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Modeling the unphysical pseudomode model with physical ensembles: Simulation, mitigation,
and restructuring of non-Markovian quantum noise

Mauro Cirio ,1,* Si Luo ,1 Pengfei Liang ,1,† Franco Nori ,2,3,4 and Neill Lambert 2,‡

1Graduate School of China Academy of Engineering Physics, Haidian District, Beijing, 100193, China
2Theoretical Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan

3Quantum Computing Center, RIKEN, Wakoshi, Saitama, 351-0198, Japan
4Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 4 January 2024; revised 16 May 2024; accepted 11 June 2024; published 17 July 2024)

The influence of a Gaussian environment on a quantum system can be described by effectively replacing
the continuum with a discrete set of ancillary quantum and classical degrees of freedom. This defines a
pseudomode model which can be used to classically simulate the reduced system dynamics. Here we consider
an alternative point of view and analyze the potential benefits of an analog or digital quantum simulation of the
pseudomode model itself. Superficially, such a direct experimental implementation is, in general, impossible
due to the unphysical properties of the effective degrees of freedom involved. However, we show that the effects
of the unphysical pseudomode model can still be reproduced using measurement results over an ensemble of
physical systems involving ancillary harmonic modes and an optional stochastic driving field. This is done
by introducing an extrapolation technique whose efficiency is limited by stability against imprecision in the
measurement data. We examine how such a simulation would allow us to (i) perform a quantum simulation
of the effects of complex nonperturbative and non-Markovian environments in regimes that are challenging
for classical simulation; (ii) conversely, mitigate potential unwanted non-Markovian noise present in quantum
devices; and (iii) restructure some of the properties of a given physical bath, such as its temperature.
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I. INTRODUCTION

The definition of a physical system requires a distinction
between internal and external degrees of freedom. The in-
teraction between these constituents causes the internal, or
closed, system dynamics to become open, i.e., affected by the
external environment. For example, information stored in the
system can propagate towards a measurement device or it can
simply be lost, or dissipated, in the continuum of a thermal
bath. Interestingly, this distinction between internal and ex-
ternal degrees of freedom becomes more ambiguous as the
coupling between the system and the environment increases.
In this case, information can be coherently exchanged be-
tween the system and the bath before the dynamics eventually
stabilizes into a state characterizing hybridization properties
of the whole system environment.

As a consequence, a mathematical model for these so-
called non-Markovian regimes [1,2], must also include a
characterization of the external continuum alongside the
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system. This can be achieved by selecting the most. relevant
physical environmental degrees of freedom engaging in the
interaction using, for example, the polaron transformation
[3–18], chain mappings [19–22], tensor networks [23–27], or
the reaction coordinate model [21,28–32]. In parallel, it is
also possible to follow an effective philosophy, i.e., to focus
on the influence of the environment on the system rather
than on the full system-bath dynamics. This leads to effec-
tive master equations for the system dynamics which can
include deterministic [33,34] and stochastic [35–38] mem-
ory kernels or use the path-integral [39–47] or the canonical
formalism [1,48–51] to derive time-local differential equa-
tions involving additional ancillary degrees of freedom in
Liouville space [52–63] or within the hierarchical equation of
motion formalism (HEOM) [64–79]. Among this last category
of methods is the pseudomode model [25,26,80–94], which
encodes all nonperturbative effects of a Gaussian environ-
ment (such as bosonic and fermionic baths initially at thermal
equilibrium) using ancillary harmonic modes and, possibly,
classical stochastic processes [95].

An interesting characteristic of the pseudomode model
(PM) is that, while its ancillary degrees of freedom su-
perficially resemble simple physical harmonic modes and
driving fields, in reality they can take on unphysical features
and exhibit unphysical dynamics. Here the word unphysical
specifically means that both the Hamiltonian and the density
matrix of the full model can be non-Hermitian. This combi-
nation of superficial simplicity and unintuitive unphysicality
is a consequence of the effective nature of the model which
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focuses on reproducing the reduced system dynamics after
averaging over the ancillary degrees of freedom. This point
of view can be more formally described as a map E �→ PMcan

between a physical environment E and its corresponding
canonical pseudomode model PMcan, whose unphysical pa-
rameters allow us to reduce the number of pseudomodes, and
hence computational resources, needed to represent a given
environment. In other words, the collection of these models
directly correspond to real physical environments. In this con-
text, pseudomodes have primarily been seen as a numerical
tool that allows us to simulate non-Markovian and nonpertur-
bative environments [96,97] in a transparent and simple way.
Here we enlarge the domain of applicability of the method by
considering how pseudomodes can be used as ancilla degrees
of freedom in experiments as a means to simulate, mitigate, or
restructure physical environments.

To develop a framework encompassing all these applica-
tions, it is useful to consider PMs with fully unconstrained
parameters, i.e., corresponding to a map EPM �→ PM which
generalizes the canonical case, PMcan, to simulate a potential
unphysical pseudoenvironment EPM.

To give meaning to this analysis, it is necessary to analyze
what applications would be made available given the possibil-
ity to engineer these generalized environments in experiments
(either via analog or digital techniques).

As an intuitive example, it is useful to consider what
happens when such environments are coupled to the system
alongside some originally present environmental bath E . We
can then restrict the analysis to the situation in which the
resulting “total,” target environment Etarget is physical, i.e.,

EPM + E = Etarget

↓ ↓ ↓
pseudomode bath original bath “restructured”

(unphysical) (physical) (physical)

(1)

as exemplified in Fig. 1. This simple setting can be used to
show different benefits of a possible simulation of the un-
physical pseudomode environment EPM (henceforth dubbed
pseudoenvironment). Specifically, we will analyze three dif-
ferent applications.

(i) Quantum simulation. First, we note that, by impos-
ing E = 0 in the equation above, we recover the canonical
pseudomode model PMcan in which the pseudoenvironment
directly correspond to a physical one. As a consequence, a
protocol able to engineer the canonical pseudoenvironment
would correspond to performing a quantum simulation of
non-Markovian quantum noise by using physical analogs or
digital simulations [98–114].

(ii) Mitigation of non-Markovian noise. Second, by im-
posing Etarget = 0, the equation above tells us that the
pseudoenvironment EPM is the one which exactly coun-
teracts all the effects of the original E , resulting in the
possibility to mitigate the effects non-Markovian noise
generated by the physical environment E . As a conse-
quence, in this case the simulation of such a pseudoen-
vironment can be interpreted as an extrapolation or error-
mitigation procedure on the lines of Refs. [115–128]. The
generality of these mitigation techniques usually rely on
an underlying error model. For example, in Ref. [120],
non-Markovian noise is analyzed in terms of Lindblad

FIG. 1. Logical structure of the presented framework. The pa-
rameters of a pseudomode model PM can be extended to describe
physical target environments Etarget once their corresponding bath
EPM is coupled to a system alongside another physical environment E
as in (a). In the most general case, this pseudoenvironment EPM cor-
responds to an abstract unconstrained pseudomode model (b) which
can be realized with a physical ensemble leading to a “restructuring”
of the original bath E (c). More specific applications are found (blue
ellipses) by imposing E = 0 (a) which leads to a simulation of the
environment Etarget (b) through the canonical pseudomode model (c).
Similarly (red ellipses), imposing Etarget = 0 (a) corresponds to a
mitigation of the effects of the bath E (c) on the system, through
what we call “antimodes” (b).

equations with negative rates, whose explicit derivation can
be involved unless perturbative assumptions are made. In this
context, the technique presented here can be interpreted as
a non-Markovian mitigation protocol whose underlying error
model is defined by the pseudomode mapping. On the one
hand, this has the advantage of being an explicit nonperturba-
tive model but its applicability is, on the other hand, limited to
noise originating from Gaussian bosonic baths.

(iii) General bath restructuring. Third, more generally,
when Etarget is a modified version of E , the formalism can
be interpreted as a way to restructure some environmental
properties without assuming them to be experimentally ac-
cessible. As an example, Etarget could specify a new bath
having the very same properties as the original E apart from a
different temperature. This restructuring can be realized when
the pseudoenvironment defined by Eq. (1) is coupled to the
system alongside the original bath E .
To achieve these goals (the simulation, mitigation, or re-
shaping of the properties of non-Markovian noise), we need
a means to physically implement the pseudomode model
experimentally, either with digital or analog simulation. At
first glance, this seems challenging, because of the previ-
ously mentioned innate unphysicality of the pseudomodes
formulation which we use. For example, as we will show
later, this unphysicality can appear in the form of complex
non-Hermitian couplings between system and pseudomodes,
which may also have complex temperatures or complex fre-
quencies, as well as imaginary-valued classical stochastic
fields acting on the system. In this article we describe a so-
lution to this problem in the form of general protocol to enable
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S
FIG. 2. Graphical representation of the protocol to simulate un-

physical pseudoenvironments. In (a), a system S interacts with a
continuum of bosonic degrees of freedom. In (b), the reduced dy-
namics of the system is approximated by the one in which the
system interacts with a discrete set of pseudomodes or stochastic
fields, see Eq. (10). Some of these modes or fields can be unphys-
ical (represented by the color red). In (c), an ensemble of physical
pseudomodes or fields (represented by the color blue) leads to the
same reduced system dynamics as the original pseudomode model in
(b) and the original open quantum system in (a) once the parameter
� parametrizing the ensemble is analytically continued to the critical
value �c. This prescription for the physical implementation of un-
constrained pseudomode model opens an avenue to the applications
presented in Fig. 1.

the experimental realization of such unphysical pseudomode
models.

This is achieved by analytical continuation of measure-
ment results over an ensemble of physical systems [129], see
Fig. 2. By using bounds provided by the theory of polynomial
approximation and extrapolation, we describe the limitations
of this technique in terms of an interplay between bias and
stability errors. Mainly, while the order of the extrapolating
polynomial allows one to increase the predictive power of
the method under perfect conditions (reducing its bias), it
also increases the sensitivity to imprecision in the initial data
(observable outcomes over a physical ensemble). This leads to
a limitation in the complexity of the effects of the environment
on the system which can be recovered using this method.

This article is organized as follows. In Sec. II we start by re-
viewing open quantum systems to introduce the pseudomode
model in Sec. III. In Sec. IV, we describe the main result of
this article, i.e., a protocol to simulate the pseudomode model
using an ensemble of physical systems. In Sec. V, we present
an overview of the possible use of these results to simulate,
mitigate, and restructure non-Markovian noise. In Sec. VI,
we provide specific numerical examples for each of these
use cases for an environment described by an underdamped
Brownian spectral density. In Sec. VII, we further provide
an error analysis of the algorithm. We finish presenting our
conclusions in Sec. VIII.

II. OPEN QUANTUM SYSTEMS

In this article, we focus on Gaussian bosonic environments,
whose effects on a system can be fully characterized by the
correlation of the operator through which they couple to the
system. In this section, tildes are used over some of the param-
eters to explicitly distinguish them from conceptually related

ones used to describe the effective baths introduced in the next
sections.

We consider a system S interacting with a physical bosonic
environment E with a total Hamiltonian (h̄ = 1),

H = HS + ŝX + HE , (2)

where HS is the Hamiltonian of the system and HE =∑
k̃ ωk̃ ã†

k̃
ãk̃ is the free Hamiltonian of the environment with

ãk̃ the annihilation operator for the environmental mode k̃
with frequency ωk̃ . The interaction term is a function of a
generic system operator ŝ and it has a linear dependency on
the environment, i.e.,

X =
∑

k̃

λ̃k̃ (ãk̃ + ã†
k̃
), (3)

where we introduced the coupling strengths λ̃k̃ ∈ R. We
explicitly note that nonlinear environmental couplings are
outside the scope of the pseudomode model and, as a conse-
quence, of the method presented here. The reduced dynamics
of the system is

ρ̃S (t ) = TrE [ρS+E (t )], (4)

where ρS+E is the density matrix of the full
system+environment. In general, the reduced dynamics
of the system depends on all the n-point free correlation
functions involving the interaction operator X (t ) (where the
time dependence indicates the Heisenberg picture). However,
for Gaussian environments, all this information is encoded,
through Wick’s theorem, in the two-point correlation function,

CE (t2, t1) = TrE
[
X (t2)X (t1)ρeq

E

]
, (5)

where the average is taken over the equilibrium distribution
ρ

eq
E of the environment. When the environment is initially

in a thermal equilibrium at inverse temperature β, the cor-
relation function is translational invariant and takes the form
CE (t2, t1) = CE (t2 − t1), where

CE (t ) =
∫ ∞

0
dω

J (ω)

π

[
coth

(
βω

2

)
cos(ωt ) − i sin(ωt )

]
,

(6)
in terms of the spectral density function,

J (ω) = π
∑

k̃

λ̃2
k̃δ(ω − ωk̃ ). (7)

In the next section, we introduce the pseudomode model as a
map between the reduced dynamics for the open quantum sys-
tem described here and the one computed by averaging over
the effects of a discrete set of ancillary harmonic quantum
modes and classical stochastic fields.

III. PSEUDOMODE MODEL

The pseudomode method consists in replacing the origi-
nal continuum of environmental modes with a discrete set
of dissipative harmonic modes and stochastic driving fields.
The main purpose of these ancillary degrees of freedom is
to reproduce the correlation function characterizing the orig-
inal Gaussian environment and, ultimately, to reproduce the
original reduced system dynamics in Eq. (4). We refer to
Refs. [89,90,95] and to Appendixes A and B for more details.
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PM will be used to indicate a possibly stochastic operator
M acting linearly on the density matrix ρS-PM in a space
composed by the system and NPM ancillary Fock spaces. The
influence of M can thereby be interpreted as the effect of
an artificial environment made of NPM dissipative harmonic
modes (pseudomodes) and an optional stochastic driving field
acting on the system. Perhaps the most important feature
of the model is the existence of a nonperturbative relation
between these “pseudoenvironments” and physical, Gaussian
bosonic environments as described in Sec. II. This “pseudo-
mode mapping” defines the dependency of M on a set of
parameters GPM which directly depend on the spectral density
in Eq. (7) and hence on the properties of the physical bath.
This mapping is defined by matching the coupling statistics of
the pseudomode model and the original bath [encoded in the
correlation in Eq. (6)].

These definitions take a practical form in specifying the
dynamics of the density matrix ρS-PM of the pseudomode
model as

ρ̇S-PM(t ; GPM) = M(GPM)[ρS-PM(t ; GPM)]. (8)

The parameters in GPM are optimized so that the reduced
system dynamics,

ρS (t ; GPM) = E[ρS-PM(t ; GPM)], (9)

is equivalent to the one in the original open quantum system,
i.e., that

ρ̃S (t ) = ρS (t ; GPM). (10)

Here E indicates the expected value over the optional stochas-
tic properties of M.

It is useful to stop for a moment in order to introduce a
few examples describing how to qualitatively different envi-
ronmental effects can be modeled using the formalism above.

A. Reproducing environmental effects

The pseudomode model is designed to exactly reproduce
all the effects of a Gaussian bosonic bath linearly coupled to
a system. For concreteness, here we analyze how to model
specific effects. Since the aim of this section is to highlight
the generality of the pseudomode model in characterizing
qualitatively different environmental properties, the specific
dependence of the model parameters on the original environ-
ment is not explicitly described. We refer to Refs. [89,90,95]
and Appendix B for more details.

1. Markovian effects

Markovian effects arise as a consequence of memory-less
contributions Cδ (t ) = 	δ(t ) to the correlation in Eq. (6), so
that 	 can be interpreted as a decay rate. In this limit, the
operator M takes a Lindblad form, i.e., it can be written as
the sum of dissipators,

M �→ Mδ ({	}) = 	Dŝ, (11)

where Dŝ[·] = 2ŝ · ŝ† − ŝ†ŝ · − · ŝ†ŝ, for a system operator ŝ.

2. Classical effects

This case, which includes the previous one, amounts in
modeling effects which can be ascribed to a symmetric

contribution Cclass(t ) = Cclass(|t |) to the correlation in Eq. (6).
The corresponding model can be written in terms of a stochas-
tic drive,

M �→ Mclass({cn}) = −iξ (t )[ŝ, ·], (12)

where the coefficients {cn}, n = 1, . . . , Nstoch, define the spec-
tral representation of a Gaussian field with zero mean and
correlation matching Cclass(t ), i.e.,

Cclass(t ) = c0 + 2
Nstoch∑
n=1

cn cos[nπt/T ], (13)

which can always be achieved by increasing the cut-off pa-
rameter Nstoch.

3. Quantum effects

This case, which includes both previous ones, amounts in
modeling general effects related to a nonclassical contribution
CQ(t ) to the correlation in Eq. (6). The corresponding model
can be written in terms of a sum of terms taking the form

M �→ MQ({�, λ, 	, n})

= −i[�a†a + λŝ(a + a†), ·] + 	(n + 1)Da + 	nDa† , (14)

written in terms of a pseudomode operator a and dependent
on its frequency �, the coupling strength λ, the decay rate 	,
and the distribution n. This form implies the effects due to
NPM pseudomodes to be encoded in a correlation contribution
written as

CQ(t ) =
NPM∑
j=1

C j
Q(t ), (15)

where

C j
Q(t ) = λ2

j [(n j + 1)e−i� j t + n je
i� j t ] exp [−	 j |t |]. (16)

The pseudomode mapping consists in finding the optimal
value for these parameters such that, in general,

CE (t ) = Cδ + Cclass + CQ(t ). (17)

By considering all these different effects together, the canon-
ical pseudomode model associated with the environment E is
determined by the collection

GPM = {
�k, λ

2
k, 	k, nk, cn

}
, (18)

where k = 1, . . . , NPM, n = 0, . . . , Nstoch, characterizing the
environmental correlation in Eq. (17) in terms of pseu-
domodes and fields (where we omitted the Markovian
component as its effects can always be included in the other
degrees of freedom).

In Ref. [90], it was shown that the correlation of envi-
ronments characterized by a Brownian spectral density in the
underdamped regime can be well approximated by a sum of
purely quantum contributions, even in the zero-temperature
case. In this case, some of the modes were shown to require
imaginary couplings λ to the system. In Ref. [95], it was
further shown that such an environment can always be mod-
eled by a single, physical, quantum contribution with n = 0
alongside a classical one representing a single, imaginary,
stochastic field for any temperature of the original bath. These
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results imply that, in order to correctly reproduce the reduced
system dynamics, the artificial environment representing
the pseudomode model might require to have “unphysical”
parameters.

While preventing a direct physical interpretation, this en-
larged parameter domain also implies the possibility for a
more optimized description of the original environment. At
the same time, it is worthwhile to explicitly point out that,
since the form of the dynamical equation does not depend on
the physicality of the parameters, its unphysical solutions can
be interpreted as the analytical continuation of the physical
solutions (considered as functions of the variables in the set
GPM). For example, non-Hermitian contributions to the uni-
tary dynamics are not compensated by taking the Hermitian
conjugate on the Hamiltonian when acting on the right of the
density matrix [90]. This makes the procedure qualitatively
different than the orthodox concept of non-Hermitian quan-
tum mechanics [130,131].

In order to give a more formal terminology, we define
a parameter η ∈ GPM as physical if η ∈ R+ and unphysical
otherwise. This language sets the basis for the generalizations
which we are going to analyze in this article.

B. Beyond the canonical pseuodomode model

The pseudomodel described above is labeled “canonical”
because, despite its possible unphysicality, all the parameters
are constrained to mimic the effects of physical environments
on the system through Eq. (10). Here we are interested in
a more general case whose parameters are unconstrained to
lie outside the canonical model, thereby corresponding to
unphysical environments. Given a set of parameters GPM of
an unconstrained pseudomode model, we define EGPM as its
corresponding pseudoenvironment,

EGPM ↔ GPM, (19)

which is composed of the (potentially unphysical) modes
and fields characterized by the parameters in GPM, through
Eq. (18). We will show that, while unphysical, these environ-
ments can be used to effectively change, or “restructure,” the
properties of a physical bath.

Given this general setting, our goal is to describe how to
reproduce the effects of such an unconstrained pseudomode
model from measurement results over physical ensembles.
We will achieve this by defining an analytical continuation
protocol on the unphysical parameters to allow observable
outcomes in a physical ensemble to reproduce the effects of
any general unphysical pseudomode model. In turn, this will
lead to a physical representation of models associated to phys-
ical environments (thereby defining a tool for their simulation)
and models corresponding to more general effects, such as
noise mitigation or the restructuring of some environmental
properties such as temperature.

