee and Yang, they considered
the zeros of the partition function in the complex plane of the
control parameters, for instance, an external magnetic field or
the inverse temperature [28–31]. For systems of finite size,
the zeros are complex and the imaginary part is finite. How-
ever, if the system exhibits a phase transition, the zeros will
approach the point on the real axis, where the phase transition
occurs, as the system size is increased. The Lee-Yang theory
of equilibrium phase transitions has found use across a wide
range of fields in physics and related areas [30,31]. It has
also been shown that Lee-Yang zeros can be experimentally
determined from the fluctuations of the observable that cou-
ples to the control parameter [55], for instance, the inverse
temperature couples to the energy [56], and a magnetic field
may couple to the magnetization of a spin system [57–59].
In addition, Lee-Yang zeros have been determined in several
experiments [41–44].

While the theory of Lee and Yang was developed for
equilibrium phase transitions [28,29], it has subsequently
been extended to several types of nonequilibrium situations
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FIG. 2. Lee-Yang theory of the normal phase. (a) Fourth (dashed) and fifth (solid) factorial as a function of the observation time in the
normal phase. (b) The dominant pole extracted from the factorial cumulants in panel (a). (c) Convergence point of the dominant pole in the
long-time limit as a function of the coupling. Parameters are ωc = 2κ and ωa = 0.5κ .

[30–40]. In such nonequilibrium situations, the phase tran-
sitions are not manifested in the partition function or the
associated free-energy density. Instead, other quantities, such
as the moment generating function or the Loschmidt ampli-
tude, play the role of the partition function, whose complex
zeros determine the phase behavior of the system. In the ap-
proach that we follow here, the generating function in Eq. (23)
plays the role of the partition function. The partition function
is given by a sum over all possible microconfigurations of an
equilibrium system weighted by Boltzmann factors. Similarly,
the factorial moment generating function is given by a sum
over all possible dynamical trajectories, characterized by the
number n = 0, 1, 2 . . . of photons that have been emitted dur-
ing the time span [0, t], weighted by the counting variable
s. For an equilibrium system, the thermodynamic limit is
approached as the system size, for example, the number of
spins in a spin lattice, is increased. By contrast, in our case,
the thermodynamic limit is approached as the observation
time is increased, and the quantum jump trajectories become
long. Thus, as our dynamical free-energy density, we take the
scaled factorial cumulant generating function, defined in the
long-time limit as


F (s) = lim
t→∞FF (s, t )/t = lim

t→∞ ln{MF (s, t )}/t . (42)

In this case, the system exhibits a phase transition, if the
dynamical free-energy density becomes nonanalytic at s = 0.
However, the nonanalytic behavior only emerges in the long-
time limit, and one may wonder if it can be observed in an
experiment, where the observation time remains finite. To this
end, we note that the nonanalytic behavior of the dynamical
free energy at s = 0 is due to zeros or poles of the factorial
moment generating function that approach the origin as the
observation time increases. As we will see, these zeros and
poles can be determined from measurements of the factorial
moments at finite times, and one can determine their converge
points in the limit of long observation times by extrapolation.

In general, the factorial moment generating function can
have both zeros and poles in the complex plane of the counting
variable. For systems of finite size, the partition function only
has zeros. However, when dealing with bosons for example,
infinitely many states are involved, and the partition function
may also have poles [56]. In earlier works, we have developed
methods that allow us to extract both the zeros and the poles

from the high cumulants [36,56]. However, for the factorial
moment generating function in Eq. (36), the situation simpli-
fies since it only has poles. (At the points, where the numerator
vanishes, ξ

(2)
i = 0, the denominator also vanishes, and the

function is nonzero.) Thus, in the following, we formally
expand the factorial moment generating function in terms of
its unknown poles, sq(t ), as

MF (s, t ) = esc
∞∏

q=0

[1 − s/sq(t )]−1 (43)

where c is independent of s. Using the expression for the
factorial cumulants in Eq. (27), we then have

