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High-dimensional two-photon quantum controlled phase-flip gate
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High-dimensional quantum systems have been used to reveal interesting fundamental physics and to improve
information capacity and noise resilience in quantum information processing. However, it remains a significant
challenge to realize universal two-photon quantum gates in high dimensions with high success probability. Here,
by considering an ion-cavity QED system, we theoretically propose, to the best of our knowledge, the first high-
dimensional, deterministic, and universal two-photon quantum gate. By using an optical cavity embedded with a
single trapped 40Ca+ ion, we achieve a high average fidelity larger than 98% for a quantum controlled phase-flip
gate in four-dimensional space, spanned by photonic spin angular momenta and orbital angular momenta. Our
proposed system can be an essential building block for high-dimensional quantum information processing, and
also provides a platform for studying high-dimensional cavity QED.
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I. INTRODUCTION

Cavity and waveguide quantum electrodynamics (QED)
systems have demonstrated the powerful capability of control-
ling transport of photons by exploiting the strong interaction
between atoms and photons in an optical cavity or a
waveguide [1], both theoretically [2–18] and experimentally
[19–22], but are limited thus far to low-dimensional cases.
Theoretically, high-dimensional photonic quantum systems
also exhibit exotic fundamental physics regarding quantum
nonlocality and Bell’s theorem [23–25]. These are superior
to low-dimensional systems, in improving the capacity of in-
formation processing and noise resilience [23–31], generation
and manipulation of highly nonclassical states [32–34], clock
synchronization [35], and quantum metrology [36]. These
can also significantly simplify quantum circuit designs and
enhance efficiencies in quantum computation [37].

The orbital angular momentum (OAM) [38,39] is a useful
resource for exploring high-dimensional quantum informa-
tion techniques. By using bulk optics, such as spiral phase
plates and parity sorters, a high-dimensional single-photon
gate in an OAM-encoded basis was conducted experimen-
tally [40]. By fully utilizing the radial and azimuthal degrees
of freedom of the photonic OAM, an equivalent two-qubit
controlled-NOT quantum gate has been demonstrated with a
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single photon encoded in four-dimensional (4D) OAM space
in a recent experiment [41]. Although two-photon quantum
gates between qubits were intensively studied, the counterpart
in high-dimensional space is still elusive. We note that a
multidimensional photon-photon gate has also been realized
by using auxiliary photons and linear devices [42], but it is
probabilistic.

A recent experiment has demonstrated that the 40Ca+ ion
has electrical quadrupole transitions and displays transition
selection rules critically dependent on the spin angular mo-
mentum (SAM) and OAM of photons [43].

Inspired by this work [43] and the scattering two-photon
gate protocol [2], we theoretically propose a scheme based on
the ion-cavity QED system to perform a two-photon quantum
controlled phase-flip gate (CPF) with high fidelity by encod-
ing two single photons in a 4D space spanned by photonic
SAMs and OAMs.

This paper is organized as follows. In Sec. II, we introduce
the key idea and the basic system of our quantum gate and
also present the quantum model for it. We explain a high-
dimensional basis encoding in the 40Ca+ ion, the scattering
phase, and the six-step construction of the gate. Section III
shows numerical simulation results of our gate performance,
and evaluates in details the noise contributions to the gate infi-
delities. Section IV discusses the practical system parameters
for its experimental implementation. In the end, we conclude
our findings in Sec. V.

II. SYSTEM AND MODEL

The ion-cavity QED system is depicted in Fig. 1(a). A
single 40Ca+ ion is trapped in the center of a single-sided
Fabry-Pérot cavity. Because the ion-cavity interaction is de-
pendent on the SAM and OAM of the cavity mode, the
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FIG. 1. Schematics of the high-dimensional two-photon quan-
tum controlled phase-flip gate. (a) Two single-photon pulses p1

and p2 carrying SAM and OAM act as 4D qudits. They enter the
Fabry-Pérot cavity successively as two separate spatiotemporal
modes via an optical circulator. The photons are subsequently
reflected from the cavity containing a single 40Ca+ ion and ac-
quire a correlated π phase shift. (b) Involved energy levels of the
40Ca+ ion. Transitions are driven by photons in different combi-
nations of SAM and OAM. Transitions between the state |↑〉 and
the excited magnetic sublevels {|m′

J = −3/2〉, |m′
J = −1/2〉, |m′

J =
1/2〉, |m′

J = 3/2〉, |m′
J = 5/2〉}, are far off resonance and negligi-

ble. (c) Quantum circuit showing steps performing the proposed
quantum gate.

system needs to be described by high-dimensional cavity
QED (cQED). We focus on the electric quadrupole transition
of 40Ca+ [43]∣∣42S1/2, mJ = ± 1

2

〉 ↔ ∣∣32D5/2, m′
J = ± 1

2 ,± 3
2 ,± 5

2

〉
. (1)

We denote the two ground states∣∣42S1/2, mJ = ± 1
2

〉 ≡ {|↑〉 , |↓〉}, (2)

with frequency {ω↓, ω↑}, and the six excited magnetic sub-
levels as

|m′
J〉 ≡ |iion〉, (3)

with m′
J ∈ {−5/2,−3/2,−1/2, 1/2, 3/2, 5/2} correspond-

ing to i ∈ {1ion, 2ion, 3ion, 4ion, 5ion, 6ion}, and ωi for the
frequency of excited state |iion〉, respectively.

We assume that the cavity modes with differential SAM
(s = ±1, 0) and topological charges (� = ±1, 0) have a de-
generate resonance frequency ωc. We neglect the intrinsic loss
of the cavity. The cavity decay rate due to the input-output
mirror is denoted by κ . The two-input single-photon pulses
with frequency ωp are encoded in their SAM and OAM, de-
noted as |s, �〉, and are successively injected to and reflected
off the cavity. The input and reflected photons are separated
via an optical circulator.

