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Exponential sensitivity revival of noisy non-Hermitian quantum sensing with two-photon drives
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Unique properties of multimode non-Hermitian lattice dynamics can be utilized to construct exponentially
sensitive sensors. However, the impact of noise remains unclear, which may severely degrade their sensitivity.
We analytically characterize and highlight the impact of loss and gain on the sensitivity revival and stability
of non-Hermitian sensors. Defying the general belief that the superiority of quantum sensing will vanish in
the presence of loss, we find that by proactively tuning the loss, the exponential sensitivity can be surprisingly
regained when the sensing dynamics is stable. Furthermore, we prove that gain is crucial to fully revive the
ideally exponential sensitivity and to ensure the stability of non-Hermitian sensing by making a balanced loss
and gain. Our paper opens a way to significantly enhance the sensitivity by proactively tuning the loss and gain,
which may promote future quantum sensing and quantum engineering.
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I. INTRODUCTION

High-precision sensors are ubiquitous and vitally impor-
tant in both science and technology. Due to the high suscep-
tibility of the complex energy spectra of non-Hermitian (NH)
Hamiltonians in response to small perturbations, NH sensors
have been attracting increasing attention. Various unconven-
tional properties of NH systems have been studied to theo-
retically propose high sensitivity sensors [1–15], and some
architectures have already been experimentally demonstrated
[16–18]. In this paper, we investigate the sensitivity revival
and stability of NH quantum sensing in noisy environments.

The pursuit of high sensitivity is a fundamental objective
in developing sensing technology. Recent progress has shown
that the intriguing degeneracy property of NH systems can
be employed to enhance the sensitivity of sensors operating
at finely tuned exceptional points (EPs), where the coalesced
eigenenergies have a diverging susceptibility to small per-
turbations [19–26]. However, to assess the performance of
sensors based on EPs, we should also take into account of
the effect of the coalesced eigenstates, which may counteract
the diverging susceptibility of eigenenergies [20,21]. Other
distinct properties of NH systems have also been harnessed
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to enhance the sensitivity of NH sensors, which do not nec-
essarily work at EPs. As studied in Ref. [31], nonreciprocity
[27–32] can be identified as a powerful resource for sensing,
since it allows one to exceed the fundamental bounds con-
straining conventional, reciprocal sensors [31]. Remarkably, a
class of sensors having exponential sensitivity have been the-
oretically proposed [33–37]. The drastic enhancements rely
upon the strikingly anomalous sensitivity to the boundary
conditions of NH systems. Furthermore, the implication of
optimizing controllable parameters in attaining an exponential
enhancement was investigated in Refs. [17,34].

In practical applications, the existence of noise is unavoid-
able, which may severely degrade the performance, such as
the stability and sensitivity of NH sensors. Since most sensing
schemes are measured at equilibrium states, a stable sensing
dynamics is a fundamental requirement for achieving these
high-precision sensors. Loss noise has an essential impact
on the attainable sensitivity in quantum sensing. For con-
ventional sensors, it is well-known that by using quantum
strategies, the precision can be scaled as 1/N in terms of
the number N of quantum resources for noiseless processes
[38–43]. However, it has been demonstrated in Refs. [44–47]
that even a weak loss noise can quickly degrade the precision
from 1/N to 1/

√
N , independently of the initial state of the

probes and even regardless of the use of adaptive feedback.
This is very frustrating and it has been a general belief that
advantages of quantum sensing will soon vanish in the pres-
ence of loss. Gain has been demonstrated to be a necessary
ingredient to have an enhanced signal power in NH sensing
[31], whereas too much gain may result in an unstable sensing
dynamics.
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Since manipulating loss and gain has become feasible
[48–52], it is of vital importance to understand the impact of
loss and gain on the sensitivity and stability of NH sensing.
Different from existing results, in this paper, our aim is to find
out whether we can achieve exponentially enhanced and stable
NH quantum sensing by proactively tuning the loss and gain.
In general, the loss and gain bring about two effects for the
NH sensing dynamics: one is the diffusion noise that may be
further amplified during the sensing and then severely degrade
the sensitivity; the other is the dissipative drift that may lead
to system instability.

We find conditions to fully recover the ideally noiseless
sensitivity for noisy NH quantum sensing in both the per-
turbation regime and the case beyond linear response. To
be specific, we discover that the coupling of loss plays a
pivotal role in obtaining exponential sensitivity revival in
our setting. Counterintuitively, we find that by proactively
tuning the loss couplings properly, an exponential signal-
to-noise ratio (SNR) can be surprisingly regained when the
sensing dynamics is stable. We further point out that balanced
gain and loss is vital to fully recover the ideally noiseless
sensitivity and to ensure the stability of the NH sensing
dynamics. We also analyze the robustness of the sensitivity
under the designed loss and gain and provide a guideline
on how to realize our strategy in practice through concrete
examples.

II. SETUP OF NOISY NH SENSORS

In the absence of noise, an exponentially enhanced quan-
tum sensing scheme was proposed in Ref. [33] based on
NH lattice dynamics. In this paper, we adopt the model in
Ref. [33], and then further investigate the impact of loss and
gain on the sensitivity and stability of NH sensing.

A generic multimode noisy NH setup is illustrated in
Fig. 1(a). Consider a one-dimensional array of N bosonic
modes, and let âi denote the mode annihilation operator on
the ith site. Our aim is to detect a small perturbation ε of a
perturbation Hamiltonian εV̂ , where V̂ is a system operator. In
Figs. 1(a) and 1(b), V̂ = â†

N âN , and thus the aim in this case is
to estimate a small change ε in the resonance frequency of the
last site. A general measurement strategy is to couple mode
1 to an input-output waveguide with rate κ , and then inject a
coherent drive with amplitude β at the resonant frequency of
the mode. The reflected signal is measured by a homodyne
detection [56] to infer ε [31–34]. In the rotating frame set
by the mode resonance frequency, the system Hamiltonian
reads

ĤS =
N−1∑
n=1

(iwâ†
n+1ân + i�â†

n+1â†
n + H.c.), (1)

where ω depicts the hopping between neighbor modes and �

describes the nearest-neighbor two-photon drive [33,57]. We
assume that w > � > 0. Up to now, this is the ideal model
utilized in Ref. [33].

To fully account for the noise, we couple the modes to
NZ loss and NY gain baths, which are mutually independent.
Without loss of generality, the coupling rates are described
by the real matrices Z and Y , respectively. The element

. . .

. . .