IV. UNPHYSICAL PSEUDOMODES
WITH PHYSICAL ENSEMBLES

In this section, we analyze a physical characterization of
the unconstrained pseudomode model. The possibility to do so
stems from the fact that the analytical continuation considered

here can intuitively be interpreted as a Wick’s rotation (used
to map time to an imaginary temperature-like quantity akin
to the methods used in the context of quantum Monte Carlo
[132–150]) on a parameter �. In this context, we follow
the specific theoretical protocol presented in Ref. [129] (see
also Ref. [151]) where observable results over an ensemble
of quantum systems are used to perform a Wick rotation to
relate classical statistical systems to quantum measurements
and vice versa.

Here we implement a similar strategy to analytically con-
tinue observables extracted from a physical pseudomode
model into observables of the corresponding unphysical pseu-
domode model. To start, we denote the unphysical or physical
parameters as η

unphys
j /η

phys
k , where k = 1, . . . , Nphys and j =

1, . . . , Nunphys, specifying their total number. These defini-
tions can be used to write the set GPM characterizing the model
as

GPM ≡ {
η

unphys
j , η

phys
k

}
. (20)

The physical intuition behind this definition is directly related
to the parameters of the model defined in Eq. (18), whose
positivity constitutes a sufficient condition to obtain a fully
physical effective Hamiltonian. For example, a negative coef-
ficient cn would give rise to a non-Hermitian contribution to
the Hamiltonian through the square roots defining the stochas-
tic drive in Eq. (A13). Similarly, we further require that the
frequency, squared coupling strength, decay rate, and Bose-
Einstein distribution associated to each pseudomode to all be
positive in order for the model to be considered physical. We
now consider a set of Nunphys functions  j : C → C such that

 j (�) ∈ R+ for � ∈ Dphys,

 j (�c) = η
unphys
j for �c ∈ C, �c 	∈ Dphys. (21)

Here the first set of conditions allows us to interpret the values
 j (�) as physical parameters on the domain Dphys which,
here, is arbitrarily set to be

Dphys = [−1, 1]. (22)

This specific choice is motivated by its compatibility with the
domain of the Chebyshev polynomials which are a convenient
tool for extrapolation. The second condition requires that the
unphysical parameters η

unphys
j can be recovered by analytical

continuation of the functions  j (�) for � �→ �c ∈ C. While
not necessary, it is convenient to further impose

 j (−1) = 0,  j (1) = 1, (23)

to reflect bounds on accessible physical regimes. The param-
eter � is the one we will eventually analytically continue. We
now define a “physical regularization” of the set GPM as

Gphys
PM (�) ≡ {

η
unphys
j �→ η j (�) = 

(
�; ηunphys

j

)
, η

phys
k

}
,

(24)
which uses � to parametrize an ensemble of pseudomodes
models which are physical in the domain � ∈ [−1, 1]. Using
the second condition in Eq. (21), it is possible to directly
verify that

Gphys
PM (�c) = GPM. (25)
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This shows that, indeed, the analytical continuation of the
physically regularized model recovers the unconstrained
pseuodomode model. For concreteness, it is possible to define
the function ̃(�) as

̃(�) = (1 + �)/2, (26)

which, together with

�c = −1 + 2i, (27)

fulfills the constraints in Eq. (21) and Eq. (23) through the
definition


(
�; ηunphys

j

) ≡ F�

(
ηR

j

)+ ̃(�)F�

(
ηI

j

)
, (28)

where ηR
j ≡ Re[ηunphys

j ], ηI
j ≡ Im[ηunphys

j ], and where

F�(x) ≡ θ (x)x + ̃2(�)θ (−x)|x|
= [θ (x) − ̃2(�)θ (−x)]x, (29)

is defined in terms of the step function θ (x) = 1 for x � 1
and zero otherwise. While other choices are possible, this will
be the default one used throughout this article. The function
defined in Eq. (29) satisfies

0 � F�∈Dphys (x) � |x|, ∀x, (30)

where the physical domain Dphys is defined in Eq. (22). In
turn, using Eq. (28), this implies the following corresponding
properties for the function η j (�) = (�; ηunphys

j ) in Eq. (24)
as

0 � η j (� ∈ Dphys) �
∣∣Re

[
η

unphys
j

]∣∣+ ∣∣Im[ηunphys
j

]∣∣. (31)

This equation directly provides the range of parameters defin-
ing the physical ensemble required by the protocol. We can
see this explicitly by recalling that each η

unphys
j characterizes

a parameter in the full unphysical model through Eq. (18). In
other words, for each unphysical parameter η

unphys
j present in

the model through Eq. (18), we assume it is possible to physi-
cally tune its physical version [i.e., η j (�) = (�; ηunphys

j ) for
� ∈ Dphys as defined in Eq. (24)] for all the values between
zero and the upper bound in Eq. (31).

In order to provide an example to these formal defini-
tions, we can consider the case of an imaginary coupling
λunphys = iλ̄ (in terms of a physical energy scale λ̄) between a
pseudomode and the system. This is a relevant case as the cor-
responding correlation for such a pseudomode is going to be
negative even at zero time, consistently with the “Matsubara
contribution” analyzed in Ref. [90]. While the imaginary cou-
pling above does not immediately allow a physical realization,
we can nonetheless interpret it as the result of an analytical
continuation procedure. To do this, we can follow Eq. (24),
Eq. (28), and Eq. (26) to write

λunphys �→ λ(�) = (�; λunphys) = ̃(�)λ̄ = λ̄(1 + �)/2.

(32)
We can now explicitly check that this physical version of
the unphysical coupling ranges from zero to λ̄ (for � ∈
Dphys = [−1, 1]), thereby satisfying the general bound given
in Eq. (31). Furthermore, for � → �c we also recover the
unphysical version of the coupling by construction.

In summary, we formally defined physical versions of the
pseudomodes parametrized by a single parameter � whose

analytical continuation to � �→ �c reproduces the unphysi-
cal pseudomodes model as shown in Eq. (25). Our attention
now shifts towards the implementation of this analytical
continuation using measurement results over the physical en-
semble Gphys

PM (�) corresponding to sweeping over different
values of �.

A. Analytical continuation

In the previous sections we showed that, given a pseu-
domode model defined by a set GPM(�) of unconstrained
parameters, there exists a regularized version Gphys

PM (�) whose
parameters are physical for � ∈ Dphys. This implies that the
corresponding models Mphys

PM (�) can be interpreted as a phys-
ical ensemble parametrized by � ∈ Dphys. Here the word
“physical” takes an operative meaning [152], as each of these
models can, in principle, be experimentally realized by cou-
pling the system to a set of ancillary resonators and by driving
it with a classical stochastic field. This means that, for such
�s, and for a given time t , we can always perform a sequence
of measurements to reconstruct the density matrix,

ρS (t ; �) ≡ ρS
(
t ;
{
η

unphys
j �→  j (�), ηphys

k

})
, (33)

which simply corresponds to the dynamics of the model as in
Eq. (8). The density matrix, interpreted as a function of the
parameter �, can be analytically continued to the value �c to
finally achieve our goal, i.e., the simulation of the unphysical
pseudomdode model corresponding to the density matrix,

ρS (t ; �c) ≡ ρS
(
t ;
{
η

unphys
j �→  j (�c), ηphys

k

})
. (34)

This result can also be rephrased in terms of equivalent pseu-
doenvironments. In fact, generalizing Eq. (19), we can define
Ephys

PM (�) as the physical pseudoenvironment corresponding to
the regularized set Gphys

PM (�), i.e.,

Ephys
GPM

(�) ↔ Gphys
PM . (35)

In this way, Eq. (34) can be interpreted as an analytical con-
tinuation of the corresponding pseudoenvironments, i.e.,

Ephys
PM (�c) = EPM. (36)

While this can be considered just as an equivalent way to
interpret Eq. (34), it also allows us to grasp its meaning
from a different point of view. In fact, Eq. (36) can be in-
tuitively interpreted as manifesting the possibility to define
a parametrization for physical environments such that, on
analytical continuation, the effects on the system are equivalent
to those generated by a generalized, unphysical pseudomode
model. This different prospective paves the way for the appli-
cations which will be analyzed in Sec. V.

Here it is worth remembering that the correlation for the
full environment affecting the dynamics of ρS (t ; �) is made
by both the original open system and the �-parametrized
pseudomode model. This means that the overall correlation
for this composite environment can be written as

C(t ; �) = CE (t ) + CPM(t ; �). (37)

If we now denote the correlation of the target environment
Etarget as CEtarget (t ), then the general expression in Eq. (1)
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translates into the following correspondence for correlations:

C(t ; �c) = CEtarget (t ) + �C(t ). (38)

Here �C(t ) quantifies the discrepancy between the correla-
tions of the analytical continued model and the target one
so that Eq. (38) could also be interpreted as its definition. In
practice, we can only assume the physical ensemble Ephys

PM (�)
to be realized for a discrete grid of points, which is the case
we are going to analyze in the next section.

B. Polynomial extrapolation

In this section, we analyze the analytical continuation of
the expectation values of a system observable,

f t
n ≡ 〈ÔS〉(t ; �n) ≡ TrS[ÔSρS (t ; �n)], (39)

over the physical ensemble described by a set of Ncont points
�n ∈ � for n = 1, . . . , Ncont. We note that this is a weaker
version of the case considered in the previous section. In
fact, the analytical continuation of the full density matrix can
be considered as the limiting, and more resource-consuming,
task where we analytically continue not just one but a com-
plete set of observables.

We now introduce the following practical procedure for
analytical continuation. We first define the function pM (t ; �)
as the order M polynomial which minimizes the distance,

d2 =
Ncont∑
n=0

∣∣pM (t ; �n) − f t
n

∣∣2. (40)

This least-squares fitting can be used to reconstruct the ob-
servable as

〈ÔS〉(t ; �c) ≡ pM (�c). (41)

The ability to reconstruct the full pseudomode model from an
ensemble of pseudomodes constrained to physical dynamics
opens up the possibility of several interesting applications
that would be otherwise physically inaccessible. In the next
section, we analyze these applications, in terms of simula-
tion, restructuring, and mitigation of non-Markovian quantum
noise. We explicitly note that this analytical continuation pro-
cedure does not allow us to infer the expectation values of
observables which are independent from the ones measured.

V. APPLICATIONS

In this section we describe different possible applications
of our protocol. Mainly, we show that, by driving a system
with classical noise and by coupling it to ancillary harmonic
modes, it is possible to analogically simulate, mitigate, or
restructure the effects of a Gaussian bosonic environment.

A. Simulation

We start by defining a procedure to simulate a physical
environment E ′, which we assume to be well described by
a pseudomode model characterized by a parameter set G′

PM.
We note that this corresponds to imposing E = 0 in Eq. (1),
which then translates to

EPM = Etarget. (42)

In other words, a simulation of the open quantum system
S + Etarget can be achieved by coupling the (closed) system
to the pseudoenvironment EPM corresponding to the pseudo-
mode model with parameters G′

PM. As noted in our previous
discussion, the pseudoenvironment EPM is, in general, not
directly physically realizable. To circumvent this problem, we
follow the analysis in Sec. IV and define a set of regularized
parameters Gphys

PM (�) corresponding to a collection of physical
pseudoenvironments Ephys

PM (�). By measuring observables in
this ensemble, it is then possible to proceed with the analytical
continuation protocol illustrated in Sec. IV, i.e.,

Gphys
PM (�c) = GPM, Ephys

PM (�c) = EPM, (43)

which corresponds to simulating the effects of the original
environment E ′ on the system.

B. Mitigation

Another interesting application is the use of the pseu-
domode model to mitigate the effects of a non-Markovian
environment E , which we assume to be well described by a
pseudomode model characterized by a parameter set GPM =
{�k, g2

k, 	k, nk, cn}. The mitigation procedure corresponds to
imposing Etarget = 0 in Eq. (1), which brings it to the form

E + EPM = 0. (44)

This equation describes the (unphysical) pseudoenvironment
EPM which, once coupled to the system, completely cancels
all effects of the environment E . Since we assume the knowl-
edge of the pseudomode model describing E , the parameters
defining this “antimode” environment EPM can be explicitly
written as

GPM = {
�k,−g2

k, 	k, nk,−cn
}
. (45)

To derive this equation we simply noted that if the original
set GPM describes a correlation CE (t ), then the set GPM must
correspond to

CPM(t ) = −CPM(t ), (46)

since Eq. (A12) and Eq. (14) are linear in cn and g2
k , respec-

tively. In other words, the compound effect of the pseudomode
model and its “antimode” version does not have any influ-
ence on the system since the two correlations sum up to
zero: A system simultaneously in contact with a Gaussian
environment and its unphysical “mirror” or antienvironment
should evolve as if no environment were present at all, i.e.,
noise free. Because of its effective noise-cancelling action,
the antimode environment is necessarily unphysical. However,
following Sec. IV, we can regularize its parameters to define
the corresponding physical ensemble Ephys

PM
(�) parametrized

by �, from which gathering all the information needed for the
analytical continuation

Ephys
PM

(�c) = EPM = −E , (47)

to achieve mitigation using measurements on a physical en-
semble.
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C. Restructuring

In its most general form, Eq. (1) reads

E restructuring
PM + E = Etarget, (48)

and can, for example, be interpreted as a “restructuring” of a
given physical environment E (which we assume associated
to a pseudoenvironment EPM = Ephys) into a version Etarget

(associated to the pseudoenvironment EPM′ = Etarget) charac-
terized by different physical properties (such as temperature
or system-bath coupling). This is achieved by coupling the
system to a pseudoenvironment E restructuring

PM whose parameters
must be a function of those in EPM and EPM′ encoding the
specific “changes” to be imposed on the bath. For the most
interesting cases, the resulting environment is going to be
unphysical so that, as done in the previous cases, we will need
to resort to the analytical continuation procedure outlined in
Sec. IV for the physical implementation of its effects.

Here we note that, while more optimized versions might
be possible (as shown in the example in Sec. VI B), in the
worst case, the restructuring can always be defined by using
both the simulation and mitigation techniques presented in the
previous sections. In fact, thanks to our assumptions and the
definition in Eq. (44) we can directly check that

E restructuring
PM = EPM′ + EPM, (49)

satisfies Eq. (48). In other words, in order to restructure a bath
Ephys into E ′

phys it is always possible to couple the system to
both the antienvironment relative to Ephys and an additional
one simulating E ′

phys. As mentioned, this worst-case scenario
can be optimized depending on the specific requirements of
the restructuring as we will show in the example in Sec. VI B.

In the following, we are going to present explicit numerical
examples for each of these applications.

VI. NUMERICAL EXAMPLES

To show a practical numerical implementation [153–156]
of the applications presented in the previous section, here we
present three examples: the mitigation and simulation of the
effects of an environment characterized by an underdamped
Brownian spectral density at zero and finite temperature and
the “restructuring” of the finite-temperature case into the zero-
temperature one. We note that, for exposition clarity, the order
in which these examples are presented is different with respect
to the previously reported one.

For concreteness, we will focus on a Gaussian bosonic
environment characterized by the spectral density function

JB(ω) = γ λ2ω(
ω2 − ω2

0

)2 + γ 2ω2
, (50)

written in terms of a resonance frequency ω0, a frequency
width γ , and a (frequency)3/2 strength λ. It describes a Ohmic
behavior at low frequency, i.e.,

JB(ω) ∼ αω for ω � ω0, (51)

and it has a polynomial cutoff at high-frequencies, i.e.,

JB(ω) ∼ αω4
0/ω

3 for ω � ω0, (52)

in terms of the adimensional scale α = λ2γ /ω4
0. We further

restrict ourselves to the underdamped regime which requires

ω2
0 − γ 2/4 > 0. (53)

By inserting the spectral density JB(t ) in Eq. (6) the correla-
tion function can be computed as [95]

CB(t ; β ) = CB
class(t ; β ) + CB

Q(t ), (54)

where

CB
class(t ; β ) = λ2

4�
coth [β(� + i	)/2]ei�|t |e−	|t |

− λ2

4�
coth [β(−� + i	)/2]e−i�|t |e−	|t |

− λ2

4�
(e−i�t + ei�t )e−	|t |

+ 2i

β

∑
k>0

J
(
ωM

k

)
e−|ωM

k ||t |. (55)

This expression, written in terms of the Matsubara frequencies
ωM

k = 2πki/β (k = 1, . . . ,∞), is the symmetric, or “classi-
cal” contribution which contains all temperature effects which
can, thereby, be modeled within the statistics of a single
temperature-dependent, classical field ξβ (t ), defined explicitly
in Appendix A, such that

CB
class(t ; β ) = E[ξβ (t2)ξβ (t1)], (56)

where t = t2 − t1. We can label the remaining contribution,

CB
Q(t ) = λ2

2�
exp [−i�t − 	|t |], (57)

as “quantum,” since it does not have specific symmetries, but
it has the form of Eq. (A10), i.e., it can be reproduced using a
single harmonic mode initially at zero temperature.

To be specific, we will consider the open system to be
composed of a two-level system coupled to the Brownian
environment B described above. Specifically, given a full den-
sity matrix ρS+B(t ) in the system+environment space whose
dynamics is described by a full Hamiltonian HS+B as

ρ̇S+B(t ) = −i[HS+B, ρS+B(t )], (58)

we want to compute the reduced dynamics encoded in

ρS (t ) = TrB[ρS+B(t )]. (59)

By defining the system Hamiltonian as

HS = ωs

2
σz + �

2
σx, (60)

and assuming that the operator ŝ = σx mediates the interaction
to the environment, the reduced dynamics can be computed by
using the pseudomode model, i.e., by computing

ρS (t ) = TrB[ρS+PM(t )], (61)

which requires us to solve the differential equation

ρ̇S+PM = −i[HS + ξβ (t )ŝ, ρS+PM] + Lares [λres; ρS+PM]. (62)

Here ρS+PM is the density matrix in the system+pseudomode
space. This dynamics is driven by a single field ξβ (t ) whose
statistics depends on the inverse temperature β to reproduce
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the Matsubara contribution to the correlation in Eq. (70) and
a single pseudomode ares to describe the resonant properties
of the spectral density in Eq. (50). Following the standard
pseudomode mapping [89,90,95], we have

Lares [λres; ·] = −i[Hres(λres), ·] + 	resD
T =0
ares

[·] (63)

in terms of the Hamiltonian

Hres(λres) = �resa
†
resares + λresŝ(ares + a†

res), (64)

the zero-temperature dissipator

DT =0
a [ρ] = 2aρa† + a†aρ + ρa†a, (65)

written for a generic operator a, and the coefficients

λres =
√

λ2/2�, �2
res = ω2

0 − 	2
res, 	res = γ /2. (66)

The initial state is ρS+PM(0) = ρS (0) ⊗ |0〉〈0| in terms of the
vacuum |0〉 annihilated by the harmonic mode a.

An interesting feature of this hybrid model associated to
the spectral density in Eq. (50) is that [95]

(i) all the parameters associated with the resonant mode
ares are physical, i.e., λres, �res, and 	res are real and positive.

(ii) all temperature effects are encoded in the statistics of
the field ξβ (t ); i.e., in its autocorrelation function.

Given this specific environment, we are now going to
analyze three specific applications in terms of mitigation,
restructuring, and analog simulation.

A. Noise mitigation

In this section, we are going to analyze the mitigation of the
effects of the environment specified by the spectral density in
Eq. (50) both at zero and finite temperature to ultimately com-
pute observables corresponding to the noise-free dynamics,

ρ̇free = −i[HS, ρfree]. (67)

To do this, we add stochastic driving and coupling to ancillary
quantum modes to the original S + B open quantum system
such that, after analytical continuation of a single parameter,
their correlation is exactly the opposite of the original one
CB(t ). We can achieve this using the formalism described in
Sec. V B.

First, we want to define the unphysical “antimode” model
PM whose correlation satisfies

CPM = −CB(t ). (68)

Using Eq. (45) this can be done by introducing a resonant
“antimode” āres and an “antifield” ξ̄β , whose parameters are
the same as those associated with ares and ξβ in Eq. (62),
except for an additional complex rotation in the interaction
to the system. Specifically,

λ̄res ≡ iλres, ξ̄β ≡ iξβ (or c̄n = −cn), (69)

where the field coefficients cn are explicitly defined in
Eq. (A14).