A. Transition selection rules

According to the transition selection rules of the 40Ca+ ion,
the quadrupole transitions require �mJ = ±2,±1, 0. Thus,
there are 2 × 5 = 10 transitions involved. The ground state
|↓〉 couples to | j′ion〉, with j′ = 1ion, 2ion, 3ion, 4ion, 5ion and
|↑〉 couples to | j′′ion〉 with j′′ = 2ion, 3ion, 4ion, 5ion, 6ion, see
Fig. 1(b). The coupling strength for the transition |↓〉 ↔ | j′ion〉
(|↑〉 ↔ | j′ion〉) are g j′ (g′

j′′ ). These are slightly different from
each other with the multiplication of Clebsch-Gordan coef-
ficients. We distinguish them in numerical simulations [44].
Here, we assume they are identical and equal to g.

To select the |↓〉 ↔ |5ion〉 transition for our quantum gate,
we apply a magnetic field B to the ion. The six magnetic
sublevels are linearly separated in energy due to the Zeeman
effect. The level energy is shifted by

δE = μBgDm′
JB, (4)

where gD = 6/5 is the Landé g factor for the D state. The
ground states |↓〉 and |↑〉 also split by

δE = μBgSmJB, (5)

where gS = 2 is the g factor of the S state, μB is the Bohr
magneton, and μB = 14 MHz mT−1. We denote the detun-
ing between the adjacent excited magnetic sublevels as � =
gDμBB, and the detuning of the |↓〉 ↔ |5ion〉 and |↑〉 ↔ |6ion〉
transitions as

δ�mJ =2 = (gS − gD)μBB. (6)

According to angular momentum conservation, transitions
happen only when the photons carry a total angular momen-
tum of

L ≡ s + � = {−2,−1, 0, 1, 2}. (7)

But the �mJ = 0 transition involves degenerate two-cavity
modes with L = 0 because the ion can absorb a photon in
either state | + 1,−1〉 or | − 1,+1〉. Thus, we consider the
remaining four transitions and photon states encoded in the
basis of the 4D SAM-OAM hybrid space

{|�〉} = {| − 2〉, | − 1〉, | + 1〉, | + 2〉}. (8)

With this chiral 4D cQED system, we can create quantum
phase correlations between two single photons reflected off
the Fabry-Pérot cavity and thus perform a two-photon quan-
tum phase-flip gate.
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B. High-dimensional two-photon quantum controlled
phase-flip gate

The key idea of performing the high-dimensional two-
photon quantum CPF gate is depicted with the quantum circuit
in Fig. 1(c). To perform the gate, we need to first induce
a π phase shift, conditioned on the ion spin state |↓〉, to
a specific high-dimensional state of the first single-photon
pulse p1. The following step repeats the first for a second
single-photon pulse p2. Then, the ion is measured to project
the three-body entangling state of the two single photons and
the ion to a two-photon state. In doing so, the quantum CPF
gate is accomplished for two traveling single photons.

The crucial step for the quantum CPF gate is to create a
π phase difference between a selective photonic state with
the high-dimensional cQED system and other states. This is
achieved with a controlled-Z̃d gate with dimension d = 4.
In practice, we have four cavity modes, corresponding to
|s = ±1, � = ±1〉cav.

In experiments, the splitting of cavity modes with different
� is typically very small, and can be further suppressed around
tens of kHz with appropriate choices of mirror curvatures
[45]. Thus, without loss of generality, we assume that these
cavity modes are degenerate. We also consider that only the
ionic |↓〉 ↔ |5ion〉 transition is resonant with the cavity modes
and the incident photon, i.e.,

ωp = ωc = ω5 − ω↓ ≡ ω5↓. (9)

This resonance condition between two successive photons and
the cavity mode is critical to the success of the gate operation.
Significant detunings between the input photons and the ionic
transitions can result in a decline in the gate fidelity. Other
transitions related to the |↓〉 and |↑〉 states are off resonance
with the cavity. This selective driving can be obtained by
shifting the ionic states with a magnetic field B.

C. Reflection coefficients for the input photon states

The ion in state |↑〉 decouples from the cavity. In this
case, the reflection coefficients for all input photonic states
are equal and can be obtained by solving the Heisenberg
equation of motion [46] as

r0(ωp) = i(ωp − ωc) − κ

i(ωp − ωc) + κ
. (10)

The phase shift on the input photon is shown by the red dashed
curves in Fig. 2(a). For an input single photon resonant with
the cavity ωp = ωc, we obtain r0(ωc) = −1; i.e., all reflected
photonic states acquire a global π phase. If the ion is in state
|↓〉, the photonic states | − 2〉, | − 1〉, |1〉 still acquire a phase
π , according to Eq. (10).

In contrast, the photonic state |+ 2〉 couples to the cavity
mode with s = 1 and � = 1. This cavity mode strongly inter-
acts with the ionic transition |↓〉 ↔ |5ion〉. Thus, the reflection
coefficient of the photons is now given by

r(ωp) = (ωp − ωc + iκ )(ωp − ω5↓ + iγ ) − g2

(ωp − ωc − iκ )(ωp − ω5↓ + iγ ) − g2
. (11)

The reflected photon is subject to a phase shift φL(ωp). It is
essentially different from the aforementioned detuned case

FIG. 2. Numerical simulation (blue markers) and theoretical re-
sults (red dashed curves) of scattered photon phase shifts for the state
|2〉 versus detuning ωp − ωc. (a) The ion is initially prepared in the
state other than |↓〉 (only show one case for example here). (b) The
ion is in the |↓〉 state. Other parameters are g/κ = 3 and �/κ = 10,
which are experimentally accessible [21].

due to the vacuum Rabi splitting of the cQED system. It is
defined as

φL(ωp) = Arg[r(ωp)], (12)

when the ion is populated in the state |↓〉. Otherwise, it is
calculated as

φL(ωp) = Arg[r0(ωp)]. (13)

This analytical phase shift is shown by the red dashed curves
in Fig. 2(b). Under on-resonance condition, we have

r(ωc) = (g2 + κγ )/(g2 − κγ ) ≈ 1. (14)

Here, we utilize the strong coupling condition g2 
 κγ . Ne-
glecting the global phase π , the state |2〉 equivalently acquires
a π phase shift with respect to all other photonic states.