X chain

P chainhomodyne

⋯⋯
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FIG. 1. A general multimode noisy NH setup. (a) The setup
consists of a one-dimensional chain of N bosonic modes. The pa-
rameter to be detected is ε, which represents a small change in the
resonance frequency of the last site. To detect ε, a coherent drive
β accompanied by quantum noise B̂in is injected into the chain at
mode 1 through an input-output waveguide with coupling rate κ . The
reflected field is measured by homodyne detection. The modes are
coupled via nearest-neighbor hopping w and coherent two-photon
drive �. To account for the noise, couplings between the modes and
the loss and gain baths (blue solid and red dashed) are included. The
coupling rate between the ith mode and the jth loss (gain) bath is
described by Zi j (Yi j). (b) The nonreciprocal amplification between
modes can be described by two N-site NH Hatano-Nelson chains
[53–55] with effective hopping amplitude J and amplification factor
A. For the top (bottom) X (P) chain, hopping to the right is a factor
of e2A larger (smaller) than hopping to the left. The last modes of the
two chains are coupled due to the presence of small tunneling with
amplitude ε, allowing the signal to be transmitted between the two
chains

Zi j (Yi j) of the loss (gain) coupling matrix Z (Y ) describes
the coupling rate between the ith mode and the jth loss
(gain) bath. Using the standard input-output theory [58],
the total effective Hamiltonian (see Appendix A for details)
reads

Ĥ [ε] = ĤS + εV̂ + Ĥκ + ĤG + ĤL − i
√

κ (â†
1β − H.c.),

(2)

where Ĥκ describes the damping of mode 1 due to the
coupling with the waveguide, while ĤG and ĤL describe
the damping owing to the coupling with the gain and loss
baths, respectively. The Heisenberg-Langevin equations (see
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Appendix A for details) read

˙̂an = wân−1 − wân+1 + �â†
n+1 + �â†

n−1 − iε[ân, V̂ ]

+
NY∑
j=1

N∑
i=1

Yn, jYi, j âi −
NZ∑
j=1

N∑
i=1

Zn, jZi, j âi

− κ

2
â1δn,1 − √

κ (B̂in + β )δn,1

−
√

2

⎛
⎝ NY∑

j=1

Yn, jĈ
in†
j +

NZ∑
j=1

Zn, j D̂
in
j

⎞
⎠. (3)

Here, B̂in denotes the quantum noise entering from the
waveguide, and Ĉ in

j (D̂in
j ) are quantum noises arising from

the gain (loss) process of the baths. To ensure Markovian
dynamics, B̂in, Ĉ in

j , and D̂in
j are assumed to be quantum

Gaussian white noise satisfying

〈Q(t )Q†(t ′)〉 = (n̄th
Q + 1

)
δ(t − t ′),

〈Q†(t )Q(t ′)〉 = n̄th
Q δ(t − t ′), (4)

〈Q(t )Q(t ′)〉 = 0,

where Q ∈ {B̂in, Ĉ in
j , D̂in

j }, and there are no correlations
between different noise operators. Here, n̄th is the number of
thermal quanta in the input field. Hereafter, we focus on the
vacuum noise, namely, n̄th

Q = 0.
To see clearly how the signal is amplified, we turn to

the picture of canonical quadratures x̂n and p̂n related with
ân via ân = (x̂n + i p̂n)/

√
2. Define quadrature vectors X̂ =

(x̂1, x̂2, . . . , x̂N )� and P̂ = ( p̂1, p̂2, . . . , p̂N )�, respectively.
Then the Heisenberg-Langevin equations (see Appendix A for
details) turn to⎛
⎝ ˙̂X

˙̂P

⎞
⎠ =

(
hX + YY � − ZZ� 0

0 hP + YY � − ZZ�

)(
X̂

P̂

)

− iε

(
[X̂, V̂ ]

[P̂, V̂ ]

)
− �β − �̂in. (5)

Here, hX and hP represent the ideally noiseless dynamical
matrices of the quadratures X̂ and P̂, respectively, which read

hX = −κ

2
|1〉〈1| +

N−1∑
n=1

(JeA|n + 1〉〈n| − Je−A|n〉〈n + 1|),

hP = −κ

2
|1〉〈1| +

N−1∑
n=1

(Je−A|n + 1〉〈n| − JeA|n〉〈n + 1|),

(6)

where J = √
w2 − �2 denotes the hopping amplitude and the

amplification factor A is defined via

e2A = w + �

w − �
. (7)

Due to hX and hP , we can find that for the top X (bottom P)
chain in Fig. 1(b), hopping to the right is a factor of e2A larger
(smaller) than hopping to the left. The commutators with the

perturbation Hamiltonian V̂ are defined in an elementwise
way, e.g.,

[X̂, V̂ ] = ([x̂1, V̂ ], · · · , [x̂N , V̂ ])�. (8)

The coherent input vector

�β = (
√

2κβ, 0, 0, . . . , 0)�, (9)

and �̂in denotes the quantum noise vector (see Appendix A
for details), whose elements are described by

�̂in
i = √

κX̂ inδi,1 +
√

2

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠,

�̂in
i+N = √

κP̂inδi,1 +
√

2

⎛
⎝−

NY∑
j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠
(10)

for i ∈ {1, 2, . . . , N}, with B̂in = X̂ in+iP̂in√
2

, Ĉ in
j = Ĉ in

j,X +iĈ in
j,P√

2
, and

D̂in
j = D̂in

j,X +iD̂in
j,P√

2
.

III. SNR PER PHOTON

We now introduce the figure of merit that evaluates the
performance of sensing.

From the input-output theory, the output field B̂out(t ) reads

B̂out(t ) = β + B̂in(t ) + √
κ â1(t ). (11)

To estimate the perturbation ε, we should integrate the output
field over a long time period [0, τ ]. The corresponding tem-
poral mode is defined by

B̂ = 1√
τ

∫ τ

0
B̂out(t )dt, (12)

which is a canonical bosonic annihilation operator. For the
perturbation εV̂ = εâ†

N âN , if the drive |β| 	 1, then the op-
timal observable is

M̂ = 1√
2i

(B̂ − B̂†), (13)

which is the p̂ quadrature of the temporal output field B̂ [33].
Let us first consider the case when ε is infinitesimal. Define

the signal power in terms of the optimal observable M̂ as

S (ε) = |〈M̂〉ε − 〈M̂〉0|2, (14)

and the noise power as

N (ε) = 〈M̂2〉ε − 〈M̂〉2
ε . (15)

Here, the average 〈·〉ε represents the mean with the steady
state whose dynamics is governed by Ĥ [ε]. Since ε is in-
finitesimal, we can only consider the zeroth order of ε for the
noise power. The SNR is defined by

SNR(ε) = S (ε)

N (0)
. (16)

Since the dominant term of the SNR(ε) with respect to ε

is the same as that of the quantum Fisher information when
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|β| 	 1 [31–34], below we use the SNR(ε) to evaluate the
performance of NH sensors.