〈〈nk〉〉F (t ) =
∞∑

q=0

(k − 1)!

sk
q(t )

, k > 1. (44)

From this expression, we see that the high factorial cumulants
are dominated by the pole that is closest to the origin, s = 0,
which allows us to express them as

〈〈nk〉〉F (t ) � (k − 1)!

sk
0(t )

, k 	 1 (45)

for sufficiently high orders. Inverting this expression for the
closest pole, we find that it can be expressed as

s0(t ) � (k − 1)
〈〈nk−1〉〉F (t )

〈〈nk〉〉F (t )
, k 	 1 (46)

in terms of the high factorial cumulants. Thus, from two high
factorial cumulants, which are measurable quantities, we can
determine the pole that is closest to the origin, and we can
follow its motion as a function of the observation time to
determine its convergence point in the thermodynamic limit
of long observation times.

V. PHASE TRANSITIONS

We now extract the pole that is closest to the origin of
the complex plane of the counting variable from the fac-
torial cumulants. This procedure is illustrated in Fig. 2(a),
where we show the fourth and fifth factorial cumulants as a
function of the observation time for three different couplings
in the normal phase. We have checked that the results do
not significantly change, if the cumulant order is increased,
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FIG. 3. Lee-Yang theory of the superradiant phase. (a) Fourth (dashed) and fifth (solid) factorial cumulant as a function of the observation
time in the superradiant phase. (b) The dominant pole extracted from the results in panel (a). (c) Convergence point in the long-time limit as a
function of the coupling. Parameters are N = 100, ωc = 2κ , and ωa = 0.5κ .

which shows that the approximations in Eqs. (45) and (46)
are valid. For each coupling, we extract the position of the
dominant pole, which we show in Fig. 2(b) as a function of
the inverse observation time. The position of the pole is well
approximated by the expression [43,55,56,59]

|s0(t ) − sc| ∝ 1/κt, (47)

where sc is the convergence point in the limit of long times.
Thus, for each value of the coupling, we can extract the
convergence point in the long-time limit, and in Fig. 2(c),
we show the extracted convergence point as a function of the
coupling. For small couplings, the convergence point does not
reach the origin. However, as we approach the critical cou-
pling, λ � λ−, the convergence point becomes smaller, and it
eventually vanishes at λ = λ−, signaling a phase transition.
Thus, from measurements of the fourth and fifth factorial
cumulants at finite times, one can detect the phase transition
at λ = λ−. In particular, from Figs. 2(a) and 2(b), we see that
one would be able to determine the convergence point in the
long-time limit from measurements of the factorial cumulants
for times that are shorter than κt = 1. Here, it should be noted
that the extraction of the dominant pole in Eq. (46) works best
for short times, where the poles are well separated. Also, high
factorial cumulants can be more accurately measured at short
times [43,52].

In Fig. 3, we take the same approach for large couplings,
where the system is in the superradiant phase. In Fig. 3(a), we
show the fourth and fifth factorial cumulants as a function of
the observation time for different couplings. We then show
the dominant pole as a function of the inverse observation
time, which allows us to extract the convergence points in
the long-time limit as shown in Fig. 3(b). In Fig. 3(c), we
show the convergence point as a function of the coupling
in the superradiant phase. For large couplings, λ > λ+, the
convergence point does not reach zero. However, it becomes
smaller as the coupling is reduced, and it finally reaches the
origin of the complex plane for λ = λ+. Thus, we again see
that it is possible to detect the phase transition at λ = λ+,
which occurs in the long-time limit, from observations of the
high factorial cumulants at finite times.