To continue, we need to define a physical ensemble whose
effects are the same as the antimode model after analytical
continuation. Before doing this, it is worth differentiating
between the zero- and finite-temperature cases.

1. Zero temperature

In the zero-temperature limit, it is interesting to note that a
simplification occurs in the classical expression for the corre-
lation function as [90,95]:

CB
class(t ; β = ∞) = i

π

∫ ∞

0
dxJB(ix)e−x|t |. (70)

This zero-temperature “Matsubara” contribution is negative
at zero time, hinting that imaginary fields are necessary to
ensure that the correct sign is reproduced in Eq. (56). This
is, in fact, the case, and the field ξβ=∞(t ) is purely imaginary,
which, using Eq. (69), corresponds to a real antifield ξ̄β=∞(t ).
Therefore, the stochastic part of the model does not require
introducing any additional analytical continuation procedure
[see Eq. (28)]. Thus, the analytical continuation needs only to
be performed on a single unphysical parameter (the coupling
λres between the system and the resonant mode).

Given this construction of the antimode model, we can
now define its physically regularized version, i.e., we want
to couple the system to a physical ensemble which can be
analytically continued to the antimode model above. Specifi-
cally, given the Hamiltonian HS+B in the original system+bath
space, we couple the system to a physical regularized-
antimode āphys

res and drive it by a physical field ξ̄
phys
β=∞(t ), such

that the dynamics is described by

ρ̇S+B = −i
[
HS+B + ξ̄

phys
β=∞ŝ, ρS+B

]+ Lāphys
res

[(�)λres; ρS+B].
(71)

Here the physicality of the field ξ̄
phys
β=∞(t ) = ξ̄I

β=∞(t ) explicitly
corresponds to having an autocorrelation function of the form

E
[
ξ̄

phys
β=∞(t2)ξ̄ phys

β=∞(t1)
] = − i

π

∫ ∞

0
dxJB(ix)e−x|t |

= −CB
class(t ; β = ∞) > 0 ∀t . (72)

In parallel, the parameters characterizing the physically regu-
larized antimode āphys

res are the same as those for the antimode
āres in Eq. (62), except for the presence of the additional
parameter � [introduced through the function  defined in
Eq. (26)], renormalizing the coupling to the system into the
physical domain. We assume such a coupling to be con-
strained in the range [0, λres], corresponding to � ∈ [−1, 1].
The correlation function of this mode is then given by

C̄B
res(t ) = 2(�)CB

res(t ), (73)

which, by construction, gives rise to a minus sign for � =
�c = −1 + 2i using Eq. (26). In this way, Eq. (72) and
Eq. (73) fulfill the identity in Eq. (68) defining the antimode
model. In other words, by performing the analytical contin-
uation � �→ �c, the model in Eq. (71) adds a correlation
−CB

res(t ) to the open quantum system in the (S + B) space
in Eq. (58), i.e., it completely counteracts, in principle, all
environmental noise ultimately leading to the free dynamics
in Eq. (67).

We give a graphical exemplification of this procedure in
Fig. 3. It is important to note that, in order to compute the dy-
namics plotted in this figure, we did not solve the differential
equation in Eq. (71) which involves the original environmen-
tal continuum. Instead, the physically regularized antimode
model is introduced on top of the deterministic pseudomode
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(a)

(b)

FIG. 3. Mitigation of an underdamped Brownian environment at
zero temperature. (a) Dynamics of the observable σz. In blue, the
original dissipative dynamics, solving Eq. (62). A physical version
of the antimode model is added to generate the different violet curves
corresponding to different � ∈ [−1, 1] in Eq. (74). In green, partial
and full mitigation as an analytical continuation on the function
σz(t ; �) for � ∈ [−1, −1 − 2i]. In red, a regularization is applied
to the analytically continuation of the full density matrix. (b) Ana-
lytical continuation at the specific time described by the gray line
in (a). Violet points corresponds to the measured observables for
different real �. The green points correspond to the partially and
fully implemented analytical continuation. In blue, the original value
in the sole presence of the bath B. The overall gray surface is the
polynomial pM (t ; �) used to define the analytical continuation as
an extrapolation. The specific parameters used are α = 0.02, 	 =
0.3ω0, ωs = � = ω0, M = 10, Ncont = 12, and Nstoch = 100.

model characterizing such a continuum. In other words, we
are going to model the original continuum with a pseudomode
model which only includes three “deterministic” quantum
degrees of freedom. On the other hand, we are going to use
the “stochastic” version of the pseudomode model (involving
one quantum mode and a driving noise) to simulate the envi-
ronment used to mitigate the original one. In this way, the full
master equation reads

ρ̇S+PM+PM = −i[HS + HPM + ξβ=∞ŝ, ρS+PM+PM]

+
3∑

j=1

Laj [λ j ; ρS+PM+PM]

+ Lāreg
res

[(�)λres; ρS+PM+PM], (74)

which corresponds to using the antimode model alongside the
deterministic pseudomode model in Ref. [90] [used to de-
scribe the continuum B in Eq. (71)]. We refer to Appendix B 3
for a brief overview. The solutions of this differential equa-
tion for different values of � in �n ∈ [−1, 1] are used
to compute the observable 〈ÔS〉phys(t ; �). This is done by
interpolating the values 〈ÔS〉phys(t ; �n) with an order M
polynomial pM (t ; �) which is then analytically continued to
� �→ �c to compute 〈ÔS〉(�c; t ) = 〈ÔS〉free(t ) corresponding
to Eq. (67). To improve the accuracy of the reconstruction,
we also perform a regularization procedure by analytically
continuing a complete set of observables (in this case, the
three Pauli matrices) and imposing physicality on the extrap-
olated result. Specifically, the regularization we considered
here corresponds to writing

ρ
reg
S (t ) = 1

2

⎛⎝1 +
∑

i=x,y,z

Re[〈σi〉(t ; �c)]

Z

⎞⎠, (75)

where

Z = max

⎡⎣1,
∑

i=x,y,z

{Re[〈σi〉(t ; �c)]}2

⎤⎦. (76)

In Fig. 3(a) we show the original dissipative dynamics along-
side the ones determined by coupling additional noise (i.e., the
regularized antimode environment) to the system. The values
of these observables are then used to recover the noise-free
dynamics. In Fig. 3(b) the underlying analytical continuation
procedure is shown explicitly in the complex plane for a
specific time of the dynamics. As shown in Fig. 3(a), the effect
of the further regularization in Eq. (75) helps in reproduc-
ing the correct values for the noise-free dynamics. We note
that, while this feature offers a potential regularization for
unwanted unphysicalities that can emerge from the analytical
continuation procedure, it also comes at the cost of perform-
ing a full tomography on the system state. Furthermore, the
benefits of a regularization involving the full density matrix
are not expected to scale over extended systems, since they
rely on only a single extra condition. For this reason, this
work mainly focuses on the analytical continuation of the
expectation values of single observables, instead.

We present a further exemplification in Fig. 4, where we
plot the fidelity of a simple single-qubit gate, consisting of a
π/2 rotation around the y axis in the Bloch sphere. The qubit
is in contact with a zero-temperature bath which lowers the
quality of the gate as the gate time is increased. We show that
the effects of the bath on this single-qubit operation can be
mitigated through analytical continuation.

2. Finite temperature

As mentioned in the introduction to this section, the ef-
fects of a bath with spectral density given by Eq. (50) in the
underdamped regime can be modeled using a single resonant
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FIG. 4. Gate fidelity against gate time for a noisy θ = π rotation
around the z axis on a two-level system before and after analytical
continuation. Here noise is modeled through the coupling to an un-
derdamped Brownian environment at zero temperature. The dashed
gray vertical line represents the time Tres where the two-level system
is on resonance with the environment, i.e., when ωs = θ/Tres = �.
The specific parameters used are λ = 0.2ω

3/2
0 , 	 = 0.5ω0, ωs = � =

0, M = 7, Ncont = 12, and Nstoch = 100.

harmonic mode and a classical stochastic field even at finite
temperature. In fact, all temperature effects of the bath are
encoded in the statistics of this driving field. As a consequence,
in order to mitigate temperature effects, we only need to
update the way we handle this classical stochastic process
with respect to the (zero-temperature) analysis in the previous
section. Such a case was, in fact, rather special as the stochas-
tic driving field in the antimode model was real, thereby not
requiring regularization and analytical continuation. This is no
longer the case at finite temperature where, in order to satisfy
its defining Eq. (56), the field ξβ (t ) is no longer restricted to
imaginary values but must, in general, be written as

ξβ (t ) = ξ̄I
β (t ) − iξ̄R

β (t ), (77)

in terms of real and imaginary parts. Here the notation simply
follows from using the definition ξ̄β (t ) = ξ̄R

β (t ) + iξ̄I
β (t ) for

the antifield in Eq. (69). The mitigation of the imaginary part
follows the same procedure as in the zero-temperature case,
i.e., it only requires the introduction of a corresponding real
antifield. However, the mitigation of the real part now requires
to be regularized and analytically continued, similarly to what
was done before for the system-pseudomode coupling. In turn,
this leads to the following modification to the regularized
antimode model in Eq. (71) as:

ρ̇S+B = −i
[
HS+B + ξ̄

reg
β (t ; �)ŝ(t ), ρS+B

]
+ Lāreg

res
[(�)λres; ρS+B], (78)

in terms of the physically regularized version of the antifield
which, following Eq. (28), reads

ξ̄
reg
β (t ; �) = ξ̄R

β + (�)ξ̄I
β . (79)

These equations define the ensemble whose physical observ-
ables can be used to mitigate the noise of the environment B
at finite temperature. In Fig. 5, we analyze a specific example
to highlight this model.

B. Restructuring the environment

In this section, we consider a scenario in which one
might wish to modify, i.e., restructure, some properties of an

FIG. 5. Mitigation of an underdamped Brownian environment at
finite temperature. The black or blue curves show the dissipative or
free dynamics. The dashed red or blue curves show the mitigation
with or without a stochastic field. The original system bath is here
modeled with the hierarchical equations of motion. The specific pa-
rameters used here are α = 8 × 10−3, 	 = 0.1ω0, ωs = � = 0.1ω0,
M = 10, Ncont = 12, Nstoch = 5000, and β = 1/ω0.

environment without assuming them to be directly accessible.
We specifically focus on the case in which the temperature
of an environment is algorithmically reduced by using the
analytical continuation procedure presented in the previous
sections.

Interestingly, in the underdamped Brownian bath consid-
ered here, the modeling of this situation does not require the
introduction of any additional quantum degree of freedom. In-
deed, it is possible to algorithmically modify the temperature
of the original bath by simply performing analytical contin-
uation over the intensity of a classical stochastic drive. In
fact, we can explicitly write the finite-temperature stochastic
pseudomode model as

ρ̇
β
S+PM = −i

[
HS + ξβ (t )ŝ, ρβ

S+PM

]+ Lares

[
λres; ρ

β
S+PM

]
, (80)

whose field satisfies Eq. (56). Therefore, the differential equa-
tion for a pseudomode model at a different temperature β ′
can be obtained by simply adding an extra field ξ�β (t ) to the
previous equation with

E[ξ�β (t )ξ�β (0)] = CB
class(t ; β ′) − CB

class(t ; β ). (81)

Given these considerations, the temperature β of a bath B
acting on a system S can be algorithmically modified to a
new temperature β ′ by driving the system with a regularized
stochastic field

ξ�β (t ; �) = ξR
�β (t ) + (�)ξI

�β (t ). (82)

To be more explicit, the dynamics in the full (S + B) space
becomes

ρ̇S+B = −i[HS+B + ξ�β (t ; �)ŝ, ρS+B], (83)

so that, assuming the original dynamics to be well de-
scribed by the model in Eq. (80), the analytical continuation
to �c effectively changes the classical correlation function
to CB

class(t ; β ′); thereby achieving the mentioned algorithmic
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FIG. 6. Restructuring of a finite-temperature environment into a
zero-temperature one. The black and blue curves correspond to the
dissipative dynamics when the system is in contact with a finite- and
zero-temperature environment. For the dashed red curve, a stochastic
field is added to effectively approximate the zero-temperature dy-
namics after analytical continuation. The specific parameters used
here are ωz = ω0, � = 0, λ = 0.1ω

3/2
0 , γ = 0.3ω0, and β = 1/ω0.

change in temperature. We give an example of this procedure
in Fig. 6.

C. Simulation

Perhaps the most immediate application of the formal-
ism presented here is in the analog simulation of the
non-Markovian effects of an environment. This can be imple-
mented in a rather direct way since the resonant pseudomode
is physical. Given a closed system with Hamiltonian HS , the
effects of a Brownian environment at inverse temperature β

can be reconstructed from the physical ensemble obtained
from Eq. (80) with the replacement

ξβ (t ) �→ ξR
β (t ) + (�)ξI

β (t ). (84)

It is interesting to note that this expression is the “dual” of
Eq. (79). In fact, while Eq. (79) is used to mitigate the classical
effects of the environment, Eq. (84) is used to simulate them.
We present a specific example of this analog procedure in
Fig. 7, where we simulate the effects of a zero-temperature en-
vironment. As mentioned above, the only obstacle preventing
from a direct simulation of an environment is the imaginary
component of the field ξ (t ). It is then worth asking whether
there are regimes where such component is negligible. To do
this, we can recall that the stochastic fields depend on the
square-root of the parameters cn defining the spectral decom-
position of the classical contribution to the bath correlation
function, see Eq. (A13). Assuming the time dynamics to be
the largest timescale in the model, these coefficients become

cn → Sclass[ω] dω, (85)

which can be interpreted as a continuum version of Eq. (A14)
and written in terms of the “classical” spectrum of the bath,

Sclass[ω] = 1

2π

∫ ∞

−∞
dτ Cclass(τ )eiωτ . (86)

In the limit, the question about the possibility to simulate a
bath using physical fields then becomes equivalent to check
whether this quantity is positive, i.e., Sclass[ω] ∈ R+ for all

FIG. 7. Analog simulation of a zero-temperature environment.
The blue curve shows the true dissipative dynamics and in dashed
red the simulated one obtained by coupling the system to a harmonic
mode and by analytically continuing a classical stochastic drive. The
dashed black curve shows the simulation done without the additional
field, which is necessary to predict the correct hybridization to the
environment, when the system is in contact with a zero-temperature
environment. The dashed red curve shows the dynamics after ana-
lytical continuation is performed on an additional stochastic field.
In the inset, a restricted scale of the main plot is shown to better
highlight the effects of the simulation. The specific parameters used
here are ωs = ω0, � = 0, λ = 0.3ω

3/2
0 , γ = 0.3ω0, Ncont = 12, and

Nstoch = 103.

ω. For the Brownian spectral density considered here, the
expression for the classical contribution to the correlation is
given explicit in Eq. (B58) in terms of a sum of decaying
exponentials, corresponding to a spectrum represented as an
infinite sum of Lorentzians functions. In Fig. 8, we plot the
spectrum for a specific set of parameters. From this figure we
can recover the previously analyzed case: At low tempera-
tures, the classical correlation is determined by the Matsubara

×

FIG. 8. Classical spectrum corresponding to an underdamped
Brownian spectral density as a function of frequency. At low temper-
atures, the correlation is characterized by the Matsubara contribution
leading to a negative spectrum. In this regime, imaginary fields are
required for the simulation of this environment. At higher temper-
atures, resonant terms (vertical lines highlight ω = ±ω0) dominate,
leading to a positive spectrum. In this regime, the classical contribu-
tion to the correlation can be simulated using physical (real) fields.
In the inset, we show, in arbitrary units, the integral of the spectrum
as a function of inverse temperature β to highlight the crossover (as
the curve intersects zero) between the two regimes. Other parameters
used here are γ = 0.1ω0 and λ = 0.1/

√
2πω

3/2
0 .
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FIG. 9. Dynamics of a two-level system corresponding to a
model for excitonic energy transfer dynamics in a molecular dimer
system [160] at room temperature. The blue curve shows the re-
sults simulated by the HEOM and the dashed red curve shows
the ones arising from a quantum simulation protocol in which the
system is coupled to a single harmonic mode at zero tempera-
ture and a classical field. The high-temperature regime allows this
field to be physical, thereby not requiring any analytical continu-
ation procedure. The parameters were chosen to be on the same
order as the ones used in Fig. 5 in Ref. [160] and they explicitly
are ω0 = 220 cm−1, ωs = 100 cm−1, � = 100 cm−1, γ = 20 cm−1,
α = 2λ2/ω2

0 = 80 cm−1, and T = 300 K [corresponding to 1/β =
kBT = (kBT )λ0/(2π h̄c)h̄ω0 = 0.94h̄ω0, in terms of the Boltzmann
constant kB, the speed of light c, the wavelength λ0 = (1/220) cm]
in units such that h̄ = 2πc = 1. For consistency, in this simulation,
the coupling operator to the environment is set to ŝ = σz.

contribution to the correlation which is negative, correspond-
ing to imaginary fields. However, at higher temperatures,
resonant terms in the correlation become dominant leading
to a positive spectrum. This argument can be used (see Ap-
pendix B 3) to derive an estimate for the inverse temperature
locating the crossover between the two regimes as

β∗ω0 = 2
√

4 − (γ /ω0)2. (87)

For β < β∗, it is possible to produce a direct analogical sim-
ulation of non-Markovian effects at higher temperatures, such
as in the case of the excitonic energy transfer in molecular
dimer systems [69,157–160]. In Fig. 9, we simulate one of the
environments analyzed in Ref. [160].

VII. ERROR ANALYSIS

The protocol analyzed here allows us to compute the
analytical continuation of the expectation value of a sys-
tem observable 〈ÔS〉(t ; �c) at time t , see Eq. (41), using
an extrapolation procedure based on the pseudomode model.
By construction, this protocol estimates the expectation
〈ÔS〉target(t ) that the observable had if the system was coupled
to the target environment we are interested in simulating; see
Eq. (1). Here we analyze the expected uncertainty inherent to
this estimate. To do this, we distinguish between two quali-
tatively different sources of errors, i.e., the ones (labeled as
Errcont) originating from the analytical continuation and the
ones (labeled as as Err�C) originating from a possible dis-
crepancy �C(t ) between the correlation of the pseudomode
model and the target environment, as described in Eq. (38).

This distinction allows us to write

〈ÔS〉target(t ) = 〈ÔS〉(t ; �c) + Errcont + Err�C, (88)

which simply corresponds to the fact that these two sources of
errors are completely independent. For an intuitive represen-
tation of the logic behind this equation, we further refer to the
diagram in Fig. 11. An estimate for an upper bound on Err�C

has been derived in [87,95] as

Err�C

||ÔS||∞
� exp

[
4||ŝ||∞

∫ t

0
dt2

∫ t2

0
dt1|�C(t2 − t1)|

]
− 1,

(89)
in terms of the infinity norm of system operators. The re-
maining contribution Errcont to the overall error is due to the
analytical continuation procedure and it has been elegantly
analyzed in Ref. [161], using the properties of Chebyshev
polynomials (see also Appendix C). Specifically, it depends
on the interplay between uncertainties in the experimental
data and the degree M of the extrapolating polynomial, i.e.,
it can be further decomposed as

Errcont = Errbias + Errstability, (90)

in terms of two contributions characterizing the bias and the
stability of the algorithm. We are now going to describe the
overall scaling of these quantities whose explicit expressions
are summarized in Appendix C 3 b and explicitly derived in
Appendixes D and E.

Intuitively, the bias error Errbias characterizes how precisely
the function 〈ÔS〉(t ; �) can be reproduced by an order M
polynomial. More precisely, it estimates the distance between
the polynomial extrapolation value pM (t ; �c) and the target
value 〈ÔS〉(t ; �c) in the absence of experimental errors. This
distance “bias” originates from (i) a lack of knowledge about
the function 〈ÔS〉(t ; �) and quantified by the number Ncont

of data points 〈ÔS〉(t ; �n), for �n ∈ Dphys, constituting the
input for the algorithm, and (ii) a bound on the order M of
the extrapolating polynomial pM (t ; �).

Interestingly, as beautifully shown in Ref. [161] (see also
Appendix C), this error depends on the functional form of
〈ÔS〉(t ; �) over the whole complex plane, i.e., not just the
final extrapolation point �c. This can be seen explicitly from
the optimization domain in Eq. (C56) in Appendix C 3 b.
Equally importantly, it also becomes exponentially small as
we increase M.