To make a fair comparison, the resources used in the mea-
surement should be constrained. Following Refs. [33,34] we
take the SNR per photon denoted by

SNR(ε) = SNR(ε)

n̄tot(0)
(17)

as the figure of merit, where the total average photon number
is

n̄tot(0) =
∑

n

〈â†
nân〉0 


∑
n

〈â†
n〉0〈ân〉0 (18)

in the large-drive limit. Following the same reasoning as that
of the noise power, only the zeroth order of n̄tot in ε is con-
cerned.

IV. SNR OF NH SENSORS

We now derive the SNR for NH sensors. In the follow-
ing, we take the perturbation Hamiltonian V̂ in Eq. (5) as
V̂ = â†

N âN , and let the number of modes N be odd. When N
is even, the scaling of SNR in terms of A and N is the same as
that when N is odd, except that the corresponding preceding
multiplicative factors are different.

We derive the signal power S , noise power N , and the total
average photon number n̄tot in the presence of loss and gain as
follows (see Appendix B for details):

S (ε) = 2ε2κ2β2τ · ∣∣QX
N,1

∣∣2 · ∣∣QP
1,N

∣∣2,
N (0) = 1

2

(
1 + κQP

1,1

)2 + κ[QP (YY � + ZZ�)QP�
]1,1,

n̄tot(0) = κβ2[QX�
QX]1,1, (19)

with information matrices

QX = (hX + YY � − ZZ�)−1 (20)

and

QP = (hP + YY � − ZZ�)−1. (21)

In the absence of loss and gain, namely, Z = 0 and Y = 0,
it was demonstrated in Ref. [33] that SNR(ε) ∝ exp{2A(N −
1)}, implying that an exponentially enhanced sensitivity can
be obtained. The key idea is illustrated in Fig. 1(b). To detect
ε, a real drive is injected at site 1 to excite the X chain, then the
wave packet propagates rightwards. When it reaches the last
site, the signal power grows with a factor of e2A(N−1). Then
at site N , due to the perturbation, the wave packet scatters off
the boundary and changes to p̂N quadrature. It then propagates
backwards to site 1 amplifying the signal. If the p̂ quadrature
of the output field is measured, then a total amplification factor
e4A(N−1) of the signal power is obtained. While for the total
average photon number, it amplifies only along one traversal
of the chain obtaining an amplification factor of e2A(N−1). As
for the noise power, for the ideal case of zero internal loss and
gain, the noise power is the same as that of the input field,
namely, N (0) = 1/2. Combining this with the amplification
factors of the signal power and the total average photon num-
ber, the exponentially large factor e2A(N−1) of SNR(ε) can be
explained.

In the presence of loss and gain, owing to the nonreciprocal
dynamics governed by (QX)−1 and (QP )−1, the noise power
may be significantly amplified in general, which satisfies N ∝
e2A(N−1), causing the vanishing of the ideally exponential sen-
sitivity. In addition, from Eq. (5), the net noise matrix (YY � −
ZZ�) may cause the sensing dynamics to become unstable.
This implies that noise may lead to at least one of the eigen-
values of the noisy NH dynamical matrix (hX + YY � − ZZ�)
or (hP + YY � − ZZ�) to sit in the right half plane. In this
case, Eq. (5) has no steady state and the expectation of some
of the canonical quadratures will diverge to infinity, which is
physically meaningless [59] (see Appendix C for details).

V. TUNING LOSS AND GAIN

We now present how to achieve exponentially enhanced
and stable NH sensing by proactively tuning the loss and
gain.

It is widely believed that introducing gain is necessary
to address the sensitivity revival problem in the presence of
loss. However, we find that the loss Z plays a pivotal role.
To this end, consider the case where there is only loss and
no gain, namely, Y = 0. Given the dynamical matrix hP , we
prove that if the loss couplings Z can be tuned such that all its
columns lie in the linear space spanned by the second column
hP·2 through the last column hP·N of the dynamical matrix hP ,
then we can revive the ideally exponential sensitivity when
the sensing dynamics is stable (see Appendix D for details).
In short, to attain an exponential sensitivity, the loss coupling
matrix Z should meet

(C1): col(Z ) ⊆ Span{hP·2, hP·3, . . . , hP·N }.

This finding is remarkable as it defies the general belief that
even a weak loss will quickly lead to vanishing of quantum
advantages in high-precision sensing.

To illustrate the above, consider a simplest three-site
NH sensor. In the ideal case, namely, there is no loss and
gain, the ideal SNR ∝ e4A as depicted by the black line in
Fig. 2(a). Assume now that there are two loss baths in total
(NZ = 2) and consider two different loss couplings described
by

Z1 = α

⎛
⎜⎝

−eA −eA

0 1
e−A 0

⎞
⎟⎠ (22)

and

Z2 = α

⎛
⎜⎝

−eA 0
0 1

e−A e−A

⎞
⎟⎠, (23)

respectively. It is clear that Z1 and Z2 do not obey (C1). With
parameters α = 0.5, κ = 10, ω = 105, and J = ω 2eA

e2A+1 , we

depict the SNR under Z1 (dashed blue) and Z2 (dotted green)
in Fig. 2(a). Here, we only care about the amplification factor
A’s that make the dynamics stable. Note that the SNR under
Z1 approaches a constant as A increases, while under Z2 the
SNR grows as A increases, but is still much smaller than the
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FIG. 2. The performance log( SNR
τε2 ) versus A under different loss

couplings and α’s. The range of A is identified to guarantee a stable
dynamics. (a) α = 0.5. Dashed blue: loss Z1; dotted green: loss Z2;
red circle: loss Z , which satisfies (C1); black line: the ideal case and
the tuned case where both (C1) and (C2) are met. (b) For loss Z1,
black solid: α = 0; blue dashed: α = 0.5; magenta dot-dashed: α =
1; green dotted: α = 2. The best sensitivity that can be revived under
loss Z for different values of α is shown by the colored dots on the
ideal black solid line

ideal case. In Fig. 2(b), we illustrate the SNR under Z1 with
different α’s. If α = 0, it is the ideal case (black).

To revive the ideally exponential sensitivity, for Z1 we
proactively add an exponentially small coupling Z32 = e−A

between the third mode and the second loss bath, while for Z2

we proactively add an exponentially large coupling Z12 = −eA

between the first mode and the second bath. The resulting loss
coupling matrix becomes

Z = α

⎛
⎜⎝

−eA −eA

0 1
e−A e−A

⎞
⎟⎠, (24)

which satisfies (C1). The SNR under Z (red circle) is il-
lustrated in Fig. 2(a). It is clear that the ideally exponential
sensitivity is regained in the stable region and the best SNR
obtained under Z is much better than those attained under Z1

and Z2. When tuning Z1 to be Z , for different values of α,
the range of A that makes the system stable is different, so
is the best sensitivity that can be regained. In Fig. 2(b), we
depict the corresponding best sensitivity that can be attained
by colored dots on the ideal black line for different α’s. It
is clear that, as α increases, the best sensitivity that can be
attained decreases.