The results above show how we can detect phase transi-
tions that occur in the limit of long times from measurements
of the factorial cumulants during a finite duration. As we now
go on to show, the extracted convergence points also influence

the large-deviation statistics of the photon emission current.
To this end, we invert the expression for the factorial moment
generating function in Eq. (23) and write the probability dis-
tribution as

P(n, t ) = 1

2π i

∫ iπ

−iπ
dsMF (es − 1, t )e−ns. (48)

Now, defining the photon emission current as J = n/t and
considering the limit of long times, we can write

P(J, t ) = 1

2π i

∫ iπ

−iπ
ds exp{[
(s) − sJ]t}, (49)

where we have used that 
(s) = 
F (es − 1) is the scaled
cumulant generating function. From Eq. (36), we find


(s) =
2∑

j=1

κ j[1 −
√

1 − 4n̄ j (1 + n̄ j )(e2s − 1)]

+ κN |rc|(es − 1) (50)

in agreement with Ref. [45]. At long times, the integral in
Eq. (49) is amenable to a saddle-point approximation, such
that the large-deviation statistics becomes [60]

ln[P(J, t )]

t
� 
(sSP) − sSPJ, (51)

where sSP = sSP(J ) solves the saddle-point equation


′(sSP) = J. (52)

With these definitions at hand, we can calculate the large-
deviation statistics of the photon emission current. In the
normal phase, we note that n̄1 	 n̄2, if ωc 	 ωa or ωc � ωa,
and the term with j = 2 in Eq. (50) is then negligible. In that
case, we find


′(s) = 2e2sε2
1+ε2

1−κ/
(
ε2

1− − ε2
1+

)
√

1 − (e2s − 1)
[
2ε1+ε1−/

(
ε2

1− − ε2
1+

)]2
, (53)

which we will also refer to as the s-biased current and denote
by J (s) = 
′(s). In Fig. 4(a), we show it for three different
couplings in the normal phase.
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FIG. 4. Large-deviation statistics of the photon emission current. (a) The s-biased current, J (s) = 
′(s), in the normal phase given by
Eq. (53). (b) Large-deviation statistics in the normal phase given by Eq. (56). The dashed lines are the approximation of the tails based on
Eq. (57). (c) Large-deviation statistics in the superradiant phase with λ = 1.1λ+ and N = 100 and 500. The other parameters are ωc = 2κ and
ωa = 0.5κ . The dash-dotted lines represent Poisson distributions.

The solution to the saddle-point equation now becomes

sSP = 1

2
ln

⎡
⎢⎣J2

√
1 + (

κ̄
J

)2 − 1

2ε2
1+ε2

1−κ2

⎤
⎥⎦, (54)

where we have defined

κ̄ = (
ε2

1+ + ε2
1−

)
κ. (55)

In the normal phase, we then find the expression

ln[P(J, t )]

t
� ε2

1− − ε2
1+

2
κ − J

2

√√√√√(
κ̄

J

)2

− 2

⎡
⎣

√
1 +

(
κ̄

J

)2

− 1

⎤
⎦ − J

2
ln

⎡
⎢⎣J2

√
1 + (

κ̄
J

)2 − 1

2ε2
1+ε2

1−κ2

⎤
⎥⎦, (56)

which we show in Fig. 4(b) for three different couplings.
To better understand these results, we return to the s-biased

current in Fig. 4(a), where we see that it diverges at the
nonanalytic point of the scaled cumulant generating func-
tion, and those nonanalytic points are directly related to the
convergence points found in Figs. 2(b) and 2(c). Thus, for
large currents, J 	 κ̄ , the saddle point is given by the con-
vergence point as sSP(J ) � esc − 1 � sc for sc � 1, allowing
us to approximate the tail of the large-deviation function by
the straight line:

ln[P(J, t )]

t
� 
(sc) − scJ, J 	 κ̄, (57)

which we show in Fig. 4(b) with dashes. The slope of the
line is given by sc, which becomes smaller as the coupling
approaches its critical value, and sc goes to zero. Thus, we see
that the extracted convergence points determine the tails of the
large-deviation statistics.