Thus, if we prepare the initial ion state in a coherent super-
position (|↓〉 − |↑〉)/

√
2 state, after reflected off the cQED

system, only the state |↓〉 |2〉 is subject to a relative π phase
shift. This is exactly the high-dimensional ion-photon CPF
gate Uap = (14, 0; 0, Z̃4), with 14 representing the 4D identity
matrix, and

Z̃4 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠, (15)

in the basis {|− 2〉 , |− 1〉 , |1〉 , |2〉}.
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D. Gate operations

Now we define the notation of the initial state for the gate
operation. We consider that both input photons are resonant
with the cavity so that ωp = ωc. The initial state of the two-
photon pulses can be written as the product of superposition
states

|p1, p2〉in =
∑
M,N

αMβN |M, N〉, (16)

where M, N ∈ {−2,−1, 1, 2}, ∫ ∑
M |αM (t )|2dt = 1, and∫ ∑

N |βN (t )|2dt = 1. This state is defined by the 16 complex
time-dependent functions αM (t )βN (t ). For simplicity, we use
the compact notation [21]

|m, n〉 ≡ αMβN |M, N〉 (17)

with m, n ∈ {−2,−1, 1, 2} The two-photon state can then be
rewritten in terms of the resonant |2〉 state as

|p1 p2〉in =
∑
i, j �=2

|i, j〉 +
∑
k �=2

(|k, 2〉 + |2, k〉) + |2, 2〉. (18)

Considering the initial ionic state |↓〉, the initial system state
is then

|ψ〉in = |↓〉
⎛
⎝∑

i, j �=2

|i, j〉 +
∑
k �=2

(|k, 2〉 + |2, k〉) + |2, 2〉
⎞
⎠.

(19)

Next, we discuss the detailed construction of the high-
dimensional two-photon CPF gate according to the quantum
circuit schematically shown in Fig. 1(c).

The ion is first prepared in the state (|↓〉 − |↑〉)/
√

2 with
a π/2 microwave pulse [47]. The second step is to reflect
the first photon state |p1〉 off the cavity. This equivalently
performs a 4D controlled-Z̃4 operation between the ion and
the first photon. By neglecting the global phase π , it flips the
sign of all states related to state |↓, p1 = 2〉. The resultant
collective state then becomes

|ψ〉2 = 1√
2

|↓〉
⎛
⎝∑

i, j �=2

|i, j〉 +
∑
k �=2

(|k, 2〉 − |2, k〉) − |2, 2〉
⎞
⎠

− 1√
2

|↑〉
⎛
⎝∑

i, j �=2

|i, j〉 +
∑
k �=2

(|k, 2〉+|2, k〉)+|2, 2〉
⎞
⎠.

(20)

The third step rotates the ion on the two ionic ground
states with a −π/2 mw pulse. The fourth step performs the
controlled-Z̃4 gate operation on the ion and the second photon.
It converts the system state to

|ψ〉4 = |↑〉
⎛
⎝∑

k �=2

|k, 2〉 + |2, 2〉
⎞
⎠

+ |↓〉
⎛
⎝∑

i, j �=2

|i, j〉 −
∑
k �=2

|k, 2〉
⎞
⎠. (21)

Finally, we again apply a π/2 rotation to the ionic ground
states and measure them. Upon detecting the ion in the |↓〉

state, an additional π phase is imprinted on the state related
to the |p1 = 2〉, resulting in a π phase flip on the states
(
∑

k �=2 |2, k〉 + |2, 2〉), while the photonic state remains un-
changed upon detection of |↑〉. Experimentally, this operation
can be realized with a fast temporal switch, which separates
the fluorescence photon from the ion and the working photons
and directs the former to the single-photon detector [21]. To
operate repeatedly, we can wait for enough long time so that
the ion returns to its initial state. Subsequently, the photon
pulses are separate in time. After measurement, we obtain the
final two-photon state

|p1 p2〉f =
∑
i, j �=2

|i, j〉 −
∑
k �=2

|k, 2〉 +
∑
k �=2

|2, k〉 + |2, 2〉

≡ |ψideal〉. (22)

Without including the global phase, the final state is indepen-
dent of the outcome of the ionic state detection. Hence, the
total circuit acts as a high-dimensional two-photon CPF gate
with a truth table describing a gate operation:∑

i, j �=2

|i, j〉 →
∑
i, j �=2

|i, j〉,
∑
k �=2

|k, 2〉 → −
∑
k �=2

|k, 2〉,
∑
k �=2

|2, k〉 →
∑
k �=2

|2, k〉, |2, 2〉 → |2, 2〉. (23)

III. EXACT NUMERICAL RESULTS

A. Simulation method

Above we have presented an analytical description for
the ideal gate’s operation. To evaluate the gate performance,
we numerically simulate the actual operations with a full
Hamiltonian for comparison with the aforementioned
theoretical analysis. The full Hamiltonian for the system
is given by H = Hc-i + Hph + Hint:

Hc-i = Hi + Hg + Hd,

Hph =
∑
p=1,2

∑
L

∫
dωp ωp b†

p,L(ωp)bp,L(ωp),

Hint =
∑
p=1,2

∑
L

∫
dωp κp (a†

Lbp,L(ωp) + b†
p,L(ωp)aL ),

(24)

where Hc-i characterizes the cavity-ion interactions, Hph

describes the propagating photon pulses in the frequency
domain, and Hint describes the cavity-photon interactions.
The annihilation operator for the cavity mode supporting
total angular momentum L is denoted as aL, and bp,L(ω)
is the annihilation operator for the pth photonic field with
total angular momentum L in the frequency domain. Here, we
change to a reference frame rotating with the cavity frequency
ωc. We set ω↓ as the reference energy. The ionic Hamiltonian
in the rotating frame is

Hi =
6∑

j=1

� jσ j j + �↑σ↑↑, (25)

with operators σ j j ≡ | jion〉〈 jion| and σ↑↑ ≡ |↑〉 〈↑|. The
detuning between the jth excited magnetic sublevels and the
cavity frequency is represented as � j . The coupling between
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each cavity mode aL, L ∈ {−2,−1, 1, 2}, and the ions is
described by

Hg = ((g1a−2σ1↓ + g′
2a−2σ2↑ + g2a−1σ2↓ + g′

3a−1σ3↑
+ g4a1σ4↓ + g′

5a1σ5↑ + g5a2σ5↓ + g′
6a2σ6↑) + H.c.).