To address the instability problem and fully regain the
ideally exponential sensitivity, we can further introduce gain,
and tune Y such that it meets the balanced condition

(C2): YY � = ZZ�.

We prove that under (C1) and (C2), an exponential enhance-
ment can be fully revived for noisy NH sensing, that is,
SNR ∝ e2A(N−1) (see Appendix E for details). In this case,
the range of A in Fig. 2 can, in principle, be arbitrarily large,
which of course depends on the parameters of the real setup.

We now consider the robustness of the sensitivity under
(C1) and (C2). To this end, we can first reverse the roles
played by the loss coupling matrices Z and Z1. Assume that
when tuning the desired loss Z , we obtain Z1 instead of Z ,
namely, the desired loss rate Z32 = e−A is set to be 0 in
practice. From Fig. 2(a), it is clear that even though there is
only an exponentially small imperfection, the sensitivity can
be greatly reduced when A ∈ [2, 4.6].

Second, assuming

(YY � − ZZ�) = γ (|1〉〈N | + |N〉〈1|), (25)

it can be verified that to ensure a stable sensing dynamics, a
necessary condition for γ is |γ | < κe−A(N−1) (see Appendix C
for details). In this case, there is a striking tradeoff between the
enhancement of the sensitivity and the exponential decrement
of the robust stability. This owes to the fact that there is “no
free lunch.” For a sensor having exponential sensitivity, it
must have an inherent highly nonlinear amplification mech-
anism, such as that described by hP . Thus, fine tunings at
certain key points are inevitable. Otherwise, the residual noise
may either be greatly amplified or lead to system instability,
both of which will severely degrade the sensitivity. Using a
similar analysis to the above, we can determine which cou-
pling rates of loss and gain need to be finely tuned. In this way,
we can adjust these couplings as well as possible to construct
a noisy NH sensor with ultrahigh sensitivity.

The feasibility of our approach is well supported by the
current capability of engineering loss and gain in optics in
a controlled manner [48–50]. By proactively tuning the loss
and gain couplings, our proposal opens a way to significantly
enhance the sensitivity in the presence of loss and gain.

VI. REGIME BEYOND LINEAR RESPONSE

We now relax the assumption that the perturbation is in-
finitesimal. When the parameter to be detected, ε0, is not
infinitely small, not only the linear response of ε0, but all
orders in ε0 of the output field should be calculated.

As in Refs. [33,34], we focus on the most interesting case
where ε0/κ 
 1. Take

SNR(ε0) = S (ε0)

(N · n̄tot)
(26)

as the figure of merit, which quantifies the distinguishability
between Gaussian homodyne current distributions under ε =
0 and ε = ε0. Here, the noise power N = [N (0) + N (ε0)]/2,

and the total average number of photons n̄tot = [n̄tot(0) +
n̄tot(ε0)]/2.
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With the perturbation ε0V̂ = ε0â†
N âN , we verify that under

the balanced condition (C2) and the following two conditions:

(C3): col(Z ) ⊆ Span{hP·2, hP·3, . . . , hP·(N−1)},
(C4): col(Z ) ⊥ (hX)−1

N· ,

the best revived sensitivity is the same as that in Ref. [33],
where there is no loss and gain (see Appendix F for details).

Note that in the regime beyond linear response, to revive
the ideal sensitivity, (C3) and (C4) are slightly stricter than
(C1), which constrains the loss in linear response. Here, (C3)
means that the columns of Z should reside in the linear space
generated by the second column through the (N − 1)th col-
umn of the dynamical matrix hP , while (C4) implies that the
columns of Z should be orthogonal to the N th row of the ideal
information matrix (hX)−1.

VII. CONCLUSION

We have investigated the ideal sensitivity revival and the
stability of noisy NH quantum sensing. We present a strategy
to proactively tune the loss and gain couplings to construct
a stable NH sensor achieving an exponential sensitivity. We
find that the loss is key to revive the sensitivity, and that
balanced gain and loss are crucial to fully regain the ideal
sensitivity and to ensure a stable NH sensor, no matter if
the parameter is infinitesimal or in the regime beyond linear
response. We also point out that to design a noisy sensor with
ultrahigh sensitivity, fine tunings are inevitable at certain key
points. Our proposal opens a way to enhance the sensitivity of
noisy sensors by proactively tuning the loss and gain, and may
have potential applications in quantum sensing and quantum
engineering.
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APPENDICES

To make the paper self-contained, the Appendices are or-
ganized as follows. We first describe the total Hamiltonian of
the sensor and derive the Heisenberg-Langevin equations in
Appendix A. Then we derive the signal-to-noise ratio (SNR)
per photon in Appendix B. The real matrix Z (Y ) describes
the coupling between the system and the loss (gain) bath. In
Appendix C, we derive the necessary conditions to ensure the

stability of the dynamics if the loss and gain are unbalanced.
In Appendix D, we prove that when the gain coupling Y = 0,
the loss coupling Z satisfies condition (C1), and if the dynam-
ics is stable, the signal power S , noise power N , and the total
average photon number n̄tot(0) are the same as those of the
ideal noise-free case. The SNR per photon under conditions
(C1) and (C2) are given in Appendix E. In Appendix F, we
calculate the SNR per photon in the regime beyond linear
response. The calculations of the elements of H[ε]−1 and
H[ε0]−1 are shown in Appendices G and H, respectively.

APPENDIX A: THE NON-HERMITIAN SENSOR
AND THE HEISENBERG-LANGEVIN EQUATIONS

The total Hamiltonian of the sensor is described by

Ĥtot = ĤS + Ĥε + Ĥinput + Ĥwave + Ĥgain + Ĥloss + ĤS,wave

+ ĤS,gain + ĤS,loss, (A1)

with the perturbation Hamiltonian

Ĥε = εV̂ , (A2)

input Hamiltonian

Ĥinput = −i
√

κ (â†
1β − â1β

†), (A3)

waveguide Hamiltonian

Ĥwave =
∫

dk (kb̂†
kb̂k ), (A4)

the jth gain bath Hamiltonian

Ĥgain =
∫

dk (kĉ†
j,k ĉ j,k ), (A5)

the jth loss bath Hamiltonian

Ĥloss =
∫

dk (kd̂†
j,k d̂ j,k ), (A6)

the interaction Hamiltonian between the chain and the waveg-
uide

ĤS,wave =
∫

dk
1√
π

√
κ

2
(â1b̂†

k + â†
1b̂k ), (A7)

the interaction Hamiltonian between the chain and the jth gain
bath

ĤS,gain =
N∑

i=1

NY∑
j=1

∫
dk

1√
π

Yi, j (âiĉ j,k + â†
i ĉ†

j,k ), (A8)

and the interaction Hamiltonian between the chain and the jth
loss bath:

ĤS,loss =
N∑

i=1

NZ∑
j=1

∫
dk

1√
π

Zi, j (âid̂
†
j,k + â†

i d̂ j,k ). (A9)

Here, âi denotes the mode annihilation operator on site i, b̂k

is the annihilation operator of the mode with wave number k
in the waveguide, ĉ j,k is the annihilation operator of the jth
gain bath with wave number k, and d̂ j,k is the annihilation
operator of the jth loss bath mode with wave number k. The
real matrix Z (Y ) depicts the coupling between the system and
the loss (gain) bath.
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The Heisenberg equations of motion for the cavity modes and the field modes are

dân

dt
= wân−1 + �â†

n+1 + �â†
n−1 − wân+1 − iε[ân, V̂ ] − √

κβδn,1 − iδn,1

∫
dk

(
1√
π

√
κ

2
b̂k

)

− i
NY∑
j=1

∫
dk

(
1√
π

Yn, j ĉ
†
j,k

)
− i

NZ∑
j=1

∫
dk

(
1√
π

Zn, j d̂ j,k

)
,

db̂k

dt
= − ikb̂k − i

1√
π

√
κ

2
â1,

dĉ j,k

dt
= −ikĉ j,k − i

N∑
i=1

1√
π

Yi, j â
†
i ,

dd̂ j,k

dt
= −ikd̂ j,k − i

N∑
i=1

1√
π

Zi, j âi. (A10)

The solutions of the last three equations in Eq. (A10) are

b̂k = e−ik(t−t0 )b̂k (t0) − i
1√
π

√
κ

2

∫ t

t0

dt ′e−ik(t−t ′ )â1(t ′),

ĉ j,k = e−ik(t−t0 )ĉ j,k (t0) − i
1√
π

N∑
i=1

∫ t

t0

dt ′e−ik(t−t ′ )Yi j â
†
i (t ′),

d̂ j,k = e−ik(t−t0 )d̂ j,k (t0) − i
1√
π

N∑
i=1

∫ t

t0

dt ′e−ik(t−t ′ )Zi j âi(t
′). (A11)

Substituting Eq. (A11) into the first equation of Eq. (A10) yields

dân

dt
= wân−1 + �â†

n+1 + �â†
n−1 − wân+1 − iε[ân, V̂ ] − √

κβδn,1 − i

√
κ

2π
δn,1

∫
dke−ik(t−t0 )b̂k (t0)

− δn,1
κ

2π

∫
dk
∫ t

t0

dt ′e−ik(t−t ′ )â1 − i
NY∑
j=1

∫
dk

1√
π

Yn, je
ik(t−t0 )ĉ†

j,k (t0)

+ 1

π

NY∑
j=1

N∑
i=1

Yn, jYi, j

∫
dk
∫ t

t0

dt ′eik(t−t ′ )âi

− i
NZ∑
j=1

∫
dk

1√
π

Zn, je
−ik(t−t0 )d̂ j,k (t0) + 1

π

NZ∑
j=1

N∑
i=1

Zn, jZi, j

∫
dk
∫ t

t0

dt ′e−ik(t−t ′ )âi

= wân−1 + �â†
n+1 + �â†

n−1 − wân+1 − iε[ân, V̂ ] − √
κβδn,1

− κ

2
â1(t )δn,1 +

N∑
i=1

(YY � − ZZ�)n,iâi − √
κB̂inδn,1 −

√
2

(
NY∑
j=1

Yn, jĈ
in†
j +

NZ∑
j=1

Zn, j D̂
in
j

)
, (A12)

where we have defined

B̂in = i

√
1

2π

∫
dke−ik(t−t0 )b̂k (t0), Ĉ in

j = i

√
1

2π

∫
dke−ik(t−t0 )ĉ j,k (t0), D̂in = i

√
1

2π

∫
dke−ik(t−t0 )d̂ j,k (t0), (A13)

and used the equations
∫

dke−ik(t−t ′ ) = 2πδ(t − t ′) and
∫ t

t0
dt ′δ(t − t ′)âi(t ′) = 1

2 âi(t ). To ensure the Markovian nature of

the entire dynamics, B̂in, Ĉ in
j , and D̂in

j are assumed to be quantum Gaussian white noise: 〈Q(t )Q†(t ′)〉 = (n̄th
Q + 1)δ(t − t ′),

〈Q†(t )Q(t ′)〉 = n̄th
Q δ(t − t ′), and 〈Q(t )Q(t ′)〉 = 0, where Q ∈ {B̂in, Ĉ in

j , D̂in
j }, and there are no correlations between different

noise operators. Here, n̄th
Q is the number of thermal quanta in the input field. Therefore, the Heisenberg-Langevin equations can

be expressed as

dân

dt
= wân−1 − wân+1 + �â†

n+1 + �â†
n−1 − iε[ân, V̂ ] − κ

2
â1δn,1 +

NY∑
j=1

N∑
i=1

Yn, jYi, j âi

−
NZ∑
j=1

N∑
i=1

Zn, jZi, j âi − √
κ (B̂in + β )δn,1 −

√
2

⎛
⎝ NY∑

j=1

Yn, jĈ
in†
j +

NZ∑
j=1

Zn, j D̂
in
j

⎞
⎠. (A14)
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To see how the signal is amplified, it is better to turn to the picture of canonical quadratures x̂n and p̂n defined via ân = x̂n+i p̂n√
2

.
Then the corresponding Heisenberg-Langevin equations in terms of x̂n and p̂n read

dx̂n

dt
= − (w − �)x̂n+1 + (w + �)x̂n−1 − iε[x̂n, V̂ ] − κ

2
x̂1δn,1 +

NY∑
j=1

N∑
i=1

Yn, jYi, j x̂i −
NZ∑
j=1

N∑
i=1

Zn, jZi, j x̂i

− √
κ

B̂in + B̂in†

√
2

δn,1 −
√

2κβδn,1 −
√

2

⎛
⎝ NY∑

j=1

Yn, j

Ĉ in†
j + Ĉ in

j√
2

+
NZ∑
j=1

Zn, j

D̂in
j + D̂in†

j√
2

⎞
⎠,

d p̂n

dt
= (w − �) p̂n−1 − (w + �) p̂n+1 − iε[ p̂n, V̂ ] − κ

2
p̂1δn,1 +

NY∑
j=1

N∑
i=1

Yn, jYi, j p̂i −
NZ∑
j=1

N∑
i=1

Zn, jZi, j p̂i

− √
κ

B̂in − B̂in†

√
2i

δn,1 −
√

2

⎛
⎝ NY∑

j=1

Yn, j

Ĉ in†
j − Ĉ in

j√
2i

+
NZ∑
j=1

Zn, j

D̂in
j − D̂in†

j√
2i

⎞
⎠. (A15)