The efficiency of this bias is balanced, or rather unbalanced
in this case, by the remaining contribution in Eq. (90) char-
acterizing the stability of the algorithm, i.e., its sensitivity to
imperfections in the initial data 〈ÔS〉(t ; �n) which, even in nu-
merical simulations, cannot be assumed to be identically zero.
Not surprisingly, this instability scales exponentially with the
order of the extrapolating polynomial, see Eq. (C59). In other
words, a large M corresponds to an overfitting of the original
experimental data, ultimately implying a sensitivity to data
imperfections which grows exponential in M. On the other
hand, a small M corresponds to underfitting the original data,
restoring stability against data errors at the cost of limiting
the predictivity of the model, i.e., increase the bias. We can
observe this interplay in Fig. 10, where we computed the error
as a function of the degree of the interpolating polynomial
showing the emergence of an optimal range for the degree M.
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×

FIG. 10. Reconstruction error as a function of the order M of
the interpolating polynomial. The error refers to the open quan-
tum system analyzed in Fig. 3. More precisely, we defined Err =
|〈σz(t )〉free − 〈σz〉reg(�c; t )| where the averages are taken with respect
to ρfree(t ) and ρreg(t ), respectively, and the time corresponds to the
gray vertical line in Fig. 3. For small values of M the error is biased,
i.e., the polynomial is not able to encode the complexity of the
environmental effects we want to mitigate. For high values of M,
the algorithm is unstable with respect to errors in the initial data. In
this example, the artificially injected error is modeled as a normal
variable with zero mean and standard deviation σ = 10−5. As the
variance of the error decreases, the optimal parameter range of the
algorithm (shaded blue) extends towards the right, allowing us to
model more subtle features.

Overall, the exponential dependence of the uncertainties
of the protocol on both the order M of the extrapolating
polynomial and the discrepancy �C(t ) between the target
and modeled correlation, is a direct consequence of the
two main techniques, namely extrapolation and the pseudo-
mode model, used to produce these results. In other words,
the nonefficiency of the algorithm in the worst-case sce-
nario is an unavoidable consequence of the complexity of
the analyzed task, namely the simulation of the effects of
rather general bosonic environments or the mitigation of gen-
eral non-Markovian noise. However, both the pseudomode
model and extrapolation techniques have been successfully
used to, respectively, classically simulate open quantum sys-
tems [25,26,81–94] and for applications in error mitigation
[115–128]. As further exemplified by the numerics provided
in Sec. VI, this suggests that, while the general bounds in
Eq. (89) and Eq. (90) can be used to gather intuition on the
scaling of the efficiency of the algorithm in the worst case,
reasonable performances can still be obtained when applying
the method in practical, i.e., non-worst-case, scenarios.

We finish this section with an intuitive interpretation of a
more specific analysis provided in Appendix E 1. There, we
present a detailed estimate of the scaling of the error for the
special case of an analytical continuation over the system-bath
coupling of a single pseudomode. In the limit of large Ncont,
the overall error has an upper bound which only depends on
M and an adimensional variable αcompl which, intuitively, we
can interpret as quantifying the “complexity” of the effects of
the environment on the system which the method is trying to
either mitigate or simulate. This meaning simply corresponds

to the fact that the effects corresponding to a higher value
for αcompl can be extrapolated only at the cost of a higher
polynomial order M and, as a consequence, ultimately require
a higher precision in collecting the experimental data. Explic-
itly, this quantity can be estimated as

αcompl � t λ̄2||ŝ||∞/	, (91)

in terms of the scale λ̄ for the pseudomode-system coupling
strength, the norm of the system interaction operator ŝ, the
dissipation rate 	, and the overall time t needed for the
environmental effects to manifest in the system. As a possi-
ble example of the information which this parameter could
provide, the applicability of the algorithm for larger systems
would, intuitively, correspond to the requirement of stationar-
ity of αcompl on the system size. Implicit in this consideration
is (i) the explicit dependence of the pseudomode parameters
on the original open system [an example of which is given in
Eq. (66)] and (ii) a better characterization of the time t . This
could be the focus of future analysis.

It is worth mentioning that further independent noise in
the ancillary system could be, in principle, included in the
model by updating the functional form of the correlation of
the model. Interestingly, the presence of such intrinsic noise
could, in certain cases, be used as a resource for optimization
[128].

In order to more clearly highlight the different sources
of uncertainty in the protocol, we now provide an outline
which will serve both as a summary and as a way to track
the different sources of imprecision analyzed above and in
Appendixes C, D, and E.

A. Outline

Here we provide an outline of the analytical continuation
protocol with special emphasis on the procedures which can
potentially give rise to different sources of imprecision for
the overall final estimate of system observables. We further
exemplify this outline diagrammatically in Fig. 11.

The starting point is an open quantum system consisting of
a quantum system S linearly coupled to a bosonic environment
E . The properties of the environment are characterized by its
correlation CE (t ), while the interaction is characterized by a
system coupling operator ŝ. We further assume the choice of
a given system observable of interest ÔS . With this setup, we
now proceed as follows:

(1) Choose a target environment Etarget with correlation
CEtarget (t ). Our goal is to estimate the expectation of the observ-
able ÔS as if the system was interacting with Etarget instead of
the actual E . Possible choices of the target environment are
the ones corresponding to a

(a) Mitigation of the effects of the original environment E ,
i.e., Etarget = 0.

(b) Simulation of an open quantum system. In this case,
one can assume the original open system to be closed (i.e.,
E → 0) and then choose, for example, Etarget to be a zero-
temperature environment for ground-state engineering; see
Ref. [112].

(c) Restructuring of some of the properties of the original
environment E as, for example, lower its temperature.
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FIG. 11. Diagram highlighting the main ideas behind the algorithm and the different sources of potential imprecisions (in red). Given
an open quantum system composed of a system S and a physical environment E , the goal is to simulate the target open quantum system
characterized by the (physical) environment Etarget (lower right box). This target environment can be approximated [with modeling error
characterized by a correlation discrepancy �C(t )] by coupling the original open system to an (unphysical) pseudomode model (lower middle
box). In turn, this unphysical model can be interpreted as the analytical continuation of a physical open system (lower left box) whose
parameters depend on the parameter �. To compute this continuation, it is possible to collect experimental values of a given observable for
different values �n of � which can be affected by an imprecision σexp (upper left box). These data can be used to define an order M extrapolating
polynomial pM (�) which can be analytically continued to the value �c (upper middle box). By considering both the errors originating from
the analytical continuation procedure and the ones due to the imperfection in the modeling, a final estimate is obtained (upper right box). This
estimate corresponds to an expectation value as if the system was coupled to the target environment Etarget instead of the original E .

(2) Characterize a pseudomode model PM approximat-
ing the effects of a bath EPM such that E + EPM � Etarget.
In other words, the pseudomode environment EPM is such
that, when coupled to the system alongside the original en-
vironment E , it effectively generates the target environment
Etarget. The pseudomode model is defined by its correlation
CPM(t ) = CEtarget (t ) − CE + �C(t ), where �C(t ) includes a
potential error in the modeling. We note the following:

(a) The PM model is composed of a collection of quantum
modes whose dissipation is described by a Lindblad equa-
tion.

(b) Optionally, the model can also include driving the sys-
tem with a time-dependent stochastic noise ξ (t ).

(c) The PM model usually has unphysical parameters, con-
sistently with the possibility of using it for tasks such as
the mitigation of noise.
(3) Because of its unphysicalities, the pseudomodes de-

fined above do not directly correspond to an environment
which can be physically realized. However, it is possible to
define a parametrized version PM(�) of the unphysical pseu-
domode model PM, such that

(a) PM(�c) → PM, for a critical value �c. In other words,
the analytical continuation of the parametrized model
PM(�) corresponds to the model PM we need to simulate.

(b) PM(�) is physical (i.e., its dynamics is a, physical,
Lindblad equation) when � ∈ Dphys, for Dphys ⊂ R. In
other words, the set of physical models PM(� ∈ Dphys)
constitutes a physical pseudomodes ensemble.
(4) We now want to collect data from this ensemble and

then extrapolated them outside their physical domain. To do

this, we choose a set of Ncont points �n ∈ Dphys. For each of
these points, we proceed to

(a) Couple the system to the pseudomodes described in
PM(�n).

(b) Measure 〈Ô〉(t ; �n) ± σexp, in terms of an experimen-
tal error bound σexp. By the law of total expectation,
this variance can be decomposed in terms of a “quan-
tum” part (dependent on the overall density matrix) and
a “classical” part (dependent on the, optional, stochastic
driving ξ ).
(5) After collecting the data 〈Ô〉(t ; �n) at the discrete

points �n as in the previous point, we can now define an order
M polynomial pM (t ; �) approximating the function 〈Ô(t ; �)〉
for � ∈ Dphys.

(6) We can now use this polynomial to extrapolate the
value pM (t ; �c). This simply means computing the approxi-
mating polynomial pM (t ; �) at the critical value �c. We can
note the following:

(a) By construction, the value pM (t ; �c) corresponds to the
expectation value of Ô for the model S + E + PM(�c),
i.e., 〈Ô(t ; �c)〉 = pM (t ; �c) ± Errcont. Here Errcont takes
into account the extrapolation errors which critically de-
pend on M and σexp.

(b) By 3(a), the value pM (t ; �c) also corresponds to the ex-
pectation of Ô for the model S + E + PM which, by point
2, has correlation CEtarget (t ) + �C(t ), i.e., it approximates
the effects of the target environment.

(c) Together, points (a) and (b) above imply that
〈Ô〉target(t ) = pM (t ; �c) ± (Errcont + E�C ), where E�C

takes into account the effects of the modeling error.
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This completes our step-by-step overview of the protocol
analyzed in this article; see also Fig. 11 for a corresponding
diagram.

VIII. CONCLUSIONS

We presented an extrapolation technique to mitigate, re-
structure, and simulate the effects of Gaussian non-Markovian
environments on a quantum system. The method relies on
the interaction of the system with ancillary leaky modes and
a stochastic driving field to define a physical ensemble pa-
rameterized by a single parameter. Measurements results over
this ensemble can be used to define an analytical continuation
procedure, allowing us to use these ancilla modes to perform
one of the following tasks:

(i) Simulating the effects of a non-Markovian environ-
ment.

(ii) Mitigating non-Markovian noise affecting the system.
(iii) Restructuring some of the properties of a given envi-

ronment (already interacting with the system) without directly
accessing it.

We presented the details and proof of the general formal-
ism, as well as several numerical examples to showcase the
flexibility of the algorithm to adapt to different environments
(such as zero- and finite-temperature ones and a physically
motivated example related to simulating excitonic energy
transfer in a molecular dimer systems). These examples also
demonstrated how the above range of applications can be used
in practice (such as noise mitigation for the dynamics of quan-
tum observables or quantum gate operations, simulation of
zero-temperature environments, and restructuring of a finite-
temperature bath to a zero-temperature one). The algorithm
used in all these tasks is based on polynomial extrapolation
and it is thereby ultimately limited by instability against im-
perfections in experimental data.

As an outlook, the protocol presented here could also be
adapted to specify or optimize digital quantum algorithms for
the mitigation of non-Markovian noise in quantum computing
tasks or for the simulation of zero-temperature environments
for ground-state engineering; see Ref. [112]. In this con-
text, it would be relevant to relax any requirement on prior
knowledge about the environment by preceding the presented
protocols with noise characterization techniques such as in
Ref. [128]. We further note that the regularization procedure
used in here could be extended to bigger system sizes by
analytically continuing a reconstructed version of the full state
using classical shadow tomography [162–164]. In addition,
the possibility of restructuring a given environment could,
possibly, be helpful to push experimental setups past the limits
imposed by the presence of physical baths elusive of direct
manipulation.
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APPENDIX A: THE PSEUDOMODE MODEL: MAIN IDEAS

The pseudomode method consists in replacing the origi-
nal continuum of environmental modes with a discrete set
of dissipative harmonic modes and stochastic driving fields.
The main purpose of these ancillary degrees of freedom is to
reproduce the correlation function characterizing the original
Gaussian environment and, ultimately, to reproduce the origi-
nal reduced system dynamics in Eq. (4).

Explicitly, the pseudomode model consists in the following
linear differential equation:

ρ̇S-PM-ξ (t ) = LS-PM[ρS-PM(t )], (A1)

for a (possibly stochastic) density matrix ρS-PM(t ) whose
Hilbert space includes the system and NPM PM. The Lind-
blad superoperator in the full system+pseudomodes space is
written as the sum of three parts,

LS-PM-ξ = LS +
NPM∑
k=1

Lk
S-PM[·] + Lξ

S , (A2)

where LS = −i[HS, ·] describes the free dynamics of the sys-
tem and depends on its Hamiltonian HS . The second term
describes the dynamics of the quantum degrees of freedom
as

Lk
S-PM[·] = −i

[
Hk

PM, ·]+ Dk[·]. (A3)

Here Hk
PM = �ka†

kak + ŝX k
PM, in terms of the annihilation op-

erator ak associated with the kth pseudomode with frequency
�k ∈ C, k = 1, . . . , NPM. The coupling to the system is de-
scribed by the interaction operator

X k
PM = gk (ak + a†

k ), (A4)

where gk ∈ C constitutes an important conceptual difference
from (3), where the realness of the λ̃k̃ couplings is required for
Hermiticity. The dissipative properties of the kth pseudomode
are independently characterized by the superoperator,

Dk[·] = (nk + 1)	k (2ak[·]a†
k − a†

kak[·] − [·]a†
kak )

+ nk	k (2a†
k[·]ak − aka†

k[·] − [·]aka†
k ), (A5)

where 	k, nk ∈ C. We set the initial condition for Eq. (A1) to
be ρS (0) ⊗ ρPM(0), where

ρPM(0) = ρ
eq
PM =

NPM∏
k=0

exp [−βk�ka†
kak]/Zk, (A6)

where Zk are the coefficients needed to impose unity trace
and where we assume the consistency condition 2nk + 1 =
coth (βk�k/2). The presence of dissipation in this pseudoen-
vironment does not break the Gaussianity of the model whose
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effect on the system are fully characterized by the two-point
correlation,

CQ(t ) = TrPM
[
XPM(t )XPM(0)ρeq

PM

]
, (A7)

with

XPM(t ) = exp {L†
S-PM[·]t}XPM, (A8)

in terms of XPM = ∑
k X j

PM and L†
S-PM, the adjoint of LS-PM =∑NPM

k=1 Lk
S-PM. Explicitly, each pseudomode independently con-

tributes to the correlation function above as

CQ(t ) =
NPM∑
k=0

Ck
PM(t ), (A9)

where

Ck
PM(t ) = g2

k[(nk + 1)e−i�kt + nkei�kt ] exp [−	k|t |] (A10)

characterizes the effect of the kth pseudomode; see
Refs. [89,90,95].

The last term in Eq. (A2) is optional and its nontrivial
presence defines a stochastic hybrid [95] version of the fully
deterministic pseudomode model above. In fact, this contribu-
tion can be interpreted as a stochastic driving of the system,
i.e.,

Lξ
S = −iξ (t )[ŝ, ·], (A11)

where the field ξ (t ) is assumed to be a Gaussian stochastic
process with zero mean. Furthermore, we assume its autocor-
relation function,

Cclass(t ) = E[ξ (t )ξ (0)], (A12)

to be stationary (invariant on translation of time) so that it can
be used to model classical properties of the original environ-
ment. In the spirit of this method, this driving field is allowed
to explore complex values, so that, in general, Im[ξ (t )] 	= 0.
As shown in Ref. [95], it is possible to write this field in terms
of the following spectral decomposition:

ξ (t ) = √
c0ξ0 +

Nstoch∑
n=1

√
2cn[ξn cos(ωnt ) + ξ−n sin(ωnt )],

(A13)
with ωn = nπ/T and where ξn, n = 1, . . . , Nstoch (Nstoch ∈ N)
are Gaussian random variables with zero mean and unit vari-
ance. The coefficients

cn = 1

2T

∫ T

−T
dτ cos(nπτ/T ) Cclass(τ ) (A14)

define the spectral decomposition by ensuring that

Cclass(t ) = c0 + 2
Nstoch∑
n=1

cn cos(ωnt ). (A15)

In the following, we will denote the average over the stochas-
tic realization of the field ξ (t ) as E[·].

It is important to stop for a moment and note that, within
this formalism, the reduced density matrix,

ρS (t ) = E[Tr
PM

[ρS-PM(t )]], (A16)

is as a function of the parameter set,

GPM ≡ {
�k, g2

k, 	k, nk, cn
}
, (A17)

parametrizing the model. The pseudomode model consists
in the characterization of these parameters; i.e., it can be
interpreted as a map from the original Gaussian open quan-
tum system to GPM. For Gaussian environments, a sufficient
condition for

ρS (t ) = ρ̃S (t ), (A18)

to hold is that

CE (t ) = CPM(t ) ≡ CQ(t ) + Cclass(t ), (A19)

which can be interpreted as the optimization equation defining
the parameters of the pseudomode model in Eq. (A17).

We note that the second term in Eq. (A19) is the auto-
correlation function of the stochastic process ξ (t ) defined in
Eq. (A12) which is symmetric, i.e., classical, by construction.
For generic spectral densities, the correlation in Eq. (6) cannot
be exactly reproduced by a finite number of psedudomodes,
while this is possible, on average, within the stochastic hybrid
approach [95]. At the same time, it is important to stress that,
while adding stochastic resources to the model might lead to
a more efficient simulation of the open quantum system, it
is not necessary. In other words, by imposing ξ (t ) = 0, the
model above reduces to the fully deterministic pseudomode
model. However, its inclusion leads to some advantages, like
a reduction of the Hilbert space dimension and the possibility
to include all temperature effects in the noise statistics. In
practice, this allows us to initialize all the pseudomodes at
zero temperature for any temperature of the original bath,
i.e., to impose ρPM(0) = ∏NPM

k=0 |0〉〈0|. This is going to be the
preferred choice throughout this article.

APPENDIX B: PSEUDOMODE MODEL:
ADDITIONAL DETAILS

In this section we present more details about the determin-
istic and hybrid pseudomode model based on the work done
in Refs. [89,90,95].

1. The deterministic pseudomode model

We consider a Gaussian open quantum system S + E
composed of a system S and its environment E such that
the interaction operator has the free correlation function
CE (t ) given in Eq. (6). Following the strategy developed in
Refs. [89], we then proceed with the following steps:

(a) Introduce an open quantum system S + E ′ in terms
of an alternative environment E ′, such that the interaction
operator with the system has a correlation given by CE ′ (t ) =∑N

k=0 Ck
PM(t ), with the Ck

PM(t ) defined in Eq. (A10). The envi-
ronment E ′ is made by (NPM + 1) pseudomodes and (N + 1)
bosonic baths for each of them. The reduced system dynamics
of this model is equivalent to that of the original one, provided
CE (t ) = CE ′ (t ).

(b) Show that reduced dynamics in the system+
pseudomode space of the open quantum system S + E ′
above is equivalent to the one originating from the Lindblad
Eq. (A1).
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(c) As a consistency check, we show that this Lindblad
model has correlations given by Eq. (A9).

The next three sections, labeled a, b, and c, will prove the
three points itemized above.

a. Pseudomodes as an open quantum system

Let us consider an open quantum system in which a subsys-
tem of interest S interacts with an alternative environment E ′
composed of a set of (N + 1) pseudomodes ak , each coupled
to its own bosonic bath (whose modes are denoted as bkα) as

H = HS + HB + ŝXPM, (B1)

where the Hamiltonian of the environment HB is

HPM =
∑

k

Hk
PM, (B2)

with

Hk
PM = �ka†

kak

+
∑

α

[
igkα√
2ωα

(b†
kα

ak − a†
kbkα ) + ωkαb†

kα
bkα

]
.