The same phenomenon can be observed for the large-
deviation statistics in the superradiant phase shown in
Fig. 4(c). In that case, we rely on a numerical solution of
the saddle-point equation. Still, we again see that the tails of
the distribution are determined by the convergence points as
shown by dashed lines. Moreover, in the superradiant phase,
the bulk of the distribution becomes increasingly Poissonian,
as the number of atoms is increased according to Eq. (50).
Thus, for the sake of comparison, we show in Fig. 4(c) the

large-deviation statistics for N = 100 and 500 atoms together
with Poisson distributions that are represented by dotted
lines.

VI. CONCLUSIONS AND OUTLOOK

We have investigated the superradiant phase transition in
the open Dicke model using our Lee-Yang theory of phase
transitions. Specifically, we have shown how the dominant
pole of the factorial cumulant generating function can be
extracted from the high factorial cumulants of the photon
emission statistics obtained during a finite observation time.
As such, our method makes it possible to detect the super-
radiant phase transition, which occurs in the limit of long
times, from measurements of the photon emission statistics,
which are limited to finite durations. We have also shown how
the convergence point of the dominant pole in the long-time
limit determines the tails of the large-deviation statistics. Our
method is not restricted to the Dicke model, and it can be
applied to other systems that exhibit phase transitions, such as
the Rabi model [61–65] or the Lipkin-Meshkov-Glick model
[66–69], both in theory and experiments.

We have seen that the system transits directly from the
normal phase to the superradiant phase at a specific critical
coupling, if the emission rate from the cavity is small. How-
ever, for larger decay rates, the critical coupling splits into
two different values, and a small gap develops between the
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two phases. Here, we have applied our Lee-Yang theory to
each of the phases, where the system can be mapped onto two
uncoupled quantum harmonic oscillators, and the problem can
be solved. By contrast, we are not aware of a solution in the
gap region, which would allow us to calculate the factorial
cumulants and thereby apply our Lee-Yang method. How-
ever, theoretically, it may be possible to explore this region
using a different diagonalization procedure [45], higher-order
operator-cumulant expansions beyond the mean-field approx-
imation [4], or advanced numerical methods for systems of
finite size. Also, measurements of the photon counting statis-
tics for an open Dicke model may shed further light on the
unexplored region between the two critical points using our
Lee-Yang formalism. We leave these tasks as interesting open
problems for future work.
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APPENDIX: DIAGONALIZATION PARAMETERS

We here provide the parameters for the diagonalization in
Eqs. (9) and (10). To this end, we introduce the dimensionless

parameters, ω̃1,2 = ω1,2/ωc, with similar meanings for other
parameters with a tilde.

In the normal phase, we have

ε1± = sin(γ )
1 ∓ ω̃1

2
√

ω̃1
, ε2± = cos(γ )

1 ∓ ω̃2

2
√

ω̃2
, (A1)

with

ω̃1 =
√[

1 + ω̃2
a ±

√(
ω̃2

a − 1
)2 + 16λ̃2ω̃a

]
/2, (A2)

and

ω̃2 =
√[

1 + ω̃2
a ∓

√(
ω̃2

a − 1
)2 + 16λ̃2ω̃a

]
/2, (A3)

where the signs are plus for ω̃a > 1 and minus for ω̃a � 1.
Furthermore, the parameter γ is obtained from

tan(2γ ) = 4λ̃

√
ω̃a

ω̃2
a − 1

. (A4)

For the superradiant phase, the eigenfrequencies are

ω̃1 =
√

(1 + 4λ̃aa�̃a + �̃2
a ± √

α)/2, (A5)
and

ω̃2 =
√

(1 + 4λ̃aa�̃a + �̃2
a ∓ √

α)/2, (A6)

where the signs are determined in the same way as for the
normal phase. We have also introduced the parameter

α = 1 + 8
(
2λ̃2

ca − λ̃aa
)
�̃a − 2

(
1 − 8λ̃2

aa

)
�̃2

a + 8λ̃aa�̃
3
a + �̃4

a,

(A7)

and the parameter γ is obtained from

cos(γ ) =
√

�̃2
a

2
√

α
+ 2√

α
λ̃aa�̃a − 1

2

(
1 + 1√

α

)
. (A8)
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tion between spin-coherent states and boson-coherent states
in the theory of magnetism, Phys. Rev. B 44, 2227
(1991).