By defining B̂in = X̂ in+iP̂in√
2

, Ĉ in
j = Ĉ in

j,X +iĈ in
j,P√

2
, D̂in

j = D̂in
j,X +iD̂in

j,P√
2

, and let J = √
w2 − �2 and exp{2A} = w+�

w−�
, the above equation can

be described by

dx̂n

dt
= − Je−Ax̂n+1 + JeAx̂n−1 − iε[x̂n, V̂ ] − κ

2
x̂1δn,1 +

NY∑
j=1

N∑
i=1

Yn, jYi, j x̂i −
NZ∑
j=1

N∑
i=1

Zn, jZi, j x̂i

− √
κX̂ inδn,1 −

√
2κβδn,1 −

√
2

⎛
⎝ NY∑

j=1

Yn, jĈ
in
j,X +

NZ∑
j=1

Zn, j D̂
in
j,X

⎞
⎠,

d p̂n

dt
= Je−A p̂n−1 − JeA p̂n+1 − iε[ p̂n, V̂ ] − κ

2
p̂1δn,1 +

NY∑
j=1

N∑
i=1

Yn, jYi, j p̂i −
NZ∑
j=1

N∑
i=1

Zn, jZi, j p̂i

− √
κP̂inδn,1 −

√
2

⎛
⎝−

NY∑
j=1

Yn, jĈ
in
j,P +

NZ∑
j=1

Zn, j D̂
in
j,P

⎞
⎠. (A16)

By defining the quadrature vectors X̂ = (x̂1, x̂2, . . . , x̂N )� and P̂ = ( p̂1, p̂2, . . . , p̂N )�, we can convert the Heisenberg-
Langevin equations into a compact form:⎛

⎝ ˙̂X
˙̂P

⎞
⎠ =

(
hX + YY � − ZZ� 0

0 hP + YY � − ZZ�

)(
X̂
P̂

)
− iε

(
[X̂, V̂ ]

[P̂, V̂ ]

)
− �β − �̂in. (A17)

Here, the dynamical matrices hX and hP are

hX = −κ

2
|1〉〈1| +

N−1∑
n=1

(JeA|n + 1〉〈n| − Je−A|n〉〈n + 1|),

hP = −κ

2
|1〉〈1| +

N−1∑
n=1

(Je−A|n + 1〉〈n| − JeA|n〉〈n + 1|), (A18)

the commutation with V̂ is (
[X̂, V̂ ]

[P̂, V̂ ]

)
= ([x̂1, V̂ ], . . . , [x̂N , V̂ ], [ p̂1, V̂ ], . . . , [ p̂N , V̂ ])�, (A19)

the coherent input vector �β is

�β = (
√

2κβ, 0, 0, . . . , 0)�, (A20)
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and the quantum noise vectors �̂in are

�̂in
i = √

κX̂ inδi,1 +
√

2

(
NY∑
j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

)
,

�̂in
i+N = √

κP̂inδi,1 +
√

2

(
−

NY∑
j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

)
, (A21)

for i = 1, · · · , N .
APPENDIX B: DERIVATIONS OF THE SNR PER PHOTON

In this Appendix, we calculate the signal power, noise power, and the total average photon number when ε is infinitesimal.
According to the Heisenberg-Langevin equations and the definition of the perturbation Hamiltonian εV̂ = εâ†

N âN , we have

dx̂n

dt
= JeAx̂n−1 − Je−Ax̂n+1 + ε p̂Nδn,N −

√
2κβδn,1 − κ

2
x̂1δn,1 +

NY∑
j=1

N∑
i=1

Yn, jYi, j x̂i −
NZ∑
j=1

N∑
i=1

Zn, jZi, j x̂i

−
√

2

⎛
⎝ NY∑

j=1

Yn, jĈ
in
j,X +

NZ∑
j=1

Zn, j D̂
in
j,X

⎞
⎠− √

κX̂ inδn,1,

d p̂n

dt
= Je−A p̂n−1 − JeA p̂n+1 − εx̂Nδn,N − κ

2
p̂1δn,1 +

NY∑
j=1

N∑
i=1

Yn, jYi, j p̂i −
NZ∑
j=1

N∑
i=1

Zn, jZi, j p̂i

−
√

2

⎛
⎝−

NY∑
j=1

Yn, jĈ
in
j,P +

NZ∑
j=1

Zn, j D̂
in
j,P

⎞
⎠− √

κP̂inδn,1. (B1)

Since the system is stable, for sufficiently long time, x̂n and p̂n can be described as

x̂n =H[ε]−1
n,1(

√
2κβ + √

κX̂ in) + H[ε]−1
n,N+1

√
κP̂in +

√
2

N∑
i=1

H[ε]−1
n,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠

+
√

2
N∑

i=1

H[ε]−1
n,N+i

⎛
⎝−

NY∑
j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠,

p̂n = H[ε]−1
N+n,1(

√
2κβ + √

κX̂ in) + H[ε]−1
N+n,N+1

√
κP̂in +

√
2

N∑
i=1

H[ε]−1
N+n,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠

+
√

2
N∑

i=1

H[ε]−1
N+n,N+i

⎛
⎝−

NY∑
j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠, (B2)

where H[ε] = H1[0] + HN [ε], H1[0] = ((QX )−1 0
0 (QP )−1 ), QX = (hX + YY � − ZZ�)−1, QP = (hP + YY � − ZZ�)−1, and

HN [ε] = ε|N〉〈2N | − ε|2N〉〈N |.
Using Dyson’s equation and keeping it up to the first order in ε, we have

H[ε]−1 = (H1[0] + HN [ε])−1 = H1[0]−1 − H1[0]−1HN [ε]H1[0]−1. (B3)

The detailed calculation of the elements of H[ε]−1 can be found in Appendix G.
It can be computed that the steady state of mode 1 is

x̂1 = QX
1,1(

√
2κβ + √

κX̂ in) − εQX
1,N QP

N,1

√
κP̂in +

√
2

N∑
i=1

QX
1,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠

−
√

2ε

N∑
i=1

QX
1,N QP

N,i

⎛
⎝−

NY∑
j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠,

023216-9
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p̂1 = εQX
N,1QP

1,N (
√

2κβ + √
κX̂ in) + QP

1,1

√
κP̂in +

√
2ε

N∑
i=1

QX
N,iQ

P
1,N

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠

+
√

2
N∑

i=1

QP
1,i

⎛
⎝−

NY∑
j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠, (B4)

where we have used H[0]−1 = (QX 0
0 QP ).