(B3)

We also defined the interaction operator

XPM =
NPM∑
k=0

X k
PM =

∑
λk/

√
2�k (ak + a†

k ). (B4)

We assume that the environment of each pseudomode is pop-
ulated by modes with both positive and negative frequencies,
i.e., ωkα ∈ (−∞,+∞). We further suppose that the spectral
density associated with the bath of the kth pseudomode is
constant, i.e.,

Jk (ω) = π
∑

α

g2
k,α

2ωk,α

δ(ω − ωk,α ) = 	k, (B5)

and that each of the pseudomodes ak and the correspond-
ing environmental modes bkα are in an initial state ρ0

k =
exp [−βk�ka†

kak]/Zk and ρ0
kα = exp [−βkαωkαb†

kα
bkα]/Zkα ,

respectively (with Zk and Zkα imposing unit trace), together
with the consistency condition

βkαωkα = βk�k, (B6)

which, in the continuum limit, reads

βk (ω)ω = βk�k . (B7)

We explicitly highlight the slight abuse in notation as βk (ω)
denotes the inverse temperature associated with environmen-
tal mode at frequency ω for the pseudomode k, while βk

denotes the inverse temperature associated with the pseudo-
mode k). We note that these unorthodox conditions define a
state for the full environment,

ρE ′ =
∏

k

ρ0
k

∏
k,α

ρ0
k,α = exp [F0]/Z0, (B8)

which is not a thermal state but it is the closest quantum
idealization of classical white noise (see Ref. [2], p. 164).

Here we defined

F0 =
∑

k

βk�ka†
kak +

∑
kα

βkαωkαb†
kα

bkα, (B9)

and Z0 as a constant to impose unit trace. The free correlation
function of the interaction operator can be obtained as

CPM(t1, t2) = TrE ′[XPM(t2)XPM(t1)ρE ′ ], (B10)

where XPM(t ) = eiHBt XPMe−iHBt . The unorthodox definition of
the equilibrium state of the bath is designed to allow (see
Appendix B 1 d)

[HB, F0] = 0, (B11)

which, in turn, makes the correlation translational invariant in
time since

CPM(t1, t2) = TrE ′
[
eiHB (t2−t1 )XPMe−iHB (t2−t1 )XPM

× e−iHBt1ρE ′eiHBt1
]

= TrE ′[XPM(t2 − t1)XPMρE ′ ]

≡ CPM(t2 − t1). (B12)

Note that this is nontrivial because the Hamiltonian HB

involves a Jaynes-Cummings interaction between the pseu-
domodes and the modes of their baths. Because of this, the
previous relation does not hold in the presence of a true
thermal equilibrium [2]. In order to make progress evaluat-
ing CPM(t ), we can first compute the formal solution for the
Heisemberg equation of motion ḃkα = i[HB, bkα] and use it
in the Heisemberg equation of motion for the pseudomodes
ȧk = i[HB, ak]. This leads to the following result for the
Laplace transforms x̄k, p̄k of the quadratures xk = a†

k + ak and
pk = i(a†

k − ak ):

sx̄k = xk (0) +
[
�k −

∫ ∞

−∞
dω

Jk (ω)ω

π (s2 + ω2)

]
p̄k

−s
∫ ∞

−∞
dω

Jk (ω)

π (s2 + ω2)
x̄k − xin

k

sp̄k = pk (0) +
[
�k −

∫ ∞

−∞
dω

Jk (ω)ω

π (s2 + ω2)

]
x̄k

−s
∫ ∞

−∞
dω

Jk (ω)

π (s2 + ω2)
p̄k − pin

k , (B13)

where

xin
k =

∑
k,α

gk,α√
2ωk,α

[
b†

k,α
(0)

s − iωk,α

+ bk,α (0)

s + iωk,α

]

pin
k = i

∑
k,α

gk,α√
2ωk,α

[
b†

k,α
(0)

s − iωk,α

− bk,α (0)

s + iωk,α

]
. (B14)

Now, using the expression for the spectral density in Eq. (B5),
we find

sx̄k = xk (0) + �k p̄k − 	k x̄k − xin
k

sp̄k = pk (0) − �k x̄k − 	k p̄k − pin
k , (B15)
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which leads to[
(s + 	k )2 + �2

k

]
x̄k = (s + 	k )[xk (0) − xin]

+�k
[
pk (0) − pin

k

]
. (B16)

We can now use this result in the expression for the stationary
correlation in Eq. (B12) to obtain

C(t ) =
∑

k

λ2
k

2�k
L−1

t {TrE ′[x̄kxk (0)ρ]}

=
∑

k

λ2
k

2�k

1

2π i

∫
ds est

{
[s + 	k]〈xk (0)xk (0)〉(

s + 	2
k

)+ �2
k

+ �k〈pk (0)xk (0)〉(
s + 	2

k

)2 + �2
k

}
, (B17)

where we defined 〈·〉 ≡ TrPM(·∏k ρk ), the trace being over
the pseudomodes space. We note that, in the above deriva-
tion, translational invariance in time [derived thanks to
the condition in Eq. (B6)] was essential as it allowed a
great simplification through the identity 〈xinx(0)〉 = 0. Using
〈xk (0)xk (0)〉 = 2nk + 1 [with 2nk + 1 = coth(βk�k/2)], and
〈pk (0)xk (0)〉 = −i, we obtain

CPM(t ) =
NPM∑
k=0

λ2
k

2�k
[nkei�kt + (1 + nk )e−i�kt ]e−	kt , (B18)

as in Eq. (A10) in the main text on the definition gk = λ2
k/2�k .

Since, by hypothesis, this is a Gaussian open quantum system,
the reduced dynamics of the system is fully determined by
the functional form of CPM(t ) through Dyson equation. As a
consequence, this model reproduces the same dynamics as the
original model as long as CE (t ) = CPM(t ).

b. Dissipative pseudomodes

The dynamics in the system+pseudomodes space can be
explicitly written in terms of the following influence func-
tional expression:

ρS-PM = T̂ exp {F̂t [·]}ρS-PM(0), (B19)

where T̂ is the time-ordering operator and where the influence
superoperator is

F̂t [·] = −
∫ t

0
dt2

∫ t2

0
dt1G(t1, t2)[·], (B20)

where (using the shorthand G ≡ G(t1, t2)[·])
G =

∑
k

〈B†
k (t2)Bk (t1)〉[ak (t2)a†

k (t1)[·] − a†
k (t1)[·]ak (t2)]

×
∑

k

〈Bk (t2)B†
k (t1)〉[a†

k (t2)ak (t1)[·] − ak (t2)[·]a†
k (t1)]

×
∑

k

〈Bk (t1)B†
k (t2)〉[[·]a†

k (t1)ak (t2) − ak (t2)[·]a†
k (t1)]

×
∑

k

〈B†
k (t1)Bk (t2)〉[[·]ak (t1)a†

k (t2) − a†
k (t2)[·]ak (t1)],

(B21)

where we defined

Bk (ti ) =
∑

α

gk,α/
√

2ωk,αbk,α (ti ), (B22)

for i = 1, 2 to characterize the interaction operator between
the pseudomodes and their environment [see Eq. (B2)]. Notice
that the interaction picture used in the previous expression im-
plies a change of frame defined by U = exp[i(HS + HPM)t],
where HS + HPM = HS +∑

k Hk
PM is the Hamiltonian in the

system+pseudomode space. Explicitly,

〈B†
k (t2)Bk (t1)〉 = 1

π

∫ ∞

−∞
dωJk (ω)nk (ω)e−iω(t1−t2 )

= 2	knkδ(t2 − t1)

〈Bk (t2)B†
k (t1)〉 = 1

π

∫ ∞

−∞
dωJk (ω)[1 + nk (ω)]e−iω(t1−t2 )

= 2	k[1 + nk]δ(t2 − t1), (B23)

where 2nk (ω) + 1 = coth βk (ω)ω/2 and, importantly, we
used the condition in Eq. (B6) to obtain 2nk (ω) + 1 =
coth βk�k/2, effectively implying

nk (ω) �→ nk (�k ) ≡ nk . (B24)

Using Eq. (B23) into Eq. (B20), we get

Ft [·] = −
{∑

k

(1 + nk )	k[a†
k (t )ak (t )[·] + [·]a†

k (t )ak (t )

−2ak (t )[·]a†
k (t )]t

+
∑

k

nk	k[ak (t )a†
k (t )[·] + [·]ak (t )a†

k (t )

−2a†
k (t )[·]ak (t )]t

}
, (B25)

where we used
∫ t

0 dt ′δ(t − t ′) = 1/2 (see Eq. 5.3.12 in
Ref. [2]). Going back to the Shrödinger picture, using
Eq. (B19), and taking a time derivative, we get

ρ̇S-PM = LS-PM[ρS-PM], (B26)

where

LS-PM[·] = −i[HS + HPM, ·] +
NPM∑
k=0

Dk[·], (B27)

and

Dk[·] = (nk + 1)	k (2ak[·]a†
k − a†

kak[·] − [·]a†
kak )

+nk	k (2a†
k[·]ak − aka†

k[·] − [·]aka†
k ), (B28)

This is Eq. (A1) in the main text.

c. Correlations for the dissipative pseudomodes

As a consistency check, we now show that the correlation
function computed in Eq. (B18) can, equivalently, also be
computed using the Lindblad model developed in the previous
section. Specifically, we want to show that

C′
PM(t ) = CPM(t ), (B29)
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where C′
PM(t ) = TrPM[XPM(t )XPM(0)], with XPM(t ) =

exp {L†
PM[·]t}XPM, where

L†
PM = i[HS + HPM, ·] +

∑
k

D†
k[·], (B30)

with

D†
k[·] = (nk + 1)	k (2a†

k[·]ak − [·]a†
kak − a†

kak[·])
+nk	k (2ak[·]a†

k − [·]aka†
k − aka†

k[·]). (B31)

We then have

L†
PM[ak] = i[�ka†

kak, ak] + D†
k[ak] = −i�kak − 	kak

L†
PM[a†

k] = i[�ka†
kak, a†

k] + D†
k[a†

k] = i�kak − 	kak, (B32)

so that

C′
PM(t ) =

NPM∑
k=0

λ2
k

2�k
〈(ake−i�k + a†

ke−i�k )(ak + a†
k )〉e−	kt

=
NPM∑
k=0

λ2
k

2�k
[nkei�kt + (1 + nk )e−i�kt ]e−	kt , (B33)

which implies Eq. (B29).

d. Proof of Eq. (B11)

Here we prove that

[HB, F0] = 0, (B34)

where

F0 =
∑

k

βk�ka†
kak +

∑
k,α

βk,αωk,αb†
k,α

bk,α

HB =
∑

k

[
�ka†

kak + i
∑

α

gk,α√
2ωα

(b†
kα

ak − a†
kbkα )

+
∑

α

ωkαb†
k,α

bk,α

]
. (B35)

In fact, we have

[HB, F0] = i
∑
k,α

gk,α√
2ωα

[(b†
kα

ak − a†
kbkα ), F eq]

= i
∑
k,α

gk,α√
2ωα

(b†
kα

ak + a†
kbkα )

× (βk�k − βk,αωk,α ) = 0, (B36)

where, in the last step, we used Eq. (B6).

2. A hybrid pseudomode model

As shown in Ref. [95], it is possible replace some of the
quantum degrees of freedom present in the fully deterministic
pseudomode model presented in the previous section with
a classical stochastic colored noise ξ (t ) which is stationary,
Gaussian, and with zero mean. In fact, the addition of a driving
term ξ (t )ŝ in the Hamiltonian in Eq. (B2) effectively adds,
after averaging over the noise, a term

Cclass(t ) = E[ξ (t2)ξ (t1)], (B37)

where t2 − t1 = t and which accounts for the statistics of
the field. In turn, the dynamics of this hybrid model can be
explicitly written by adding the stochastic noise in Eq. (B26)
to write the Lindblad operator as

LS-PM = LS +
NPM∑
k=1

Lk
S-PM[·] − i[ξ (t )ŝ, ·]. (B38)

While we refer to Ref. [95] for more details, here we note that
the addition of noise in the model corresponds to a decompo-
sition of the effects of the original environment into a classical
and a quantum part, i.e.,

CE (t ) = CQ(t ) + Cclass(t ), (B39)

in which the second term is symmetric under time reversal (so
that it can be modeled using classical resources) while the first
term is more general and requires ancillary quantum degrees
of freedom. Interestingly, this decomposition is not unique,
allowing for further possibility of optimization in the model.
For example, it is possible to chose the classical contribution
Cclass(t ) [hence the field ξ (t )] in such a way that all the pseu-
domodes modeling CQ(t ) are, initially, at zero temperature.
This is the choice which is used throughout this article.

3. Underdamped Brownian spectral density

In this section, we describe the explicit form of the pseu-
domode model for the spectral density JB(t ) in Eq. (50). At
zero temperature, the deterministic pseudomode mode can be
defined using a single resonant mode at Nmats zero-frequency
Matsubara modes. This follows from the decomposition

CB(t ; β = ∞) = Cres(t ) + M(t ), (B40)

in terms of the resonant and Matsubara contributions,

Cres(t ) = λ2

2�
exp [−i�t − 	|t |]

M(t ) = −λ2γ

π

∫ ∞

0

dx xe−x|t |

[(� + i	)2 + x2][(� − i	)2 + x2]
.

(B41)

It is possible to model these terms by introducing a res-
onant and NMats Matsubara harmonic modes ares, ak (k =
1, . . . , NMats) and define a pseudomode model through the
Lindblad operator

LB
PM = Lres + LMats, (B42)

where

Lres[·] = −i[Hres, ·] + 	res[2ares · a†
res − a†

resares · − · a†
resares],

with

Hres = �resa
†
resares + λres(ares + a†

res)ŝ. (B43)

These parameters are explicitly given by

λres = λ2/2�

�res = � =
√

ω2
0 − 	2

res

	res = 	 = γ /2. (B44)
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The remaining contribution to the Lindbladian can be
written as

LMats =
NMats∑
k=1

Lk
Mats, (B45)

in terms of

Lk
Mats[·] = −i

[
Hk

Mats, ·
]+ 	k

Mats[2ak · a†
k − a†

kak · − · a†
kak],

with

Hk
Mats = �ka†

kak + λk (ak + a†
k )ŝ. (B46)

These parameters can be estimated by fitting the correspond-
ing correlation,

CMats(t ) =
NMats∑
k=1

λ2
k

2�k
[nkei�kt + (1 + nk )e−i�kt ]e−	kt , (B47)

to M(t ); see Ref. [90]. However, because of the absence of
oscillatory behavior in M(t ), it is possible to directly impose
�k = 0, k = 1, . . . , NMats.

It is interesting to note that, in general, the number of Mat-
subara modes needed to reproduce the effects of M(t ) depends
on the simulation time. In fact, we note that the domain of
integration in the integral in Eq. (B41) is effectively restricted
to values x � 1/t by the presence of the exponential [165].
Therefore,

M(t )
t�1/�,1/	� −λ2γ

π

∂

∂t

∫ ∞

0

e−x|t |

ω4
0

= −α

π

1

t2
, (B48)

where

α = λ2γ /ω2
0. (B49)

This shows that M(t ) is characterized by an asymptotic
(∼1/t2) polynomial decay which contrasts with the exponen-
tial decay present in the Matsubara correlation; see Eq. (B47).

At finite temperatures, the decomposition of the correlation
becomes

CB(t ; β ) = CB
res(t ; β ) + M(t ; β ), (B50)

where

CB
res(t ; β ) = λ2

4�
coth [β(� + i	)/2]ei�|t |e−	|t |

− λ2

4�
coth [β(−� + i	)/2]e−i�|t |e−	|t |

− λ2

4�
(−e−i�t + ei�t )e−	|t |

M(t ; β ) = 2i

β

∑
k>0

JB
(
ωM

k

)
exp

[−∣∣ωM
k

∣∣|t |], (B51)

in terms of ωM
k = 2πki/β (k = 1, . . . ,∞). In order to re-

produce it, we can introduce three “resonant” modes aj;res,
j = 1, 2, 3 alongside Nmats “Matsubara” modes ak , k =
1, . . . , Nmats characterized by the Lindblad operator

Lβ
PM = Lβ

res + Lβ
Mats. (B52)

The Matsubara contribution is formally the same as in the
zero-temperature case, but its parameters are defined to fit

M(t ; β ) instead of its zero-temperature limit in Eq. (B41).
However, the resonant part has to be updated and defined by

Lβ
res[·] = −i

[
Hβ

res, ·
]+ Dβ

res[·], (B53)

where

Hβ
res =

3∑
j=1

λ j
res

[
a j

res + (
a j

res

)†]
ŝ + � j

res

(
a j

res

)†
a j

res

Dβ
res[ρ] =

Nmats∑
j=1

	 j[(n j + 1)(2a jρa†
j − a†

j a jρ − ρa†
j a j )

+ n j (2a†
jρa j − a ja

†
jρ − ρa ja

†
j )], (B54)

as a function of the parameters

λ1 =
√

λ2

2�
λ2 =

√
IBλ2

4�
λ3 =

√
−IBλ2

4�

�1 = � �2 = 0 �3 = 0

	1 = 	 	2 = 	 − i� 	3 = 	 + i�

n1 = RB − 1

2
n2 = 0n3 = 0, (B55)

characterizing the resonant modes through the definitions

RB = Re{coth[β(� + i	)/2)}
IB = Im{coth[β(� + i	)/2)}. (B56)

We note that other choices which only use two resonant modes
initially prepared with complex-temperature values are possi-
ble [166].

The hybrid pseudomode model relies on writing the corre-
lation function of the bath in the following alternative form:

CB(t ; β ) = CB
class(t ; β ) + CB

Q(t ), (B57)

where

CB
class(t ; β ) = λ2

4�
coth [β(� + i	)/2]ei�|t |−	|t |

− λ2

4�
coth [β(−� + i	)/2]e−i�|t |−	|t |

− λ2

4�
(e−i�t + ei�t )e−	|t |

+2i

β

∑
k>0

JB
(
ωM

k

)
exp

[−∣∣ωM
k

∣∣|t |]
CB

Q(t ; β ) = λ2

2�
exp [−i�t − 	|t |], (B58)

Since the “classical” contribution CB
class(t ) is symmetric un-

der time reversal, it can be reproduced by a single classical
stochastic process ξB(t ) with autocorrelation function

E[ξB(t2)ξB(t1)] = CB
class(t2 − t1). (B59)

The remaining “quantum” contribution can be reproduced
with a single “resonant” pseudomode characterized by the
same Lindblad Lres as the one defined in the zero-temperature
case.
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Despite the presence of a series dependent on the Mat-
subara frequencies, the spectrum S[ω] can be computed in a
closed form. In fact, we can write

S[ω] =
∫ ∞

−∞
dt C(t )e−iωt

=
∫ ∞

0

dω̄

2π
J (ω̄)

∫ ∞

−∞
dt{[coth(βω̄/2) − 1]ei(ω̄−ω)t

+ [coth(βω̄/2) + 1]e−i(ω̄+ω)t }
= θ (ω)J (ω)[coth(βω/2) − 1]

+ θ (−ω)J (−ω)[coth(−βω/2) + 1], (B60)

and

S[ω] = SQ[ω] + Sclass[ω], (B61)

in terms of the Fourier transforms of the quantum and classical
contributions to the correlation

SQ/class[ω] =
∫ ∞

−∞
dt CQ/class(t )e−iωt . (B62)

Assuming continuity and J (0) = 0, the zero-frequency limit
becomes

S[0] = lim
ω→0+

J (ω)coth(βω/2) = 2

β
J∗(0), (B63)

where J∗(ω) ≡ J (ω)/ω which we assume to be defined at ω =
0 by continuity. For the Brownian spectral density above, we
have

SB
Q[ω] = λ2	

�

1

(� + ω)2 + 	2
, (B64)

which allows us to write the classical spectrum in a closed
form as

SB
class = SB[ω] − SB

Q[ω], (B65)

where

SB[ω] = θ (ω)JB(ω)[coth(βω/2) − 1]

+ θ (−ω)JB(−ω)[coth(−βω/2) + 1]. (B66)

We can further write the zero-frequency limit in the following
explicit form:

SB[0] = 2

β

γλ2

ω4
0

. (B67)

We now present an intuitive estimation for the temperature
above which this spectrum is positive. To do this, we note that,
for low temperatures, the classical spectrum is negative (due
to the fact that the classical correlation is dominated by the
Matsubara contribution) and peaked at zero frequency while,
at high temperature, the spectrum becomes positive over all
frequencies. As a consequence of this consideration, there
must be a crossover temperature β∗ such that Sclass[0] = 0.
Using the results above, this temperature can be computed
explicitly. In fact, we have

SB
class[0] = SB[0] − SB

Q[0] = 4	λ2

βω4
0

= λ2	

�ω2
0

. (B68)

By imposing SB
class[0] = 0, the value β∗ can be written as

β∗ω0 = 2
√

4 − (γ /ω0)2. (B69)

APPENDIX C: ERROR ANALYSIS

In this section, we present an analytical analysis of the
estimation error of the polynomial extrapolation algorithm
presented in Sec. IV B. To start, we briefly review the main
setting of the extrapolation protocol presented in the main
article.