(26)

Here, the operator σ j′↓ ≡ | j′ion〉 〈↓| denotes the transition
|↓〉 ↔ | j′ion〉 and σ j′′↑ for |↑〉 ↔ | j′′ion〉. The driving
Hamiltonian between two ground states is

Hd = �(t )(σ↓↑ + H.c.), (27)

with microwave pulses �(t ) ≡ �0w(t ), where w(t ) is the
time-dependent box function (See Appendix B).

The coupling between the cavity and different frequency
modes of the photons κp is assumed to be uniform. The
nonuniform coupling κp(ω) introduces Lamb shifts to the
dressed cavity resonance frequency. However, the Lamb
shifts are very small, typically ≈0.01κ , and thus can be ne-
glected, validating our assumptions [48,49]. By expanding the
Hamiltonian with the basis vectors Eq. (A5) in the low-
excitation subspace, we obtain the discrete form of the
Hamiltonian Eq. (A6) (For more details, see Appendix A).

In simulations, we consider single-photon pulses

|ξ 〉 =
∑

L

∫
dωp f (ωp)b†

p,L(ωp)|0〉, (28)

where the normalized pulse-shape function f (ωp) is Gaussian,

f (ωp) = 1

σω

√
π

exp

[
− (ωp − ωc)2

σ 2
ω

]
, (29)

with a central frequency ωc and a bandwidth σω for the inputs.
These photons maximize the frequency bandwidth provided
by the cavity σω = κ .

The analytic results for the phase shift of the reflected
photons are confirmed by the full-Hamiltonian numerical
simulations, see Fig. 2, validating our idea for the high-
dimensional two-photon quantum CPF gate.

Now we clarify the evaluation of the output state and the
gate-related fidelities. For an arbitrary input state |ψph, in〉 ≡
|p1, p2〉in composed of two temporally separate identical
single-photon pulses, we can solve the Schrödinger equa-
tion and obtain the final photonic state after gate operations.
Only considering the |↓〉 ↔ |5ion〉 transition in calculations,
we obtain an ideal output |ψideal〉. By including all 10 possible
transitions, the photon-photon gate output is |ψph, out〉. Then,
the fidelity of the output state is evaluated as

F (|p1, p2〉in) = |〈ψideal|ψph, out〉|2. (30)

To evaluate the performance of the quantum gate, we input
N = 16 × 16 = 256 initial two-photon states |p1 p2〉in from
the complete basis set G:

G =
{ |0〉 + |1〉√

2
,
|0〉 + i|1〉√

2
,
|0〉 + |2〉√

2
,
|0〉 + i|2〉√

2
, |0〉, |1〉,

|0〉 + |3〉√
2

,
|0〉 + i|3〉√

2
,
|1〉 + |2〉√

2
,
|1〉 + i|2〉√

2
, |2〉, |3〉,

|1〉 + |3〉√
2

,
|1〉 + i|3〉√

2
,
|2〉 + |3〉√

2
,
|2〉 + i|3〉√

2

}⊗2

. (31)

FIG. 3. Truth table of the 4D two-photon CPF gate. (a) Ideal
truth table. (b) Truth table with �/g = 10 in full-Hamiltonian simu-
lations. The coupling strength and the Rabi frequency are g/κ = 3,

�0/κ = 5.

We then calculate the corresponding output states. The gate
fidelity can be evaluated as

FG = 1

N

∑
|k〉∈G

F (|k〉), (32)

where F (|k〉) is the state fidelity for the input two-photon state
|k〉. Detailed simulation methods are provided in Appendix B.

B. Truth table

Below we use the truth table to evaluate the performance
of our 4D two-photon quantum gate. We input all 16 pure
photonic states |i, j〉in, (i, j ∈ {−2,−1, 1, 2}, to the system.
Figure 3(a) shows the truth table for an ideal case. Then,
we numerically calculate the final output state according to
the quantum circuit with the full Hamiltonian in Eq. (24) for
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TABLE I. Error contributions to the overall gate fidelity.

Source of gate errors Error

Pulse shape distortion 1.4 × 10−2

Transition to unwanted states 0.2 × 10−2

Cavity mode splitting <1 × 10−3

Fluctuation of coupling strength g <1 × 10−3

Fluctuations of control microwave pulse <1 × 10−3

Lamb shifts caused by inhomogeneous coupling <1 × 10−5

each input state. When all 10 transitions are included in the
simulations, the truth table for a large detuning of � = 10g is
displayed in Fig. 3(b). It is very close to the ideal case. For
each input state |i, j〉in, we calculate the output state and the
corresponding state fidelity F (|i, j〉in). The average fidelity
evaluated as 1/16

∑
|i, j〉in

F (|i, j〉in) is high, reaching 99%,
indicating a high success probability [5,21,50]

C. Noise analysis

1. Fluctuating coupling strengths

Next, we analyze the effects of different error contribu-
tions. The main results are summarized in Table I. First, the
trapped ions may not be well fixed within the cavity and
experience a fluctuating coupling strength depending on its
position g(r). The gate fidelity, however, is robust against
perturbations of the coupling strength g. This is because the
vacuum Rabi splitting of two dressed modes protects the scat-
tering phase factor from deviations, even if g is reduced to a
value comparable to the cavity decay κ . The contribution of a
fluctuating coupling strength g to the overall gate infidelity is
of the order 10−4 [2,51].