[48] D. Kambly, C. Flindt, and M. Büttiker, Factorial cumulants re-
veal interactions in counting statistics, Phys. Rev. B 83, 075432
(2011).

[49] D. Kambly and C. Flindt, Time-dependent factorial cumu-
lants in interacting nano-scale systems, J. Comp. Elec. 12, 331
(2013).

033181-9

https://doi.org/10.1038/s41567-019-0534-4
https://doi.org/10.1103/PhysRevA.99.063822
https://doi.org/10.1103/PhysRevLett.112.023603
https://doi.org/10.1103/PhysRevLett.110.133603
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1103/PhysRevE.67.066203
https://doi.org/10.1103/PhysRevLett.92.073602
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1364/OPTICA.4.000424
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevLett.104.130401
https://doi.org/10.1103/PhysRevA.87.023831
https://doi.org/10.1103/PhysRevLett.126.230601
https://doi.org/10.1103/PhysRevA.106.012212
https://doi.org/10.1038/s42005-023-01457-w
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1590/S0103-97332003000300008
https://doi.org/10.1142/S0217979205032759
https://doi.org/10.1103/PhysRevLett.89.080601
https://doi.org/10.1103/PhysRevLett.110.050601
https://doi.org/10.1103/PhysRevLett.110.135704
https://doi.org/10.1126/sciadv.aba4935
https://doi.org/10.1103/PhysRevX.11.041018
https://doi.org/10.1103/PhysRevResearch.4.033032
https://doi.org/10.1103/PhysRevResearch.3.033206
https://doi.org/10.1103/PhysRevB.106.054402
https://doi.org/10.1103/PhysRevResearch.5.033116
https://doi.org/10.1103/PhysRevLett.81.5644
https://doi.org/10.1103/PhysRevLett.114.010601
https://doi.org/10.1103/PhysRevLett.118.180601
https://doi.org/10.1103/PhysRevLett.132.176601
https://doi.org/10.1103/PhysRevA.87.043840
https://doi.org/10.1103/PhysRev.58.1098
https://doi.org/10.1103/PhysRevB.44.2227
https://doi.org/10.1103/PhysRevB.83.075432
https://doi.org/10.1007/s10825-013-0464-9


BRANGE, LAMBERT, NORI, AND FLINDT PHYSICAL REVIEW RESEARCH 6, 033181 (2024)

[50] P. Stegmann, B. Sothmann, A. Hucht, and J. König, De-
tection of interactions via generalized factorial cumulants in
systems in and out of equilibrium, Phys. Rev. B 92, 155413
(2015).

[51] J. König and A. Hucht, Newton series expansion of bosonic
operator functions, SciPost Phys. 10, 007 (2021).

[52] E. Kleinherbers, P. Stegmann, A. Kurzmann, M. Geller, A.
Lorke, and J. König, Pushing the limits in real-time measure-
ments of quantum dynamics, Phys. Rev. Lett. 128, 087701
(2022).

[53] M. B. Plenio and P. L. Knight, The quantum-jump approach to
dissipative dynamics in quantum optics, Rev. Mod. Phys. 70,
101 (1998).

[54] F. Brange, P. Menczel, and C. Flindt, Photon counting statistics
of a microwave cavity, Phys. Rev. B 99, 085418 (2019).

[55] A. Deger, K. Brandner, and C. Flindt, Lee-Yang zeros and
large-deviation statistics of a molecular zipper, Phys. Rev. E 97,
012115 (2018).