1. General setting

Following Sec. IV B, we define f (�) as the analytical
continuation, in the parameter � ∈ C, of the expectation value
of the system variable ÔS at time t . We note that, in this
Appendix, all time dependencies are omitted to simplify the
notation. Explicitly, the above definition amounts to the re-
quirement that

f (�) ≡ 〈ÔS〉(�), (C1)

within the restricted domain � ∈ [−1, 1], which parametrizes
the physical ensemble where ÔS is measured. Despite this
complete functional information not being practically avail-
able, we can assume to have access to N + 1 experimental
values,

f exp
n ≡ 〈ÔS〉(�n) + εn ≡ f true

n + εn, (C2)

in the set �n ∈ [−1, 1], n = 0, . . . , N . Here we further de-
fined f true

n ≡ 〈ÔS〉(�n) as the “true” value of the observable
affected by noise through unbiased Gaussian random vari-
ables εn with zero mean and variance σ 2

exp. We will provide
a more detailed analysis on these errors in Appendix D. The
data in the variables f exp

n can be used to introduce an order
M polynomial pexp

M (�) which minimizes the least-squares dis-
tance,

d2 =
N∑

n=0

∣∣pexp
M (�n) − f exp

n

∣∣2. (C3)

In other words, pexp
M (�) constitutes our best estimate for

the analytical function f (�) using the discrete set of avail-
able data f exp

n . As explained in Sec. IV B, we are ultimately
interested in reconstructing the expectation 〈ÔS〉reconstructed

corresponding to an analytical continuation at a specific un-
physical value denoted by �c ∈ C, i.e.,

〈ÔS〉reconstructed ≡ pexp
M (�c). (C4)

In the following, we further limit the analysis to the case N �
M, so that the number of data points available is bigger than
the order of the extrapolating polynomial.

The goal of the following section is to provide an estimate
for the extrapolation error of the quantity in Eq. (C4), i.e.,

Err = Eexp[|〈ÔS〉(�c) − 〈ÔS〉reconstructed|]
≡ Eexp

[∣∣ f (�c) − pexp
M (�c)

∣∣]. (C5)

where 〈ÔS〉(�c) is the “true” analytically continued value
which we ultimately want to compute. Importantly, the
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average Eexp takes into account the uncertainties on the ex-
perimental data encoded in the random variables εn.

To analytically approach the estimation of this error, in the
next section we follow Ref. [161] and take advantage of an
explicit extrapolation form, expressed in terms of Chebyshev
polynomials.

2. Chebyshev polynomials

This subsection reviews the definitions and proper-
ties of the Chebyshev polynomials of first kind, adapting
Refs. [167–169].

The Chebyshev polynomials of first kind are defined as

Tm(x) = cos nθ, (C6)

for m � 0 and for x ∈ [−1, 1], such that x = cos θ , which
immediately implies the bound

|Tm(x)| � 1 for x ∈ [−1, 1]. (C7)

While not immediately apparent from the definition, these
functions satisfy the recurrence relation

Tm(x) = 2xTm−1(x) − Tm−1(x), (C8)

which, together with the initial conditions T0(x) = 1 and
T1(x) = x imply that each Tm(x) is a polynomial of order m. It
is further possible to analytically continue these polynomials
and to write them as

Tm(z) = [(z +
√

z2 − 1)m + (z −
√

z2 − 1)m]/2, (C9)

where z ∈ C. Given a parameter ρ > 0, it is possible to define
the so-called Bernstein ellipse

Eρ = {z ∈ C : z = (w + w−1)/2,w ∈ C, |w| = ρ > 1},
(C10)

such that

|Tm(z ∈ 	ρ )| = |(ρmeimθ + ρ−me−imθ )|/2. (C11)

Given a point z ∈ C, it is useful to define, at least implicitly,
the parameter ρz such that z ∈ 	ρz . In other words, the Bern-
stein ellipse with parameter ρz > 1 passes through the point z
when

Re2[z](
ρz + ρ−1

z

)2 + Im2[z](
ρz − ρ−1

z

)2 = 1, (C12)

is satisfied.
In the following, we will denote by Ẽρ the open Bernstein

ellipse, i.e., the region of the complex plane inside Eρ (i.e., the
one containing the origin). This constitutes a rather interesting
identity because it implies that, on the Bernstein ellipse Eρ ,
the Chebyshev polynomials satisfy the bounds

[ρm − ρ−m]/2 � |Tm(z ∈ 	ρ )| � [ρm + ρ−m]/2, (C13)

and, since ρ > 1, the cleaner, but less strict one,

|Tm(z ∈ 	ρ )| � ρm. (C14)

The Chebyshev polynomials T (x) are a basis for functions in
the interval [−1, 1]. This means that every function g(x) can
be written [167], in this interval, in terms of the Chebyshev

series,

g(x) =
∞∑

m=0

gmTm(x) =
∞∑

m=0

gm
(
zm
θ + z−m

θ

)/
2 ≡ G(zθ ).

(C15)

where gm ∈ C and where we used Eq. (C6) to define the
function G(z) on the unit circle zθ = exp[iθ ], θ ∈ [0, 2π ]. It
is further possible to follow an elegant geometric construction
[167] to show that an analytical continuation of g(x) in Ẽρ

corresponds to analytically continue G(z) inside the annulus
ρ−1 � |z| � ρ. Intuitively, this is a consequence of the fact
that G(z) can be interpreted as the pull-back of g(x) on the
unit circle by the Joukoasky map J (z) = (z + z−1)/2, z ∈ C
(which projects the unit circle onto the real axis, i.e., J (z) =
Re[z] for |z| = 1). In other words, F (z) = g(x). In turn, this
allows us to take advantage of the Laurent series in Eq. (C15)
to write [167]

gm

2
= 1

2π i

∫
|z|=ρ

dz z−1+mG(z), (C16)

where the factor 1/2 should not appear on the left-hand side
for m = 0. By further assuming |g(z)| � Qρ for x ∈ Ẽρ the
expression above implies

|g0| � Qρ, and |gm| � 2Qρρ
−m for m � 1, (C17)

see Theorem 8.1 in Ref. [167]. We can now use these bounds
to analyze the error made by truncating the Chebyshev series
in Eq. (C15). To do this, we can define gM (x) as the truncated
series,

gM (x) =
M∑

m=0

gmTm(x). (C18)

Using Eq. (C7) and (C17), the error made by this truncation
can be quantified as

sup
x∈[−1,1]

|g(x) − gM (x)| = sup
x∈[−1,1]

∣∣∣∣∣∣
∞∑

m=M+1

gmTm(x)

∣∣∣∣∣∣
� 2Qρ

∞∑
m=M+1

ρ−m = 2Qρ

ρ−M

ρ − 1
.

(C19)

We note that this bound is valid for all parameters ρ > 1
defining an open Bernstein ellipse Ẽρ inside which g(x) admits
an analytical continuation.

In the following subsection, we show how to use these
results in order to provide an estimate for the error made in
a polynomial extrapolation.

3. Error analysis using Chebyshev polynomials

In this subsection, we adapt the results elegantly presented
in Ref. [161] to analyze in more detail the expression for the
extrapolation error in Eq. (C5) which averages the difference
between the “true” extrapolation value f (�c) = 〈ÔS〉(�c)
and its M-order polynomial estimate pexp

M (�c). Assuming that
the function f (�) admits analytical continuation, we can
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always write it in terms of a Chebyshev series as

f (z) =
∞∑

m=0

amTm(z), (C20)

with am ∈ C. Similarly, the polynomial pexp
M (z) can be written

as a truncated series

pM (z) =
M∑

m=0

cmTm(z), (C21)

whose coefficients cn solve the least-squares optimization de-
fined by the distance in Eq. (C3). Explicitly, we can write
cm ≡ �cm, where

�c = (T †T )−1T †( �f + �ε) (C22)

is written in terms of the vector �ε = (ε0, · · · , εN )T and

�f =

⎛⎜⎝ f0
...

fN

⎞⎟⎠ =

⎡⎢⎣ f (�0)
...

f (�N )

⎤⎥⎦ ≡

⎛⎜⎝〈Ô〉�0
...

〈Ô〉�N

⎞⎟⎠, (C23)

and

T =

⎡⎢⎣ T0(λ0) · · · TM (�0)
...

...

T0(�N ) · · · TM (�N )

⎤⎥⎦. (C24)

In order to introduce some of this definitions to analyze the
full series in Eq. (C20), we can decompose it as

f (z) = fM (z) +
∞∑

m=M+1

amTm(z) (C25)

in terms of the truncated series

f M (z) ≡
M∑

m=0

amTm(z). (C26)

In this way, the coefficients am (m = 0, . . . , M) can be written
explicitly as am ≡ �am, where

�a = (T †T )−1T † �f M . (C27)

Here we introduced the vector

�f M =

⎡⎢⎣ f M (�0)
...

f M (�N )

⎤⎥⎦, (C28)

which, as can be noted by comparison, is not equivalent to the
one in Eq. (C23) since it relies on the truncated series rather
than the “true” value. With this notation, we have

Err = Eexp

[∣∣∣∣∣
∞∑

m=0

amTm(z) −
M∑

m=0

cmTm(z)

∣∣∣∣∣
]

� Eexp

[∣∣∣∣∣
M∑

m=0

(�am − �cm)Tm(z)

∣∣∣∣∣
]

+
∣∣∣∣∣∣

∞∑
m=M+1

amTm(z)

∣∣∣∣∣∣
� ||(T †T )−1T †||∞||( �fM − �f )||∞

M∑
m=0

|Tm(z)|

+
∞∑

m=M+1

|am| |Tm(z)|

+Eexp[||(T †T )−1T †�ε||∞]
M∑

m=0

|Tm(z)|

≡ Err1 + Err2, (C29)

where we introduced the infinity norm and used Eq. (G8), see
Appendix G 1, and defined

Err1 = ||(T †T )−1T †||∞||( �fM − �f )||∞
M∑

m=0

|Tm(z)|

+
∞∑

m=M+1

|am| |Tm(z)|

Err2 = Eexp[||(T †T )−1T †�ε||∞]
M∑

m=0

|Tm(z)|. (C30)

Our goal is now to compute the quantities in the expressions
above. To begin, using Eq. (G6), we have

||(T †T )−1T †||∞ �
√

N + 1||(T †T )−1T †||2. (C31)

Now, since T is a (N + 1) × (M + 1) matrix, we can write it,
in singular value decomposition, as

T = V(N+1)×(N+1)�(N+1)×(M+1)U(M+1)×(M+1), (C32)

where U and V are unitary and � has nonzero elements only
on the diagonal. Omitting the size of the matrices we have

(T †T )−1T † = U −1(�†�)−1�V −1. (C33)

Since (�†�)−1� has nonzero elements only on the diag-
onal, this constitutes a singular value decomposition for
(T †T )−1T †. Moreover, the diagonal elements of (�†�)−1�

are the inverse of the diagonal elements of �. Using Eq. (G9),
this implies

||(T †T )−1T †||2 = 1

min(σT )
. (C34)

Using this result into Eq. (C31), we obtain

||(T †T )−1T †||∞ �
√

N + 1

min(σT )
, (C35)

where σT are the singular values of the matrix T . In order
to compute || �f − �fM ||∞, we note that all evaluations of f (z)
and fM (z) inside its expression are within the interval [−1, 1].
This implies that we can use Eq. (C19) to deduce that

|| �f − �fM ||∞ � 2Qρ

ρ−M

ρ − 1
. (C36)
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The remaining two terms can be immediately bounded using
Eq. (C14), Eq. (C17), and Eq. (C12) as

M∑
m=0

|Tm(z)| �
M∑

m=0

ρm
z = 1 − ρM+1

z

1 − ρz

∞∑
m=M+1

|am| |Tm(z)| � 2Qρ

∞∑
m=M+1

(
ρz

ρ

)m

= 2Qρ

(ρz/ρ)M+1

(1 − ρz/ρ)
. (C37)

Using Eqs. (C35), (C36), and (C37) into the first line of
Eq. (C30), we get

Err1 = 2Qρ

[√
N + 1

min(σT )

ρ−M
(
1 − ρM+1

z

)
(ρ − 1)(1 − ρz )

+ (ρz/ρ)M+1

(1 − ρz/ρ)

]
.

(C38)

Note that a more conservative bound can be found in place of
the first bound in Eq. (C37) as

∑M
m=0 |Tm(z)| �

M∑
m=0

ρm
z � (M + 1)ρM

z , (C39)

which would result in the less tight bound,

Err1 = 2Qρ

(
ρz

ρ

)M
[

(M + 1)
√

N + 1

min(σT )
+ (ρz/ρ)

(1 − ρz/ρ)

]
,

(C40)

instead of Eq. (C38), see Ref. [161], Theorem 6. Refer-
ence [161] further proves a lower bound for min(σT ) in
the case of equispaced points �r = −1 + 2r/N, r = 0, . . . , N
and the oversampling condition

√
N � 2M. Using Eq. (20)

of Ref. [161] into the second equation of Theorem 4 of
Ref. [161], the bound reads

min(σT )2 � 1

25

(
N − M2/2

2M + 1
− 27

√
N

32π

)
, (C41)

which can be inserted in Eq. (C40). The tightness of this
bound can be further relaxed (using the second equation of
Theorem 3 into the second equation of Theorem 4 of
Ref. [161]) to

min(σT )2 �
[

2N

125(2M + 1)

]
. (C42)

We now compute

Err2 = Eexp

[∣∣∣∣∣
M∑

m=0

[(T †T )−1T †�ε]mTm(z)

∣∣∣∣∣
]
. (C43)

First, we give a tight estimation of this term which can be used
for numerical analysis. To do this, we just note that

Err2
2 = E2

exp

[∣∣∣∣∣
M∑

m=0

[(T †T )−1T †�ε]mTm(z)

∣∣∣∣∣
]

� E2
exp

⎡⎣∣∣∣∣∣∣
N∑

j=0

ε j

M∑
m=0

[(T †T )−1T †]m jTm(z)

∣∣∣∣∣∣
⎤⎦

� Eexp

⎡⎢⎣
∣∣∣∣∣∣

N∑
j=0

ε j

M∑
m=0

[(T †T )−1T †]m jTm(z)

∣∣∣∣∣∣
2
⎤⎥⎦

� Eexp

⎡⎣ N∑
j=0

ε2
j

M∑
m=0

|[(T †T )−1T †]m j |2|Tm(z)|2
⎤⎦

� σ 2
N∑

j=0

M∑
m=0

|[(T †T )−1T †]m j |2|Tm(z)|2, (C44)

which leads to

Err2
2 � σ 2

exp

N∑
j=0

M∑
m=0

|[(T †T )−1T †]m j |2|Tm(z)|2. (C45)

This relatively tight bound can now be directly numerically
evaluated. However, we now go back to Eq. (C43), i.e.,

Err2 � Eexp[||(T †T )−1T †�ε||∞]
M∑

m=0

|Tm(z)|, (C46)

with the intention to find an analytical bound. To make
progress, we follow Ref. [161], as done throughout the whole
section. It is possible to define a projector P = T (T †T )−1T †

onto the range of T which has the property

(T †T )−1T †P = (T †T )−1T †. (C47)

This means that we can write

Eexp[‖(T †T )−1T †�ε‖2]2 = Eexp[‖(T †T )−1T †P�ε‖2]2

� K2 · Eexp[‖P�ε‖2]2

� K2 · Eexp
[‖P�ε‖2

2

]
, (C48)

where, in the second step, we used Eq. (G8), and where we
defined

K2 = [‖(T †T )−1T †‖2]2. (C49)

We also used Eexp[X ]2 � Eexp[X 2] for a generic random vari-
able X (special case of Jensen’s inequality), in the last step.
Now, since P projects onto the range RT of T , we can write

Eexp[‖P�ε‖2]2 = Eexp

⎡⎣∥∥∥∥∥∥
∑
�v∈RT

|�v〉〈�v|�ε
∥∥∥∥∥∥

2

⎤⎦
= Eexp

⎡⎣∥∥∥∥∥∥
∑

�v,�v′∈RT

〈�ε|
∣∣�v′〉〈�v′∣∣|�v〉〈�v|�ε

∥∥∥∥∥∥
2

⎤⎦
= Eexp

⎡⎣∥∥∥∥∥∥
∑
�v∈RT

|〈�ε|�v〉 |2
⎤⎦

= Eexp

⎡⎣∥∥∥∥∥∥
∑
�v∈RT

N∑
j=0

|ε j �v j |2
⎤⎦
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= σ 2
expEexp

⎡⎣∥∥∥∥∥∥
∑
�v∈RT

N∑
j=0

|�v j |2
⎤⎦

= σ 2
expEexp

⎡⎣∥∥∥∥∥∥
∑
�v∈RT

1

⎤⎦
= (M + 1)σ 2

exp, (C50)

where �v ∈ RT are orthonormal vectors and where we used a
notation borrowed from quantum mechanics to indicate vec-
tors and their duals as kets and bras, respectively. Note that,
in the last step, we assumed that M < N , i.e., that the number
of measurements is bigger than the degree of the interpolating
polynomial, as it is the regime relevant for us. In that case,
since T is a (N + 1) × (M + 1) matrix, its rank cannot be
bigger than (M + 1), justifying the last step.

Using Eq. (C50) into Eq. (C48), we obtain

Eexp[‖(T †T )−1T †�ε‖2] � σexp

√
M + 1‖(T †T )−1T †‖2.

(C51)
Now, using Eqs. (C31), (C51), and (C34), we obtain

Eexp[‖(T †T )−1T †�ε‖∞] �
√

N + 1E [‖(T †T )−1T †�ε‖2]

� σexp

√
N + 1

√
M + 1

min(σT )
. (C52)

Now, using Eq. (C14), Eq. (C52), and the first of Eq. (C37)
into Eq. (C46), we get

Err2 � σexp

√
N + 1

√
M + 1

min(σT )

1 − ρM+1
z

1 − ρz
. (C53)

Note that, using the bound in Eq. (C39) instead of the one in
Eq. (C37) results in the cleaner but less tight bound

Err2 � σexp

√
N + 1(M + 1)3/2

min(σT )
ρM

z , (C54)

which can be compared to the expression in Ref. [161], Corol-
lary 3.

In summary, we followed Ref. [161] to derive an upper
bound for the error made when extrapolating the value f (z)
of a function f at a point z ∈ C using Chebyshev polynomials
(and given a set of noisy data in the interval [−1, 1]). This
bound explicitly reads

Err � Err1 + Err2, (C55)

in which Err1 represents the bias due to the finite order of
the extrapolating polynomial and Err2 represents the effects of
uncertainties on the available data. An upper bound for these
contributions can be found in Eq. (C40) and Eq. (C54). In
particular, Eq. (C40) shows that the bound on the “bias” con-
tribution depends on the properties of the function f (z) over
the complex plane (i.e., it is not limited to the extrapolating
value) and, as expected, it converges to zero, exponentially in
the order of the extrapolating polynomial. This feature is com-
pensated for by the fact that the expression for the “stability”
contribution in Eq. (C54) ultimately requires a precision in the
estimation of the initial data which scales exponentially in the
polynomial order.

We now more clearly specify these results using the nota-
tion for the actual analytical continuation procedure outlined
in the main text, which we now briefly summarize.

a. Summary of the analytical continuation protocol

The analytical continuation protocol defined in this article
focuses on the expectation value 〈ÔS〉(t,�) of a system ob-
servable ÔS at time t and as a function of a single parameter
� ∈ C. As shown in Sec. IV, it is possible to define a physical
ensemble which allows us to measure the value for the expec-
tation above when � ∈ Dphys = [−1, 1]. Our ultimate goal is
to analytically continue this physical information to estimate
〈ÔS〉(t,�c) for a value outside of the physical domain, i.e., for
�c = −1 + 2i /∈ Dphys. To achieve this, we simply consider
Ncont values �n ∈ Dphys and extrapolate the values for the
corresponding expectations 〈ÔS〉(t,�n) to �c.