2. Detuning-coupling ratio

The influence of the detuning-coupling ratio �/g on the
gate fidelity is studied in Fig. 4(a). As the ratio �/g in-
creases from a vanishing value, the gate fidelity first increases
rapidly and then becomes saturated. For a well-accessible
ratio � = 2g, the fidelity is already high, about FG ≈ 95%,
approaching saturation. When � = 10g, the fidelity slightly
improves to 98.4%. By using an experimentally available
coupling strength g ≈ 2π × 6 MHz [52] and a magnetic field

B > 35 mT, we can obtain δ�mJ=2 ≈ 2π × 62.42 MHz >

10g. Therefore, we can perform a high-dimensional quantum
gate with the ion-cavity system.

3. Shapes and bandwidth of the incident photons

Another major source of error arises from the distor-
tion of photon pulses. In the most general case, the input
single-photon state can be represented by Eq. (28). After a
sufficiently long time t 
 κ−1, the output photon acquires a
phase shift:

|ξ (t )〉 =
∑

L

∫
dωp f (ωp)e−iωpt eiφL (ωp)b†

p,L(ωp)|0〉. (33)

The first phase term exp(−iωpt ) represents the free evolution
of the photon, while the second term exp[iφL(ωp)] introduces
a frequency- and angular-momentum-dependent scattering
phase to the photon. Consequently, photon pulses with width
σω experience inhomogeneous scattering phases, deviating
from the average scattering phase:

φL(ωp) ≈ φL(ωc) + φ′
L(ωc)(ωp − ωc) + φ′′

L (ωc)

2
(ωp − ωc)2.

(34)

To investigate this distortion effect, we compare the real
scattered photon |ξ (t )〉 = exp(−iHt )|ξ (0)〉 with an ideal pho-
ton that experiences no distortion, only delay, and acquires an
average scattering phase φL(ωp) ≈ φL(ωc). The final average
fidelity against pulse width is depicted in Fig. 4(b). We ob-
serve that the gate infidelity (1 − FG) increases monotonically
with the ratio σω/κ . Hence, to achieve low distortion and a
good match of the scattering phase, the scattered photons must
have a bandwidth σω narrower than the cavity dissipation κ .

Furthermore, narrow-band photons generated from the
trapped ions often deviate from Gaussian profiles. Thus, we
explore the effect of pulse shapes on the gate fidelity, as
shown in Fig. 4(b). We compare Gaussian photons with Sech-
and Lorentzian-shaped photons, described by the following
profiles:

fS(ωp) =
√

π

2σω

Sech

[
π (ωp − ωc)

σω

]
(35)

FIG. 4. (a) Gate infidelity 1 − FG versus the detuning-coupling ratio �/g. (b) Gate infidelity 1 − FG versus the incident pulse width σω/κ .
We consider the three profiles of incident photons: Sech, Gaussian, and Lorentzian. (c) Average gate infidelity 1 − F̄ versus Gaussian deviations
in the control-pulse area. The coupling strength and Rabi frequency in simulations are g/κ = 3 and �0/κ = 5, respectively.
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for the Sech profile, and

fL(ωp) = σω

π
[
(ωp − ωc)2 + σ 2

ω

] (36)

for the Lorentzian profile. We find that the exact pulse shape
minimally affects gate transformations. The performance of
the Gaussian pulse is marginally the same as the Lorentzian
pulse when σω = κ , with 1 − FG = 1.4% for the Gaussian
profile, and 1.14% for the Lorentzian profile. However, the
fidelities for the Sech and Lorentzian pulses are higher than
the Gaussian pulse, with infidelities 1 − FG < 1% when σω >

0.75κ . Thus, near-unity fidelity of gate operation can be
reached only if the narrow photon condition σω � κ is sat-
isfied. For a Gaussian wavepacket with bandwidth σω = 0.2κ

and �/g = 10, the gate fidelity reaches FG = 99.7%. The gate
fidelity for the Lorentzian pulses under the same condition is
FG > 99.9%, surpassing the lower threshold of quantum error
correction [53].

4. Noise of microwave control pulses

In practical operations, experimental imperfections can
cause degradation of the gate operation. Here, the degradation
mainly originates from the deviation of the control microwave
pulses from the π/2 pulse area. We investigate this pulse-area
deviation on the average gate infidelity

1 − F̄ = 1 − 1

Nr

Nr∑
r=1

FG,r . (37)

In each gate, we assume that the microwave pulses with ampli-
tude �0 are subject to Gaussian noise with standard deviation
ζ . We investigate the gate fidelity averaged over Nr = 50
random gate operations versus the deviation strength ζ , see
Fig. 4(c). Even for a deviation up to ζ � 0.25, the average gate
infidelity still remains relatively small, 1 − F̄ < 4%. In the
state-of-the-art experiment, the microwave control of trapped-
ion qubits can be made very precise, with infidelities 1 − F̄ ≈
10−4 − 10−6, which correspond to very low ζ < 0.05 [54,55].
Thus, the noise induced by the microwave control pulse has
a small effect on the average gate infidelities. Clearly, this
quantum gate is robust against the control imperfection.

IV. EXPERIMENTAL IMPLEMENTATION

Our system can be implemented by strongly coupling a
trapped 40Ca+ ion to a one-side Fabry-Pérot microcavity, as
demonstrated in Refs. [52,56–58]. One of the cavity mirrors
has a relatively low reflectivity (99.92%) as the output/input
port, the other mirror has a relatively high reflectivity of
99.99%. Assuming a 600 µm-long cavity, the total decay rate
is estimated to be about κ = 2π × 2 MHz. Photon pulses
with bandwidth σω = κ = 2π × 2 MHz are sequentially re-
flected off the cavity [21,59,60].