From the definition of M̂, we have

〈M̂〉ε = 1√
2i

(〈B̂〉ε − 〈B̂†〉ε ) = 1√
2τ i

∫ τ

0

√
κ (〈â1〉ε − 〈â†

1〉ε )dt = 1√
2τ i

∫ τ

0

√
κ
√

2i〈p̂1〉εdt

= 1√
2τ i

∫ τ

0

√
κ
√

2iεQX
N,1QP

1,N

√
2κβ dt =

√
2κτε

√
κβQX

N,1QP
1,N . (B5)

According to the definition of the signal power, we have

S (ε) = |〈M̂〉ε − 〈M̂〉0|2 = 2ε2κ2β2τ
∣∣QX

N,1

∣∣2∣∣QP
1,N

∣∣2. (B6)

For the noise power, recall that only the zeroth order in ε is related to the SNR. Thus,

M̂|ε=0 − 〈M̂〉|ε=0 = 1√
2τ i

∫ τ

0
(B̂in + √

κ (â1 − 〈â1〉)|ε=0) − (B̂in† + √
κ (â†

1 − 〈â†
1〉)|ε=0)dt

= 1√
2τ i

∫ τ

0

⎡
⎣
(

1√
2

+ κ√
2

QX
1,1

)
X̂ in + √

κ

N∑
i=1

QX
1,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠

+ i

(
1√
2

+ κ√
2

QP
1,1

)
P̂in + i

√
κ

N∑
i=1

QP
1,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠
⎤
⎦

−
⎡
⎣( 1√

2
+ κ√

2
QX

1,1

)
X̂ in + √

κ

N∑
i=1

QX
1,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠

− i

(
1√
2

+ κ√
2

QP
1,1

)
P̂in − i

√
κ

N∑
i=1

QP
1,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠
⎤
⎦dt

= 1√
2τ

∫ τ

0

√
2
(
1 + κQP

1,1

)
P̂in + 2

√
κ

N∑
i=1

QP
1,i

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠dt . (B7)

Hence, it can be computed that the noise power is

N (0) = 1
2

(
1 + κQP

1,1

)2 + κ[QP (YY � + ZZ�)QP�
]1,1, (B8)

where we have focused on the vacuum noise, i.e., n̄th
Q = 0.

Following a similar reasoning to the noise power, we are now only concerned about n̄tot(0), the zeroth-order term of the total
average photon number with respect to ε. In the large-drive limit |β| � 1, we have

n̄tot(0) =
N∑

n=1

〈â†
n〉0〈ân〉0 = 1

2

N∑
n=1

〈x̂n〉2
0 + 〈p̂n〉2

0 = κβ2
N∑

n=1

∣∣QX
n,1

∣∣2 = κβ2[QX�
QX]1,1. (B9)

APPENDIX C: STABILITY ANALYSIS UNDER YY � �= ZZ�

We first briefly introduce the notion stability of a linear time-invariant system. Consider an n-dimensional linear time-invariant
system

ẋ = Ax, x(0) = x0;

y = Cx. (C1)
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FIG. 3. A schematic of an N-site non-Hermitian setup. (a) There is an effective coupling γ between the first and the (N − 1)th modes.
(b) There is an effective coupling γ between the first and the N th modes.

The transfer function from the initial condition x0 to the output y reads

Gx0→y(s) = C(sI − A)−1x0, (C2)

whose characteristic equation is given by

det(sI − A) = 0. (C3)

The solution to the differential equation (C1) can be described as

y(t ) =
n∑

i=1

Ki exp{pit}, (C4)

where {pi} are the roots of the characteristic equation (C3) or the poles of the transfer function (C2), and {Ki} depend on the
initial condition and the zero locations of the transfer function (C2). Here, we have assumed that all the roots of Eq. (C3) are
distinct for simplicity. If any poles are repeated, the corresponding coefficient Ki in Eq. (C4) must include a polynomial in t , but
the conclusion is the same.

The system is stable if and only if (necessary and sufficient condition) every term in Eq. (C4) goes to zero as t → ∞:

exp{pit} → 0 for all pi.

This will happen if all the eigenvalues of the system matrix A are strictly in the left half plane, where Re{pi} < 0. If the system has
any poles in the right half plane, then y(t ) → ∞, it is unstable. Thus, we can determine the stability of a system by determining
whether all the eigenvalues of the system matrix A sit in the left half plane. A well-known tool to do this is the Routh’s stability
criterion (e.g., see Sec. 3.6.3 of Ref. [56]).

We now turn back to our work to employ Routh’s stability criterion to derive the necessary conditions of the elements of
(YY � − ZZ�) to ensure the stability of the system.

Case 1: YY � − ZZ� = γ |1〉〈N − 1| + γ |N − 1〉〈1|.
The noisy setup is illustrated in Fig. 3(a), where there is an effective coupling γ between the first and the (N − 1)th modes.

The characteristic polynomial of (hX + YY � − ZZ�) can be calculated in a recursive way as

|λI − (hX + YY � − ZZ�)| =
(

λ + κ

2

)
DN−1 + J2DN−2 − γ 2λDN−3 + γ λJN−2e−A(N−2) − γ λJN−2eA(N−2), (C5)

where

DN =
∣∣∣∣∣λI −

N−1∑
n=1

(−Je−A|n〉〈n + 1| + JeA|n + 1〉〈n|)
∣∣∣∣∣ =

[ N
2 ]∑

k=0

(
N − k

k

)
λN−2kJ2k, (C6)

and [x] is the integer function which returns the largest integer not larger than x.
According to Routh’s stability criterion, a necessary (but not sufficient) condition for stability is that all the coefficients of λ

are positive. It can be computed that the coefficient of the first order with respect to λ in Eq. (C5) is(
N−1

2
N−1

2

)
JN−1 +

(
N−1

2
N−3

2

)
JN−1 − γ 2

(
N−3

2
N−3

2

)
JN−3 + γ JN−2e−A(N−2) − γ JN−2eA(N−2)

= JN−3

[
N + 1

2
J2 + (e−A(N−2) − eA(N−2))Jγ − γ 2

]
. (C7)
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It can be verified that when e−A(N−2) is sufficiently small, to ensure Eq. (C7) be positive, γ should satisfy γ1 < γ < γ2, where

γ1 = (e−A(N−2) − eA(N−2)) −
√

(e−A(N−2) − eA(N−2))2 + 2(N + 1)

2
J = −JeA(N−2) + O(e−A(N−2)),

γ2 = (e−A(N−2) − eA(N−2)) +
√

(e−A(N−2) − eA(N−2))2 + 2(N + 1)