[56] F. Brange, T. Pyhäranta, E. Heinonen, K. Brandner, and C.
Flindt, Lee-Yang theory of Bose-Einstein condensation, Phys.
Rev. A 107, 033324 (2023).

[57] B.-B. Wei and R.-B. Liu, Lee-Yang zeros and critical times in
decoherence of a probe spin coupled to a bath, Phys. Rev. Lett.
109, 185701 (2012).

[58] B.-B. Wei, S.-W. Chen, H.-C. Po, and R.-B. Liu, Phase transi-
tions in the complex plane of physical parameters, Sci. Rep. 4,
5202 (2014).

[59] A. Deger, F. Brange, and C. Flindt, Lee-Yang theory, high
cumulants, and large-deviation statistics of the magnetization
in the Ising model, Phys. Rev. B 102, 174418 (2020).

[60] H. Touchette, The large deviation approach to statistical me-
chanics, Phys. Rep. 478, 1 (2009).

[61] S. Ashhab, Superradiance transition in a system with a single
qubit and a single oscillator, Phys. Rev. A 87, 013826 (2013).

[62] M.-J. Hwang, R. Puebla, and M. B. Plenio, Quantum phase
transition and universal dynamics in the Rabi model, Phys. Rev.
Lett. 115, 180404 (2015).

[63] M.-J. Hwang, P. Rabl, and M. B. Plenio, Dissipative phase
transition in the open quantum Rabi model, Phys. Rev. A 97,
013825 (2018).

[64] R.-H. Zheng, W. Ning, Y.-H. Chen, J.-H. Lü, L.-T. Shen, K.
Xu, Y.-R. Zhang, D. Xu, H. Li, Y. Xia, F. Wu, Z.-B. Yang, A.
Miranowicz, N. Lambert, D. Zheng, H. Fan, F. Nori, and S.-
B. Zheng, Observation of a superradiant phase transition with
emergent cat states, Phys. Rev. Lett. 131, 113601 (2023).

[65] Z.-Y. Ge, H. Fan, and F. Nori, Effective field theories and
finite-temperature properties of zero-dimensional superradiant
quantum phase transitions, Phys. Rev. Res. 6, 023123 (2024).

[66] H. J. Lipkin, N. Meshkov, and A. J. Glick, Validity of many-
body approximation methods for a solvable model, Nucl. Phys.
62, 188 (1965).

[67] N. Meshkov, A. J. Glick, and H. Lipkin, Validity of many-body
approximation methods for a solvable model, Nucl. Phys. 62,
199 (1965).

[68] A. J. Glick, H. J. Lipkin, and N. Meshkov, Validity of many-
body approximation methods for a solvable model, Nucl. Phys.
62, 211 (1965).

[69] W. Kopylov, G. Schaller, and T. Brandes, Nonadiabatic dynam-
ics of the excited states for the Lipkin-Meshkov-Glick model,
Phys. Rev. E 96, 012153 (2017).

033181-10

https://doi.org/10.1103/PhysRevB.92.155413
https://doi.org/10.21468/SciPostPhys.10.1.007
https://doi.org/10.1103/PhysRevLett.128.087701
https://doi.org/10.1103/RevModPhys.70.101
https://doi.org/10.1103/PhysRevB.99.085418
https://doi.org/10.1103/PhysRevE.97.012115
https://doi.org/10.1103/PhysRevA.107.033324
https://doi.org/10.1103/PhysRevLett.109.185701
https://doi.org/10.1038/srep05202
https://doi.org/10.1103/PhysRevB.102.174418
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1103/PhysRevA.87.013826
https://doi.org/10.1103/PhysRevLett.115.180404
https://doi.org/10.1103/PhysRevA.97.013825
https://doi.org/10.1103/PhysRevLett.131.113601
https://doi.org/10.1103/PhysRevResearch.6.023123
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90864-3
https://doi.org/10.1103/PhysRevE.96.012153