Although it is still experimentally challenging, OAM pho-
tons with narrow bandwidth can be generated by integrating
a high-finesse cavity with the trapped-ion system [52,56].
The decay rate of the fiber cavity can already reach κ0 =
2π × 4 MHz and the cooperativity C = 3.2 was obtained in
[52]. Under these conditions, the gate fidelity achieves FG =
95.7%. We believe that a higher gate fidelity can be achieved
by using a cavity with a decay rate smaller than 2π × 2 MHz,
which is experimentally accessible [61].

Another promising approach involves using cavity-
enhanced optical nonlinear processes to generate single OAM
photons with very narrow bandwidths [62–65]. For instance,
photon pairs in the Hermite-Gaussian mode in a cavity-
enhanced type-I PPKPT crystal have been generated, with
bandwidth around 11.4 MHz [64]. This photon bandwidth is
strongly dependent on the cavity quality factor, and thus can
be further reduced with a higher-finesse cavity. Moreover,
heralded OAM photon pairs are generated using four-wave
mixing in an atomic ensemble [65]. The bandwidth of the
generated OAM photon pairs is about 20 MHz. After success-
ful generation, these OAM photons can be sent to our gate to
perform high-dimensional quantum operations.

The transition of the E2 line 42S1/2 ↔ 32D5/2 has a very
long lifetime ≈1.045 s. Thus, the spontaneous decay rate γ

can be neglected. Using the experimentally available coupling
strength g = 2π × 6 MHz [43,52,56–58,66] for the �m = 2
transition, the average gate fidelity can reach F̄ > 98% when
B > 35 mT and pulse noise deviation ζ < 0.1. This perfor-
mance is sufficiently high for many quantum information
processing tasks.

V. DISCUSSION

In summary, we have proposed the first deterministic high-
dimensional two-photon quantum CPF gate by using the
SAM- and OAM-dependent coupling between a 40Ca+ and
an optical cavity. The proposed gate achieves a high fidelity
larger than 98% and is robust against control imperfections.

Polarization and path encoding have achieved great success
in quantum information processing because these promise
an efficient way to generate high-dimensional entanglement,
and their compatibility with integrated optics [24,27,42,67].
However, performing high-dimensional quantum gates on
path-entangled qudits remains an open challenge because
it requires nonlocal quantum operations on qudits [68,69].
The SAM-OAM hybrid encoding has distinct advantages
as it allows for the generation of photons with very large
OAM modes [70]. This feature significantly expands the
encoding Hilbert space and can enhance its information
capacity [23–25]. Additionally, local operations between pho-
tonic qudits can be performed via interactions with the ions,
avoiding the need for performing nonlocal operations. Fur-
thermore, the SAM-OAM encoding offers unique applications
in high-dimensional quantum information processing, such as
creating a noise-resilient, frame-invariant encoding of quan-
tum key distribution [71,72].

Our entangling gate can be extended to generate high-
dimensional multiphoton entangled states, like cluster states
and GHZ states, by adding auxiliary photons [46,73]. More-
over, it can also make multinode quantum networks when
the reflected photons are routed by polarization beam split-
ters. Therefore, this work opens an avenue for investigating
fundamental physics of cQED systems in high-dimensional
space and developing novel photonic quantum information
techniques.
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APPENDIX A: HAMILTONIAN DISCRETIZATION

To simulate the Hamiltonian Eq. (24) in the main text,
we need to discretize bp,L(ω) by introducing a finite but
small frequency interval δω = 2σω/N between two adjacent
modes. To ensure that there is no significant change of results
after the discretization, the frequency interval δω should be
chosen much smaller than the inverse of the gate operation
time T ≈ 1µs. The pulse width is chosen to be σω = κ =
2 MHz [21]. We used N = 200 for our simulation, which
suffices because δω � T −1. Then, the single-photon state

becomes

|ξp〉 =
∑
L,m

fmb†
p,L,m|0〉. (A1)

Here, the pulse-profile function is also discretized to

fm(ωm) = 1

σω

√
π

exp
[ − (ωm − ωc)2

/
σ 2

ω

]
. (A2)

The initial two-photon state is then represented as

|ξp1 p2〉init =
∑
L,m

αL fmb†
p1,L,m|0〉 ⊗

∑
L′,m′

βL′ fm′b†
p2,L′,m′ |0〉

≡
∑
L,L′

αLβL′ |L, L′〉 ≡ |p1, p2〉init, (A3)

where αL, βL′ are normalized complex numbers. The equa-
tion Eq. (A3) corresponds to the compact notation |p1 p2〉init

of the two-photon state in the main text.
After discretizing the basis states, we discretize the

Hamiltonians Hph and Hint. Replacing
∫

ωdω → ∑
m ωm, we

have

Hph =
2∑

p=1

∑
L∈{−2,−1,1,2}

N∑
m=1

ωmb†
p,L,mbp,L,m,

Hint =
∑
p,L,m

κp(a†
Lbp,L,m + H.c.). (A4)

The ion-cavity system operates at cryogenic temperatures,
thus thermal excitations can be neglected. Also, there is only
one photon interacting with the ion-cavity system at each
time, so we can study the Hamiltonian Eq. (24) in the subspace
spanned by

|�(t )〉 =
∑

L

a†
L(c1,L(t ) |0L,↓, 0p1 , 0p2〉 + c2,L(t ) |0L,↑, 0p1 , 0p2〉)

+
5∑

j′=1, j′ �=3

p j′ (t ) σ j′,↓ |0L,↓, 0p1 , 0p2〉 +
6∑

j′′=2, j′′ �=4

q j′′ (t ) σ j′′,↑ |0L,↑, 0p1 , 0p2〉

+
∑
m,L

b†
p1,m,L (ψp1,m,L,↓(t ) |0L,↓, 0p1 , 0p2〉 + ψp1,m,L,↑(t ) |0L,↑, 0p1 , 0p2〉)

+
∑
m,L

b†
p2,m,L (φp2,m,L,↓(t ) |0L,↓, 0p1 , 0p2〉 + φp2,m,L,↑(t ) |0L,↑, 0p1 , 0p2〉). (A5)