We now further present a summary for the error analysis
analyzed in this section.

b. Summary of the error analysis

Here we reinterpret the results of this section for the spe-
cific notation used in the main part of the article. We do this
by writing Eq. (C55) as

Errcont � Errbias + Errstability. (C56)

The first contribution to this expression explicitly reads

Errbias = inf
r>1

2Qrr−M

⎡⎣√53(Ncont + 1)(M + 1)3

Ncont
+ 1

(r − 1)

⎤⎦
� inf

r>1
2Qrr−M

[
53/2(M + 1)3/2 + 1

(r − 1)

]
, (C57)

where we used Eq. (C42) and further bounded the resulting
expression. In the last step, we assumed Ncont � 1, corre-
sponding to tuning the parameters of the experimental setup
over a large number of values. Here Qr represents a bound for
|〈ÔS〉(t,�)| when � is evaluated on a Bernstein ellipse with
parameter rρc, where ρc characterizes the Bernstein ellipse
passing through the analytical continuation value �c. Explic-
itly, we can write

Qr = sup
θ∈[0,2π]

∣∣∣∣〈OS〉
(

t,
ρeiθ + ρ−1e−iθ

2

)∣∣∣∣, (C58)

for ρ = rρc. Using �c = −1 + 2i, the explicit expression for
the parameter ρc can be found by solving Eq. (C12), which
leads to ρc � 2.5.

The second contribution to Eq. (C56) reads

Errstability � σexp

√
Ncont + 1

Ncont
53/2(M + 1)2ρM

c

� σexp 53/2(M + 1)2ρM
c , (C59)

where, as before, we used Eq. (C42), further bounded the
resulting expression, and then considered the limit Ncont � 1.
We note that the simplicity of these expressions comes at the
price of rather loose bounds. However, the intermediate ex-
pressions presented in this section could allow us, in principle,
to compute tighter, but less transparent, bounds.
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To complete the analytical treatment presented in this sec-
tion, it is necessary to analyze in more detail both the variance
σ 2

exp quantifying experimental errors (done in Appendix D),
and the term Qr bounding the observable of interest in the
complex plane (done in Appendix E).

For the sake of completeness, here we are going to directly
use the results derived in Appendixes D and E to give our final
estimate for the analytical continuation error in Eq. (C56).
First, using Eq. (E15), we find that a bound for the quantity
on the right hand-side of Eq. (C58) can be written as

|〈OS〉(t,�)|
‖OS‖∞

� exp

[
2‖ŝ‖∞

∫ t

0
du

∫ u

−u
dτ
∣∣Cunph

PM (t ; �)
∣∣].

(C60)

Here we further considered the fact that the extrapolation is
done over the open system made by the original (physical)
environment and the pseudomode model whose correlation is
given in Eq. (B18). We further defined Cunph

PM (t ; �) as

Cunph
PM (t ; �) = CPM(t ; �) − Cphys,PM(t ; �), (C61)

where Cphys,PM(t ; �) is a physical correlation which mini-
mizes Eq. (C60). We note that any choice which does not
minimize such an expression (such as Cphys(t ;�),PM → 0) is
also valid while leading to a less-strict bound. In other words,
it is always possible to simplify the previous expression by
simply substituting Cunph

PM (t ; �) → CPM(t ; �).
In parallel, a bound for the variance in Eq. (C59) can be

written, using Eq. (D6), as

σ 2
exp

‖ÔS‖2∞
� 1

Nexp
+ G2

class(t )√
πNstoch

, (C62)

where Gclass(t ) is a quantity bounding the stochastic contribu-
tion to the error in case a stochastic field is used in the model,
and it is explicitly given in Eq. (F14). When the completely
deterministic pseudomode model is used, then Gclass(t ) → 0.
As a consequence of the law of large numbers, we note that the
variance is inversely proportional to the number Nexp of inde-
pendent measurements for the observable ÔS and the number
Nstoch of independent samples for the stochastic field.

This concludes the overview on the analysis of the error
Errcont in Eq. (C56) made when analytically continuing the
expectation values for an observable ÔS as

〈ÔS〉(t ; �c) = pM (t ; �c) ± Errcont, (C63)

where we used Eq. (41) and where the error estimate is given
by Eq. (C56).

As promised, in the next two sections, we are going to
derive a bound for the experimental variance σ 2

exp, and the
quantity Qr which are required to obtain the results above.

APPENDIX D: EXPERIMENTAL VARIANCE

In this section, we analyze the variance σ 2
exp appearing in

the estimated error for the analytical continuation procedure
given in Eq. (C59). While, from an operative point of view,
such a variance can always be computed after the measure-
ments, our goal is, here, to provide an a priori upper bound.
To do this, we can start by analyzing the meaning of the

noise appearing in Eq. (C2). Since such expression contains
expectation values taken over the system state, one might be
tempted to consider the variances,〈

Ô2
S

〉
(�n) − 〈ÔS〉2(�n). (D1)

However, this would imply the possibility of completely trac-
ing out the degrees of freedom of the pseudomode model
(which, in this case, is physical since, by construction, �n ∈
Dphys). Unfortunately, whenever the stochastic version of this
model is used, a full average over the statistics of the drive
ξ (t ) introduced in Eq. (A11) is, in general, not possible. To
consider this extra source of uncertainty, we can consider

σ 2
n,exp = 〈

Ô2
S

〉
S-PM-ξ (�n) − 〈ÔS〉2

S-PM-ξ (�n), (D2)

whose trace is made over the system, pseudomode, and clas-
sical degrees of freedom, i.e., 〈·〉S-PM-ξ = TrSTrPMEξ [·]. This
expression is conceptually much more interesting than the
bare one in Eq. (D1) as, for example, it encodes the fact
that the statistics distributed accordingly to the quantum den-
sity matrix further depends on Gaussian random variables. In
order to properly account for the compound nature of this
distribution, we can resort to the law of total variance to write

σ 2
n,exp = Eξ VarS-PM[Ô] + Varξ TrS-PM[Ô]

= Eξ [〈Ô2〉S-PM − 〈Ô〉2
S-PM] + Varξ [〈Ô〉S-PM], (D3)

in terms of the sum of the variance of Ô in the Hilbert space
and the variance over the classical noise. Here we omit-
ted extra dependencies and labels to simplify the notation,
and also defined Varξ [ f (ξ )] = Eξ [ f 2(ξ ) − E2

ξ [ f (ξ )]] for a
generic function f of ξ . We can now analyze each term in
Eq. (D3) separately. For the first contribution, we can write

Eξ

[〈Ô2〉S-PM − 〈Ô〉2
S-PM

]
� Eξ [〈Ô2〉S-PM] � ‖Ô‖2

∞. (D4)

Using the law of large numbers, this variance can always
be reduced by a factor Nexp by considering Nexp independent
and identically distributed measurements. Estimating an up-
per bound for the second contribution in Eq. (D3) is a little
more complicated. However, this problem has already been
analyzed in Ref. [95], whose proof used the ideas previously
presented in Ref. [87]. For consistency, in Appendix F, we
provide a generalized version for such a proof. Mainly, these
derivation show how to bound the variance in terms of a
function Gclass(t ) which depends on the “classical” correlation
function modeled by ξ (t ) and is explicitly given in Eq. (F14).

Overall, using these results, we can write a bound for the
variances in Eq. (D2) as

σn,exp � σexp, (D5)

where

σ 2
exp � ‖Ô‖2

∞
Nexp

+ ‖Ô‖2
∞√

πNstoch
G2

class(t ). (D6)

Here the integers Nexp and Nstoch simply characterize the num-
ber of independent sampling over the measurement of the
observable Ô and the field ξ (t ). In other words, the full av-
erage TrSTrPMEξ [·] is meant to be computed NexpNstoch times,
i.e., for each of the Nstoch independent copies of the noise ξ and
Nexp independent measurements on the underlying quantum
system. This concludes the analysis of the terms in Eq. (D3).
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In summary, we provided an estimate for an upper bound
on the errors on the data, given in Eq. (39), required to define
the extrapolating polynomial needed to perform the analyti-
cal continuation of the model parameters. In fact, this noise
propagates through the extrapolation procedure as described
in Appendix C 3 and ultimately contribute to the analytical
continuation error as described in Eq. (C59).

In the next section, we analyze a bound on |〈ÔS (t,�)〉|, in
terms of the expectation value over the whole complex plane.

APPENDIX E: A BOUND ON ANALYTICALLY
CONTINUED EXPECTATION VALUES

The goal of this section is to analyze the behavior of the
function representing the analytical continuation of the ex-
pectation value 〈ÔS〉(t,�) of a system observable ÔS at time
t and in terms of the complex parameter �. To do this, we
are going to closely follow, and adapt, the analysis given in
Refs. [87,95].

We start by defining a decomposition of the correlation
function characterizing the effects of an environment on the
system in terms of a physical and an unphysical contribution.
Specifically, we define a contribution to the correlation as
physical when its spectrum is real and positive; see Ref. [90].
This ensures that the corresponding bosonic environment has
a real and positive spectral density defined for all frequencies.
In turn, this ensures that the interaction between this environ-
ment and the system leads to a unitary dynamics. With this
definition, any correlation can be decomposed as

C(t ; �) = Cphys(t ; �) + Cunph(t ; �), (E1)

where Cphys(t ; �) is physical. We further point out that the
analytical continuation is operated over the open system made
by the original one and the pseudomode model whose param-
eters are a function of �, i.e., the left hand-side of Eq. (E1)
reads, explicitly, as in Eq. (B18). In the following, unless
explicitly required, we will omit the label � so we do not
overburden the notation. Thanks to these definitions, we can
now interpret the effects of the environment having correla-
tion C(t ) as those originating from a composite environment

composed by two independent baths U and P having corre-
lations Cunph(t ) and Cphys(t ), respectively. We note that this is
an adaptation of the ideas presented in Refs. [87,95], where
an analogous decomposition is used to estimate the effect of
modeling errors. We can further denote the space S′ composed
of the system and the “physical” environment by S′ ≡ S + P.
Given a system observable ÔS (and omitting, from now on, the
label S when it would overburden the notation), we consider
the quantity

�OS (t ) = |Ofull(t ) − Ophys(t )|, (E2)

where Ophys(t ) is the expectation of ÔS in the absence of the
environment U , i.e.,

Ophys(t ) = TrS′ [ÔS (t )ρ(0)], (E3)

where ρ(0) is the initial density matrix in the space S′ and
where ÔS (t ) evolves with the free dynamics in S′. On the other
hand, Ofull(t ) denotes the expectation value in the full space
T ≡ S + P + U = S′ + U . We can now trace out the effects
of the environment U to write

�OS (t ) = ∣∣TrS′ÔS (t )T eFunph(t )ρ(0) − TrS′ÔS (t )ρ(0)
∣∣, (E4)

where Funph(t ) is the influence superoperator dependent on
the correlation Cunph(t ) which explicitly reads

Funph(t ) =
∫ t

0
dt ′′

∫ t ′′

0
dt ′

4∑
j=1

Cj (t
′′, t ′)ˆ̂s j, (E5)

where Cj (t ′′, t ′) = Cunph(t ′′ − t ′)(δ j1 + δ j2) − Cunph(t ′ −
t ′′)(δ j3 + δ j4), and where

ˆ̂s1(t ′′, t ′)[·] = −S2(t ′′)S1(t ′)[·] = ŝ(t ′)[·]ŝ(t ′′)
ˆ̂s2(t ′′, t ′)[·] = −S2(t ′)S2(t ′′)[·] = −[·]ŝ(t ′′)ŝ(t ′)
ˆ̂s3(t ′′, t ′)[·] = S1(t ′)S1(t ′′)[·] = ŝ(t ′)ŝ(t ′′)[·]
ˆ̂s4(t ′′, t ′)[·] = S1(t ′′)S2(t ′)[·] = −ŝ(t ′′)[·]ŝ(t ′), (E6)

in terms of the system coupling operator ŝ and where
S1(t )[·] = ŝ(t )·, S2(t )[·] = − · ŝ(t ). It is worth noting that the
time-ordering operator acts on the superoperators S . With
these definitions, we can write

�OS (t ) =
∣∣∣∣∣

∞∑
n=1

1

n!
TrS′ÔS (t )T Fn

unphρ(0)

∣∣∣∣∣ �
∞∑

n=1

1

n!
|TrS′ÔS (t )T Fn

unphρ(0)|

�
∞∑

n=1

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)
|TrS′ÔS (t )Cjn (t ′′

n , t ′
n) · · ·Cj1 (t ′′

1 , t ′
1)T ˆ̂s jn (t ′′

n , t ′
n) · · · ˆ̂s j1 (t ′′

1 , t ′
1)ρ(0)|

=
∞∑

n=1

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)
|Cjn (t ′′

n , t ′
n)| · · · |Cj1 (t ′′

1 , t ′
1)‖TrS′ÔS (t )T ˆ̂s jn (t ′′

n , t ′
n) · · · ˆ̂s j1 (t ′′

1 , t ′
1)ρ(0)|. (E7)

To proceed, we use the fact that, for bounded operators A and B, it is possible to write Tr[AB] � ‖A‖∞‖B‖1; see Ref. [170].
This expression can also be considered a special case of the Hölder inequality. Furthermore, since in our case the operators have
a unitary evolution, the requirement on the boundness translates to the same assumption for the observable Ô and the coupling
operator ŝ, despite S′ being a continuum. We then obtain

�OS (t ) �
∞∑

n=1

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)
|Cjn (t ′′

n , t ′
n)| · · · |Cj1 (t ′′

1 , t ′
1)| ‖ÔS‖∞ ‖T ˆ̂s jn (t ′′

n , t ′
n) · · · ˆ̂s j1 (t ′′

1 , t ′
1)ρ(0)‖1, (E8)
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where we further used the unitarity of the norm. An upper bound for the last term in the previous expression can be computed
by iteratively using the Hölder inequality ‖AB‖1 � ‖A‖∞‖B‖1. In fact, we can explicitly write the operators ˆ̂s in terms of the
superoperators S which define them and which are time ordered. The resulting expression will then ultimately contain a sequence
of 2n operators ŝ(τ ) (for some τ ∈ [0, t]) acting either on the left or the right of ρ(0). We can then use the Hölder inequality 2n
times to write everything in terms of a product of quantities ‖ŝ(τ )‖∞ and ‖ρ(0)‖1. By further using the unitarity of the norm, all
time dependencies drop, leading to

�OS (t ) �
∞∑

n=1

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)
|Cjn (t ′′

n , t ′
n)| · · · |Cj1 (t ′′

1 , t ′
1)| ‖ÔS‖∞ ‖ŝ‖2n

∞

=
∞∑

n=1

‖ÔS‖∞ ‖ŝ‖2n
∞

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)
|Cjn (t ′′

n , t ′
n)| · · · |Cj1 (t ′′

1 , t ′
1)|, (E9)

where we used ‖ρ(0)‖1 = 1. We also have that∑
j

|Cj (t
′′, t ′′)| = 2[|Cunph(t ′′ − t ′)| + |Cunph(t ′ − t ′′)|],

(E10)

which leads to

�OS (t )

‖ÔS‖∞
� exp

[
2‖ŝ‖∞

∫ t

0
du

∫ u

−u
dτ |Cunph(τ )|

]
− 1.

(E11)

This expression can now be used to bound the quantity
|〈OS (t,�)〉| on the complex plane using

|〈OS (t,�)〉| = |Ofull(t ) + Ophys(t ) − Ophys(t )|
� |Ophys(t )| + �OS (t ). (E12)

We can further use the fact that

|Ophys(t )| = |Tr[O(t )ρ(0)]| � ‖O‖∞‖ρ(0)‖1 = ‖O‖∞,

(E13)

where the dynamics is in the S + P space. Using this equa-
tion together with Eq. (E11) and Eq. (E12), we finally arrive
at

|〈OS〉(t,�)|
‖OS‖∞

� exp

[
2‖ŝ‖∞

∫ t

0
du

∫ u

−u
dτ |Cunph(τ ; �)|

]
,

(E14)

whose dependence on the parameter � is fully encoded in the
unphysical part of the correlation function.

The expression in Eq. (E14) can now be explicitly com-
puted after writing the correlation of the model which we need
to analytically continue and decompose it into its physical and
unphysical contributions using Eq. (E1). This further allows
us to write an optimization version of the previous expression.
To do this, we start by defining Dph as the domain of functions
with positive spectrum so that Cph(t ) ∈ Dph. We can then
use Eq. (E1) in Eq. (E14) and then interpret the resulting
expression as an optimization over any domain D contained
in Dph, i.e.,

|〈OS〉(t,�)|
‖OS‖∞

� inf
C̃ph∈D⊂Dph

exp

[
2‖ŝ‖∞

∫ t

0
du

×
∫ u

−u
dτ |C(τ ; �) − C̃ph(τ ; �)|

]
, (E15)

since the infimum over a subset is necessarily at least as big
as the infimum over the whole space. The convenience of
this expression is in the fact that it can be used to generate
less strict, but analytically more transparent, upper bounds
by choosing an ansatz for D ∈ Dph. This expression can also
be used in Eq. (C58) to compute Qr , thereby concluding this
general analysis. However, in order to provide an example, in
the next section, we are going to evaluate this equation for a
specific case.

1. An explicit example

The goal of this section is to explicitly evaluate the bound
in Eq. (E15) for a specific analytical continuation procedure.
To do this, we can follow the pseudomode model and assume
the original correlation to be well approximated by a sum
of decaying exponentials with complex, �-dependent coeffi-
cients C�(t ) = ∑

j∈J λ2
j (�) exp [−i� j (�)t − 	 j (�)|t |] such

that λ�
j ,��

j , 	�
j ∈ C for a set J listing the labels j. In this

case, we can choose the optimization domain D as the one
consisting of all functions which can be written as a positive
linear combination of exponentials with real frequency and
positive decay rate, i.e., such that λ2

j (�) > 0, � j (�) ∈ R,
and 	 j (�) > 0. We note that this might correspond to an
assumption stronger than needed, since it considers physi-
cality for each individual parameter instead of the overall
series. In this case, the observable bound can then be written
explicitly as

|〈OS〉(t,�)|
‖OS‖∞

� exp

⎡⎣2‖ŝ‖∞
∫ t

0
du

∫ u

−u
dτ

×
∣∣∣∣∣∣
∑

j′∈J ′⊂J

λ2
j′ (�) exp [−i� j′ (�)t − 	 j′ (�)|t |]

∣∣∣∣∣∣
⎤⎦,

(E16)

where the sum is over all j′ ∈ J ′ ⊂ J such that at least one of
the coefficients λ2

j′ (�), � j′ (�), and 	 j′ (�) does not satisfy
the constraints above.

A notable instance of this example is the case in which the
original correlation is decomposed as a linear combination of
decaying exponentials with physical frequencies and physical
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decay rates, i.e., such that all unphysicalities are restricted to
having a complex coupling between the pseudomodes and the
system. We note that this includes the examples presented in
the main article (for example, the presence of a stochastic
drive corresponds to expanding the symmetric part of the
correlation in terms of nondecaying exponentials with real
frequencies). For clarity, we now further restrict to the case
where only one of such unphysical exponential is present and
such that the coefficient λ(�), corresponding to the coupling
between the pseudomode and the system, is unphysical. In this
case, we simply have

|〈OS〉(t,�)|
‖OS‖∞

� exp

[
4λ2

unph(�)‖ŝ‖∞
	2

(−1 + e−	t + 	t )

]
,

(E17)

in terms of the unphysical coefficient λ2
unph(�) ≡ λ2(�) −

Re[λ2(�)]θ (Re[λ2(�)]) corresponding to the fact that, de-
pending on the value of �, the parameter λ2(�) can be either
unphysical [so that λ2

unph(�) → λ2(�)] or physical [so that
λ2

unph(�) → 0].
We can now use these results to compute an explicit bound

for the quantity Qr in Eq. (C58). To do this, we further assume
the coupling to take the form given in Eq. (32), i.e., λ(�) =
λ̄(1 + �)/2 in terms of a physical frequency scale λ̄. This case
was analyzed in Sec. IV and it is defined in order to allow an
analytical continuation of the coupling to an imaginary value
to model a contribution to the correlation which is negative
at zero time. In other words, the choice above implies that
λ(�c) = iλ̄. Now, in order to use Eq. (E17) to compute Qr

in Eq. (C58), we need to evaluate λunph(�) on the Bernstein
ellipse with parameter ρ = rρc. We can then parametrize this
function by ρ and an angle ϕ specifying the position on the
ellipse to write

A(ρ, ϕ) ≡ ∣∣λ2
unph(ρeiϕ/2 + ρ−1e−iϕ/2)

∣∣
� λ̄2 |4(ρ + ρ−1) cos ϕ + (ρ2 + ρ−2) cos 2ϕ|

16

+λ̄2 |4(ρ − ρ−1) sin ϕ + (ρ2 − ρ−2) sin 2ϕ|
16

� λ̄2 3

4

4ρ + ρ2

4
� 3ρc

4
λ̄2

(
ρ

ρc
+ 1

)2

= 3ρc

4
λ̄2(r + 1)2, (E18)

where ρc is the parameter for the Bernstein ellipse passing
through the point �c = −1 + 2i, which can be evaluated solv-
ing Eq. (C12) and which satisfies ρ2

c /4 � 2. We further made
use of the inequality

|α + β − θ (α + β )(α + β )| � β, (E19)

when α > 0, and also the rather conservative bounds ρ +
ρ−1 < 2ρ and ρ − ρ−1 < ρ since ρ > 1. We can now use this
result in Eq. (E17) to finally obtain

Qr � ‖O(t )‖∞ exp

[
6λ̄2‖ŝ‖∞(r + 1)2ρc

e−t	 − 1 + t	

	2

]
.