In this subspace, the Hamiltonian Eq. (24) is represented as a matrix form

H =

⎛
⎜⎜⎝

Hc-i Hint1 Hint2

HT
int1 Hph1 0

HT
int2 0 Hph2

⎞
⎟⎟⎠. (A6)

We now describe each Hamiltonian block in detail. The Hamiltonian in the upper left corner Hc-i is a 16 × 16 matrix describing
the ion-cavity interaction in the single-excitation subspace. Here we label |ncav,L, jion, 0p1 , 0p2〉 ≡ |nL, j〉 for convenience. The
ion-cavity Hamiltonian Hc-i can be expressed as a combination of four block matrices

Hc-i =
(

A B
B† D

)
, (A7)
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where the block matrix A is

A =

|1−2,↓〉 |1−2,↑〉 |1−1,↓〉 |1−1,↑〉 |11,↓〉 |11,↑〉 |12,↓〉 |12,↑〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

0 �(t ) 0 0 0 0 0 0 〈1−2,↓ |
�(t ) ω5↑ 0 0 0 0 0 0 〈1−2,↑ |

0 0 0 �(t ) 0 0 0 0 〈1−1,↓ |
0 0 �(t ) ω5↑ 0 0 0 0 〈1−1,↑ |
0 0 0 0 0 �(t ) 0 0 〈11,↓ |
0 0 0 0 �(t ) ω5↑ 0 0 〈11,↑ |
0 0 0 0 0 0 0 �(t ) 〈12,↓ |
0 0 0 0 0 0 �(t ) ω5↑ 〈12,↑ |

, (A8)

the block D is

D =

|0−2, 1〉 |0−2, 2〉 |0−1, 2〉 |0−1, 3〉 |01, 4〉 |01, 5〉 |02, 5〉 |02, 6〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ω15 0 0 0 0 0 0 0 〈0−2, 1|
0 ω25 0 0 0 0 0 0 〈0−2, 2|
0 0 ω25 0 0 0 0 0 〈0−1, 2|
0 0 0 ω35 0 0 0 0 〈0−1, 3|
0 0 0 0 ω45 0 0 0 〈01, 4|
0 0 0 0 0 0 0 0 〈01, 5|
0 0 0 0 0 0 0 0 〈02, 5|
0 0 0 0 0 0 0 ω65 〈02, 6|

, (A9)

and the block B is

B =

|0−2, 1〉 |0−2, 2〉 |0−1, 2〉 |0−1, 3〉 |01, 4〉 |01, 5〉 |02, 5〉 |02, 6〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

g1 0 0 0 0 0 0 0 〈1−2,↓ |
0 g′

2 0 0 0 0 0 0 〈1−2,↑ |
0 0 g2 0 0 0 0 0 〈1−1,↓ |
0 0 0 g′

3 0 0 0 0 〈1−1,↑ |
0 0 0 0 g4 0 0 0 〈11,↓ |
0 0 0 0 0 g′

5 0 0 〈11,↑ |
0 0 0 0 0 0 g5 0 〈12,↓ |
0 0 0 0 0 0 0 g6 〈12,↑ |

. (A10)

The single-photon Hamiltonian Hph1 can be written as a 8N × 8N matrix. For simplicity, we encode the basis vectors as

|1〉 = |0−2,↓,−2p1 , 0p2〉, |2〉 = |0−2,↑,−2p1 , 0p2〉,
|3〉 = |0−1,↓,−1p1 , 0p2〉, |4〉 = |0−1,↑,−1p1 , 0p2〉,
|5〉 = |01,↓, 1p1 , 0p2〉, |6〉 = |01,↑, 1p1 , 0p2〉,
|7〉 = |02,↓, 2p1 , 0p2〉, |8〉 = |02,↑, 2p1 , 0p2〉. (A11)

The symbol 0 denotes the N × N zero matrix, ω̃ describes the N × N discretized eigenfrequency matrix for one single photon,
and �̃ is the driving term. These two matrices ω̃ and �̃ can be written in the form

ω̃ =

⎛
⎝

⎞
⎠ω1

. . .

ωN

, �̃ =

⎛
⎝

⎞
⎠�(t )

. . .

�(t )
. (A12)
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We can then write the matrix elements explicitly as

Hph1 =

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ω̃ �̃ 0 0 0 0 0 0 〈1|
�̃ ω̃ 0 0 0 0 0 0 〈2|
0 0 ω̃ �̃ 0 0 0 0 〈3|
0 0 �̃ ω̃ 0 0 0 0 〈4|
0 0 0 0 ω̃ �̃ 0 0 〈5|
0 0 0 0 �̃ ω̃ 0 0 〈6|
0 0 0 0 0 0 ω̃ �̃ 〈7|
0 0 0 0 0 0 �̃ ω̃ 〈8|

. (A13)

The Hamiltonian of the second photon Hph2 is of the same structure. For the interaction Hamiltonian of the first photon and
ion-cavity system Hint1, the matrix elements are

Hint1 =

|1〉 |2〉 |3〉 |4〉 |5〉 |6〉 |7〉 |8〉⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

κ̃1(t ) κ̃1(t ) 0 0 0 0 0 0 〈1−2,↓, 0p1 , 0p2 |
κ̃1(t ) κ̃1(t ) 0 0 0 0 0 0 〈1−2,↑, 0p1 , 0p2 |

0 0 κ̃1(t ) κ̃1(t ) 0 0 0 0 〈1−1,↓, 0p1 , 0p2 |
0 0 κ̃1(t ) κ̃1(t ) 0 0 0 0 〈1−1,↑, 0p1 , 0p2 |
0 0 0 0 κ̃1(t ) κ̃1(t ) 0 0 〈11,↓, 0p1 , 0p2 |
0 0 0 0 κ̃1(t ) κ̃1(t ) 0 0 〈11,↑, 0p1 , 0p2 |
0 0 0 0 0 0 κ̃1(t ) κ̃1(t ) 〈12,↓, 0p1 , 0p2 |
0 0 0 0 0 0 κ̃1(t ) κ̃1(t ) 〈12,↑, 0p1 , 0p2 |
0 0 0 0 0 0 0 0 〈0−2, 1, 0p1 , 0p2 |
...

...
...

...
...

...
...

... 〈0−2, 2, 0p1 , 0p2 |
〈0−1, 2, 0p1 , 0p2 |
〈0−1, 3, 0p1 , 0p2 |
〈01, 4, 0p1 , 0p2 |
〈01, 5, 0p1 , 0p2 |

...
...

...
...

...
...

...
... 〈02, 5, 0p1 , 0p2 |

0 0 0 0 0 0 0 0 〈02, 6, 0p1 , 0p2 |

. (A14)

Here, κ̃1(t ) = [κ1(t ), κ1(t ) · · · κ1(t )] is a 1 × N row vector. The Hamiltonian of the second photon Hint2 has the same form
as Hint1, and only requires the substitution of the corresponding elements κ1(t ) → κ2(t ) and basis vectors |0L, j, Lp1 , 0p2〉 →
|0L, j, 0p1 , Lp2〉.

APPENDIX B: SIMULATION METHOD

Our goal is to simulate the final output two-photon state
after gate operations. To achieve this goal, we use the Trotter-
Suzuki formula, which is a more computationally-efficient
approach to directly compute the time evolution of the given
initial two-photon state |ξp1 p2 (T )〉 = U (T )|ξp1 p2 (0)〉. Here,
U (T ) = exp(iHT ) is the time-evolution operator satisfying
U (t, t0) = U (t, ti )U (ti, t0). Thus, we can expand the time-
evolution operator as U (T ) = U (T, T − �t )U (T − �t, T −
2�t ) · · ·U (�t, 0). The Trotter-Suzuki formula states that for
a general Hamiltonian H = H1 + H2, with two noncommut-
ing parts [H1, H2] �= 0, the time-evolution operator can be
approximated as

U (�t ) = exp(−iH�t ) = exp(−iH1�t ) exp(−iH2�t )

× exp(−i(�t )2[H1, H2])

≈ exp(−iH1�t ) exp(−iH2�t ). (B1)

For an infinitesimal time interval �t , the error is negligible.
More generally, for H = ∑NH

α=1 Hα , the time-evolution opera-
tor can be expressed as

U (T ) =
N∏

n=1

NH∏
α=1

exp(−iHαT/n). (B2)

We use this general Trotter-Suzuki formula Eq. (B2) to
simulate the high-dimensional two-photon CPF gate oper-
ations according to Fig. 1(c) in the main text. The only
time-dependent elements in the Hamiltonian Eq. (A6) are
�(t ), κ1(t ), and κ2(t ). These are the control parameters
for different gate operations in Fig. 1(c) in the main text.
To be more precise, we divide the time interval [0, T ]
into six parts ti, i = 1, 2, 3, 4, 5, 6, where [ti−1, ti] denotes
the time interval of the ith gate operation. The con-
trolled microwave pulse �(t ) = �0w(t ) is a segmented
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function

�(t ) =

⎧⎪⎨
⎪⎩

�0 0 � t � t1 & t4 � t � t5
�0 exp(iπ ) t2 � t � t3
0 others

. (B3)

Here, t1 = t5 − t4 = π/(4�0), which ensures that the pulse
area is π/2. The piecewise function �(t ) corresponds to
π/2,−π/2, π/2 rotations to the ion shown in Fig. 1(c) in the
main text. To simulate the two ion-photon controlled-Z̃4 gate,
we set the two coupling strengths κ1(t ) and κ2(t ) as

κ1(t ) =
{
κ1 t1 � t � t2
0 others

,

κ2(t ) =
{
κ2 t3 � t � t4
0 others

. (B4)

Here, we set t2 − t1 = t4 − t3 = 10κ−1 in order to ensure that
the photons are completely scattered off the cavity. To sum-
marize, the simulation procedure is as follows

(i) Prepare the initial state |�(t = 0)〉 = |0cav,↓〉 ⊗
|ξp1 p2 (0)〉 according to Eq. (A3).

(ii) Time-evolve the system |�(T )〉 =
exp(−iH (�, κ1, κ2)(t )T ) |�(0)〉.

(iii) Measure the ionic state and trace over the cavity
degrees of freedom to obtain the final two-photon state
|ξp1 p2 (T )〉.

(iv) Compare the simulated |ξp1 p2 (T )〉 with the ideal two-
photon state |ξ̃p1 p2 (T )〉, which experiences no distortion, and
acquires an average scattering phase φL(ωp) ≈ φL(ωc) in each
scattering process. Then, the output-state fidelity is obtained
via F = |〈ξp1 p2 (T )|ξ̃p1 p2 (T )〉|2.

(v) Repeat the above four procedures for N input states
and compute the gate fidelity FG = 1

N

∑N
n=1 Fn.

APPENDIX C: DISCUSSION ON THE COUPLING
STRENGTH g

For ionic states {|S, mS〉, |D, mD〉}, the cavity couples with
ionic states with different coupling strengths. We assume
g j′=3 = g j′′=4 ≡ g and the vacuum coupling strength is g0.
The coupling strength for the transition |S, mS〉 ↔ |D, mD〉 is
g j′ = C(JSmS, 2q; JDmD)g0, where C(JSmS, 2q; JDmD) is the
Clebsch-Gordan coefficient given by a Wigner 3-j symbol [44]

C(JSmS, 2q; JDmD)

= (−1)JS−2+mD
√

2JD + 1

(
JS 2 JD

mS q −mD

)
. (C1)

We estimate that g j′=1 = 1/
√

6g, g j′=2 = √
2/3g, g j′=4 =√

3/2g, g j′=5 = √
3/5g, and g j′ = g′

j′′ in our simulation.
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