(E20)

It is perhaps more elegant to express these results in terms of
the total relative error,

ε = Err/‖Ô‖∞, (E21)

as

ε = εbias + εstability, (E22)

where, using the notation in Eq. (C56),

εbias = Errbias/‖Ô‖∞ , εstability = Errstability/‖Ô‖∞ . (E23)

The “bias” and “stability” contribution to the relative error
above can be written, more explicitly, using Eq. (E20) in
Eq. (C57) and Eq. (D6) in Eq. (C59), to find

εstability �
√

1

Nexp
+ G2

class(t )√
πNstoch

53/2(M + 1)2ρM
c

εbias � inf
r>1

2e6αcompl (r+1)2ρc

rM

[
53/2(M + 1)3/2 + 1

r − 1

]
,

(E24)

in terms of the “complexity” parameter,

αcompl = λ̄2‖ŝ‖∞
e−t	 − 1 + t	

	2
� t λ̄2‖ŝ‖∞/	, (E25)

which encodes the information about the physical quantities
involved, i.e., the time t , the pseudomode decay rate 	, the
overall strength λ̄ of the pseudomode-system interaction, and
the norm of the system interaction operator ŝ. Because of its
adimensionality and its critical influence on the scaling of the
error, it can be used to intuitively characterize the “complex-
ity” of the extrapolating the effects of the environment on the
system.

As a final note, we mention that the parameters in the
expression for αcompl should, through the pseudomode map-
ping, be expressed in terms of the parameter characterizing
the original open quantum system. This could ultimately al-
low us to further analyze how the complexity of the task
scales in terms of physical parameters such as the system
size.

APPENDIX F: STOCHASTIC ERROR

In this subsection, we consider a stochastic version of the
pseudomode model and adapt the proofs in Refs. [87,95] to
estimate the stochastic error

�stochO(t ) = E[|〈Oξ (t ; Nstoch)〉 − E[〈Oξ (t ; Nstoch)〉]|]. (F1)

Using Jensen inequality, this error satisfies

�stochO(t ) �
√

Varξ [Oξ (t ; Nstoch)], (F2)

i.e., it can be bounded by the square root of the variance of the
random variable 〈Oξ (t ; Nstoch)〉, defined as

Varξ [Oξ (t )] = E[〈Oξ (t )〉2] − E2[〈Oξ (t )〉], (F3)

in which we omitted the dependency on Nstoch for clarity.
In order to analyze this variance in more detail, it is

useful to distinguish among three different effects: the ones
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originating from the stochastic field, the ones from physical
environments, and the ones from unphysical ones. In fact,
before tracing them out, physical environments produce uni-
tary dynamics, whose effects are more easily bounded. This
is not true for unphysical environments which, for this reason,
require more care. Furthermore, the full dependence of the
expectation value on the noise has to be carried over the
calculation.

After these intuitive considerations, we proceed by defin-
ing S′ as the system plus all physical environments. The
effects of unphysical environments are, instead, encoded in
the corresponding influence superoperator F (t, ŝ,Cunphys(t )),
dependent on the correlation Cunphys(t ). For clarity, in the
following we will omit the dependence of this superoperator
on its arguments and replace it with Funphys instead. In this
setting, we can write

〈Ôξ (t ; Nstoch)〉 = 1

Nstoch

Nstoch∑
j=1

TrS′
[
Ô(t )T e−i

∫ t
0 dτξ j (τ )ŝ×(τ )eF (t,ŝ,Cunphys(t ))ρS (0)

]

= 1

Nstoch

Nstoch∑
j=1

∞∑
n=0

(−i)n

n!

∫ t

0
dt1 · · ·

∫ t

0
dtnξ

j (t1) · · · ξ j (tn)TrS′ [Ô(t )T s×(t1) · · · s×(tn)eFunphysρS′ (0)], (F4)

and the corresponding version for its square as

〈Ôξ (t ; Nstoch)〉2 =
∑
n,m

(−i)n+m

n! m!

∫ t

0
dt1 · · ·

∫ t

0
dtn

∫ t

0
dτ1 · · ·

∫ t

0
dτm

1

N2
stoch

∑
j,k

ξ j (t1) · · · ξ j (tn)ξ k (τ1) · · · ξ k (τm)

×TrS′ [Ô(t )T s×(t1) · · · s×(tn)eFunphysρS′ (0)]TrS′ [Ô(t )T s×(τ1) · · · s×(τm)eFunphysρS′ (0)]. (F5)

Using these expression, a bound for the stochastic error can be written as

�2
stochO(t ) � E[〈Oξ (t ; Nstoch)〉2] − E2[〈Oξ (t )〉]

=
∑
n,m

(−i)n+m

n! m!

∫ t

0
dt1 · · ·

∫ t

0
dtn

∫ t

0
dτ1 · · ·

∫ t

0
dτm

× 1

N2
stoch

∑
j,k

{E[ξ j (t1) · · · ξ j (tn)ξ k (τ1) · · · ξ k (τn)] − E[ξ j (t1) · · · ξ j (tn)]E[ξ k (τ1) · · · ξ k (τn)]}

×TrS′ [Ô(t )T s×(t1) · · · s×(tn)eFunphysρS′ (0)]TrS′ [Ô(t )T s×(τ1) · · · s×(τm)eFunphysρS′ (0)]. (F6)

We can now note that the contractions which do not mix the indexes j and k will simply reproduce, and simplify with, the product
of the expectation. The nontrivial part for the expression above is in fact the one containing at least one contraction between the
indexes j and k. Since ξ j and ξ k are independent for j 	= 0, such a contraction will impose a δ jk . This is simply a manifestation
of the law of large number which leads to

�2
stochO(t ) � 1

Nstoch

∑
n,m

(−i)n+m

n! m!

∫ t

0
dt1 · · ·

∫ t

0
dtn

∫ t

0
dτ1 · · ·

∫ t

0
dτmẼ[ξ (t1) · · · ξ (tn)ξ (τ1) · · · ξ (τn)]

×TrS′ [Ô(t )T s×(t1) · · · s×(tn)eFunphysρS′ (0)]TrS′ [Ô(t )T s×(τ1) · · · s×(τm)eFunphysρS′ (0)], (F7)

where we used the symbol Ẽ to signify the constraint that at least one of the contractions is between the fields indexed by the
times t and τ . We now are going to adopt rather drastic bounds. The first consists in taking the absolute value and then write∣∣�2

stochO(t )
∣∣ � 1

Nstoch

∑
n,m

1

n! m!

∫ t

0
dt1 · · ·

∫ t

0
dtn

∫ t

0
dτ1 · · ·

∫ t

0
dτm|Ẽ[ξ (t1) · · · ξ (tn)ξ (τ1) · · · ξ (τn)]|

× |TrS′ [Ô(t )T s×(t1) · · · s×(tn)eFunphysρS′ (0)]||TrS′ [Ô(t )T s×(τ1) · · · s×(τm)eFunphysρS′ (0)]|. (F8)

We can now take some time to analyze different terms in Eq. (F8). For example, using the upper bound in Eq. (F23) proven in
Appendix F 1, we can write

|TrS′ [Ô(t )T s×(t1) · · · s×(tn)eFunphysρS′ (0)]| � ||Ô||∞||2ŝ||n∞ exp

[
2||ŝ||∞

∫ t

0
du

∫ u

−u
dτ |Cunphys(τ )|

]
. (F9)

We now consider the term

|Ẽ[ξ (t1) · · · ξ (tn)ξ (τ1) · · · ξ (τm)]|, (F10)

which can always be expressed as the product of (n + m)/2 correlations Cclass (when n + m is even, otherwise it is zero)
thanks to Wick’s theorem. For simplicity, we will further loose the bound by overcounting all the possible contractions
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(n + m − 1)!! − (n − 1)!!(m − 1)!!, i.e., not imposing the constraint defined by the symbol Ẽ. In this context, we can further
note that

(n + m − 1)!! � 2(n+m)/2

√
π

√
	(n + 1)	(m + 1). (F11)

Using these considerations, together with Eq. (F9) and Eq. (F11), into Eq. (F8), we then obtain

∣∣�2
stochO(t )

∣∣ � ||Ô||2∞e4||ŝ||∞
∫ t

0 du
∫ u
−u dτ |Cunphys(τ )|

Nstoch

∑̃
n,m

1

n! m!

[
2(n+m)/2

√
π

√
	(n + 1)	(m + 1) − (n − 1)!!(m − 1)!!

]

×
[∫ t

0
dt1

∫ t

0
dt2|Cclass(t2, t1)|

](n+m)/2

||2ŝ||n∞||2ŝ||m∞, (F12)

where
∑̃

n,m indicates that we should only sum terms such that n + m is even. We can obtain a more readable, but considerably
less tight, bound by replacing this sum with an unconstrained one and neglecting the negative term to write

∣∣�2
stochO(t )

∣∣ � ||Ô||2∞e4||ŝ||∞
∫ t

0 du
∫ u
−u dτ |Cunphys(τ )|

√
πNstoch

∑
n,m

||2ŝ||n+m
∞ 2(n+m)/2

√
n!

√
m!

[∫ t

0
dt1

∫ t

0
dt2|Cclass(t2, t1)|

](n+m)/2

= ||Ô||2∞e4||ŝ||∞
∫ t

0 du
∫ u
−u dτ |Cunphys(τ )|

√
πNstoch

G2
class(t ), (F13)

where we defined

Gclass(t ) ≡
∑

n

2n||ŝ||n∞√
n!

[
2
∫ t

0
dt1

∫ t

0
dt2|Cclass(t2, t1)|

]n/2

=
∑

n

2n||ŝ||n∞√
n!

[
2
∫ t

0
du

∫ u

−u
dt |Cclass(t )|

]n/2

.

(F14)

It is interesting to note that the stochastic error depends
not only on the classical part of the correlation [which in turn
defines the stochastic drive ξ (t )] but also on the unphysical
part of the correlation of the model. In other words, the task
of averaging over a stochastic-driven pseudomode model can
become more difficult whenever its complementary quantum
part has unphysical parameters. In fact, this corresponds to
the intuition that a stochastic unphysical dynamics is more
difficult to average out than a physical one because it can
explore larger, nonphysically constrained spaces.

1. An upper bound

This technical subsection (following the general gist of Ap-
pendix E), explicitly derives the upper bound used in Eq. (F9)
for the term

Am = |TrS′ [ÔS (t )T s×(t1) · · · s×(tm)eFunphysρS′ (0)]|. (F15)

Here Funph(t ) is the influence superoperator dependent on the
correlation Cunph(t ), which explicitly reads

Funph(t ) =
∫ t

0
dt ′′

∫ t ′′

0
dt ′

4∑
j=1

Cj (t
′′, t ′)ˆ̂s j, (F16)

where Cj (t ′′, t ′) = Cunph(t ′′ − t ′)(δ j1 + δ j2) − Cunph(t ′ −
t ′′)(δ j3 + δ j4) and where

ˆ̂s1(t ′′, t ′)[·] = −S2(t ′′)S1(t ′)[·] = s(t ′)[·]s(t ′′)
ˆ̂s2(t ′′, t ′)[·] = −S2(t ′)S2(t ′′)[·] = −[·]s(t ′′)s(t ′)
ˆ̂s3(t ′′, t ′)[·] = S1(t ′)S1(t ′′)[·] = s(t ′)s(t ′′)[·]
ˆ̂s4(t ′′, t ′)[·] = S1(t ′′)S2(t ′)[·] = −s(t ′′)[·]s(t ′), (F17)

with S1(t )[·] = s(t )·, S2(t )[·] = − · s(t ). It is worth noting
that the time-ordering operator acts on the superoperators S .
With these definitions, we can write

Am =
∣∣∣∣∣

∞∑
n=0

1

n!
TrS′ÔS (t )T s×(t1) · · · s×(tm)Fn

unphρ(0)

∣∣∣∣∣
�

∞∑
n=0

1

n!
|TrS′ÔS (t )T s×(t1) · · · s×(tm)Fn

unphρ(0)|,

(F18)

by the triangle inequality. We can proceed as

Am �
∞∑

n=0

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)∣∣TrS′ÔS (t )Cjn (t ′′
n , t ′

n) · · ·Cj1 (t ′′
1 , t ′

1)T {[s×(t1) · · · s×(tm)]ˆ̂s jn (t ′′
n , t ′

n) · · · ˆ̂s j1 (t ′′
1 , t ′

1)ρ(0)}∣∣
=

∞∑
n=1

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)∣∣Cjn (t ′′
n , t ′

n)
∣∣ · · · ∣∣Cj1 (t ′′

1 , t ′
1)
∣∣∣∣TrS′ÔS (t )T {[s×(t1) · · · s×(tm)]ˆ̂s jn (t ′′

n , t ′
n) · · · ˆ̂s j1 (t ′′

1 , t ′
1)ρ(0)}∣∣.

(F19)
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Repeating the considerations done in Appendix E, we can now use the fact that, for bounded operators A and B, |Tr[AB]| �
||A||∞||B||1, see Ref. [170] and which can also be considered as a special case of the Hölder inequality. In this case, since
the operators evolve unitarily within a physical dynamics, this results in assuming the boundness for the observable O and the
coupling operator s despite S′ being a very large space. We then obtain

Am �
∞∑

n=0

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)∣∣Cjn (t ′′
n , t ′

n)
∣∣ · · · ∣∣Cj1 (t ′′

1 , t ′
1)
∣∣ ||ÔS||∞||T [s×(t1) · · · s×(tm)]ˆ̂s jn (t ′′

n , t ′
n) · · · ˆ̂s j1 (t ′′

1 , t ′
1)ρ(0)||1,

(F20)

where we further used the fact the unitarity of the norm. An upper bound for the last term in the previous expression can be
computed by iteratively using the Hölder inequality ||AB||1 � ||A||∞||B||1. In fact, we can explicitly write the operators ˆ̂s in
terms of the superoperators S which define them. These superoperators will then be ordered by time-ordering operator. We can
then write the superoperators ˆ̂s in terms of operators s(τ ) (for some τ ∈ [0, t]) acting either on the left or the right of ρ(0). We
can then use the Hölder inequality 2n times to write everything in terms of a product of quantities ||s(τ )||∞ and ||ρ(0)||1. By
further using the unitarity of the norm, such a product is going to be a time-independent bound leading to

Am � ||2s||m∞
∞∑

n=0

1

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)∣∣Cjn (t ′′
n , t ′

n)
∣∣ · · · ∣∣Cj1 (t ′′

1 , t ′
1)
∣∣ ||ÔS||∞ ||s||2n

∞

= ||2s||m∞
∞∑

n=0

||ÔS||∞ ||s||2n
∞

n!

∑
j1,··· jn

(
n∏

k=1

∫ t

0
dt ′′

k

∫ t ′′
k

0
dt ′

k

)∣∣Cjn (t ′′
n , t ′

n)
∣∣ · · · ∣∣Cj1 (t ′′

1 , t ′
1)
∣∣, (F21)

where we used ||ρ(0)||1 = 1. We also have that∑
j

|Cj (t
′′, t ′′)| = 2[|Cunph(t ′′ − t ′)| + |Cunph(t ′ − t ′′)|],

(F22)

which leads to

Am � ||2s||m∞||ÔS (t )||∞

× exp

[
2||s||∞

∫ t

0
du

∫ u

−u
dτ |Cunph(τ )|

]
, (F23)

which is the expression used in Eq. (F9).

APPENDIX G: USEFUL DEFINITIONS AND IDENTITIES

Here we present identities which are used in other sections.

1. Definitions and identities on norms

The vector space Cn can be endowed with norms such that

||�v||n =
(∑

i

|vi|n
)1/n

||�v||∞ = max(|vi|), (G1)

where �v ∈ Cn. All the norms above are equivalent for a
finite-dimensional vector space. We consider, specifically, the
following properties:

||�v||1 =
√√√√(∑

i

|vi|
)2

�
√

n
∑

i

v2
i = √

n ||�v||2, (G2)

where to derive the second step, we used the Holder inequality

|xT y| � ||x||p||y||q, (G3)

for 1/p + 1/q = 1 (the case p = q = 2 being the Cauchy-
Schwartz inequality). We have(

n∑
i=1

xi

)2

=
(

n∑
i=1

1 · xi

)2

= |xT �1|2

� ||x||22||�1||22 = n2
n∑

i=1

x2
i , (G4)

where �1 is a reference vector whose entries are all ones. We
note that this identity has been used in Eq. (G2). We also have

||�v||∞ = max |vi| �
∑

i

|v|i = ||�v||1, (G5)

which, together with Eq. (G2) implies

||�v||∞ �
√

n||�v||2. (G6)

The definitions above regarding the vector spaces Cn can be
used to define induced norms in the vector space of operators
A : Cq → Cp as

||A||n = sup
�x 	=0

||A�x||n
||�x||n = sup

||�x||n=1
||A�x||n. (G7)

Note that it is possible to extend the previous definition to
n → ∞. Note that, when ||�x||n 	= 0, the previous definition
implies

||A||n||�x||n � ||A�x||n. (G8)

It is interesting to explicitly compute ||A||2. To do this, we
notice that A can be represented by a p × q matrix Apq which,
using singular value decomposition, can be written as Ap×q =
Vp×p�p×qUq×q in terms of unitary matrices V and U and an
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upper diagonal �. We have

||A||2 = sup
||�x||2=1

||A�x||2 = sup
||�x||2=1

||V �(U �x)||2

= sup
||�x′||2=1

||V ��x′||2 = (max σA) sup
||�x′||2=1

||V �x′||2

= max σA, (G9)

where σA are the singular values of the matrix A (square root
of the eigenvalues of A†A).

Note that other choices of norms for operators are possible
such as the Shatten norms,

||A||Sn = [tr(|A|n)]1/n
, (G10)

where |A| =
√

A†A. For future reference, we also write here
the following identities:

A∑
n=0

rn = 1 − rA+1

1 − r
,

∞∑
n=A

rn = rA

1 − r
, (G11)

with |r| < 1 for the second identity to hold.

2. Least squares

We want to define the best estimate for a vector �c ∈ Cq

such that its image under a linear mapping T : Cq �→ Cp is

as close as possible to a given vector �f ∈ Cp under the || ·
||2 norm. Equivalently, we want to find the vector �c which
minimizes the function

L = ||T �c − �f ||22. (G12)

We have

L = (T �c − �f )†(T �c − �f )

=
∑
i, j,k

(T ∗
i j c

∗
j − f ∗

i )(Tikck − fi ), (G13)

which allows us to write

∂cα
L =

∑
i, j

(T ∗
i j c

∗
j − f ∗

i )Tiα

∂c∗
α
L =

∑
i,k

T ∗
iα (Tikck − fi ). (G14)

The equations ∂cα
L = 0 and ∂c∗

α
L = 0 are equivalent and lead

to

T †T �c = T † �f . (G15)

When T †T is invertible, this leads to

�c = (T †T )−1T † �f , (G16)

which is the explicit expression for the vector �c minimizing
the least-squares distance L in Eq. (G12).
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