2
J = N + 1

2
Je−A(N−2) + O(e−3A(N−2)). (C8)

Thus, if e−A(N−2) is sufficiently small, to ensure the stability of (hX + YY � − ZZ�), a necessary condition for γ is

− JeA(N−2) < γ <
N + 1

2
Je−A(N−2). (C9)

After a similar analysis with the characteristic polynomial of (hP + YY � − ZZ�), it can be verified that if e−A(N−2) is
sufficiently small, to ensure the stability of (hP + YY � − ZZ�), a necessary condition is

− N + 1

2
Je−A(N−2) < γ < JeA(N−2). (C10)

Combining Eqs. (C9) and (C10), if YY � − ZZ� = γ |1〉〈N − 1| + γ |N − 1〉〈1|, a necessary (but not sufficient) condition for the
stability of the system is

|γ | <
N + 1

2
Je−A(N−2). (C11)

Case 2: YY � − ZZ� = γ |1〉〈N | + γ |N〉〈1|.
The noisy setup is illustrated in Fig. 3(b), where there is an effective coupling γ between the first and the N th modes. The

characteristic polynomial of (hX + YY � − ZZ�) is

|λI − (hX + YY � − ZZ�)| =
(

λ + κ

2

)
DN−1 + J2DN−2 − γ 2DN−2 − γ JN−1e−A(N−1) − γ JN−1eA(N−1)

= λN + cN−1λ
N−1 + cN−2λ

N−2 + · · · + c1λ + c0, (C12)

where

c0 = κ

2
JN−1 − γ JN−1(e−A(N−1) + eA(N−1)). (C13)

According to Routh’s stability criterion, a necessary condition for (hX + YY � − ZZ�) to be stable is that all the coefficients of
λ of the characteristic polynomial are positive. Thus, from c0 > 0, we have

γ <
κ

2

1

e−A(N−1) + eA(N−1)
. (C14)

Note that a system is stable if and only if all the elements in the first column of the Routh array are positive. It can be verified
that calculating to the fourth row of the Routh array implies that

γ > −κe−A(N−1). (C15)

Combining Eqs. (C14) and (C15), we obtain that if YY � − ZZ� = γ |1〉〈N | + γ |N〉〈1|, a necessary (but not sufficient) condition
for the stability of the system is

|γ | < κe−A(N−1). (C16)

From Eqs. (C11) and (C16), it can be seen that if the gain and loss are unbalanced, then to ensure a stable non-Hermitian
sensor, the (1, N − 1)th and (1, N )th elements of the net noise matrix (YY � − ZZ�) should be exponentially small in terms of
the product of A and N .

APPENDIX D: THE SNR UNDER CONDITION (C1)

In this Appendix, we demonstrate that when the coupling between the system and the gain bath satisfies Y = 0, the loss
structure Z satisfies condition (C1), and the sensing dynamics is stable, the signal power S , noise power N , and the total average
photon number n̄tot(0) are the same as those in the ideal noise-free case.

First, we prove (hP − ZZ�)−1
1, j = (hP )−1

1, j and (hX − ZZ�)−1
j,1 = (hX)−1

j,1, for j = 1, . . . , N . Indeed, according to the matrix
inverse formula:

(hP − ZZ�)−1 = (hP − hPCC�hP
�)−1 = (hP )−1 + (hP )−1hPCC�(− hP

�
(hP )−1hPCC� + I

)−1
hP

�
(hP )−1

= (hP )−1 + CC�(I − hP
�

CC�)−1
hP

�
(hP )−1. (D1)
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Thus, for j = 1, . . . , N , we have

(hP − ZZ�)−1
1, j = (hP )−1

1, j +
N∑

k=1

(CC�)1,k[(I − hP�CC�)−1hP
�

(hP )−1]k, j = (hP )−1
1, j . (D2)

Note that since the span of the second through the N th column of hP is the same as that of hX
�

, there exists D ∈ RNZ×N with
Dj,1 = 0 for j = 1, . . . , NZ , such that Z = hX

�
D�. Then, according to the matrix inverse formula:

(hX − ZZ�)−1 = (hX − hX
�

D�DhX
)−1 = (hX)−1 + (hX)−1hX

�(
I − D�DhX(hX)−1hX

�)−1
D�DhX(hX)−1

= (hX)−1 + (hX)−1hX
�(

I − D�DhX
�)−1

D�D. (D3)

Thus, for j = 1, . . . , N , we have

(hX − ZZ�)−1
j,1 = (hX)−1

j,1 +
N∑

k=1

[
(hX)−1hX

�(
I − D�DhX

�)−1]
j,k (D�D)k,1 = (hX)−1

j,1. (D4)

Therefore, specifically, we have (hP − ZZ�)−1
1,N = (hP )−1

1,N and (hX − ZZ�)−1
N,1 = (hX)−1

N,1. Recall that the signal power is in
the form of Eq. (B6). Thus, we have proved that under Y = 0, (C1), and if the system is stable, the signal power of the noisy
sensor is the same as that of the ideal noise-free case.

As for the noise power, according to Eq. (B8), we only need to prove

[(hP − ZZ�)−1ZZ�(hP − ZZ�)−1�]1,1 = 0.

In fact,

[(hP − ZZ�)−1ZZ�(hP − ZZ�)−1�]1,1

=
NZ∑

k=1

[(hP − ZZ�)−1Z]1,k · [(hP − ZZ�)−1Z]1,k =
NZ∑

k=1

[
N∑

m=1

(hP − ZZ�)−1
1,mZm,k

]
·
[

N∑
m=1

(hP − ZZ�)−1
1,mZm,k

]

=
NZ∑

k=1

[
N∑

m=1

(hP )−1
1,mZm,k

]
·
[

N∑
m=1

(hP )−1
1,mZm,k

]
= [(hP )−1ZZ�(hP )−1�]1,1 = (CC�)1,1 = 0. (D5)

Thus, under Y = 0, (C1), and if the system is stable, the noise power is the same as that of the ideal noise-free case.
As for the total average photon number n̄tot(0), since QX

j,1 = (hX − ZZ�)−1
j,1 = (hX)−1

j,1, along with Eq. (B9), it is clear that
n̄tot is also the same as that of the ideal noise-free case.

APPENDIX E: THE SNR PER PHOTON UNDER CONDITIONS (C1) AND (C2)

Now we demonstrate that under conditions (C1) and (C2), an exponential enhancement of noisy non-Hermitian sensing can
be revived, that is SNR ∝ exp{2A(N − 1)}.

Under (C1) and (C2), the sensing dynamics is stable. From Eqs. (B6) and (B9), it is clear that

S (ε) = 2ε2κ2β2τ
∣∣(hX)−1

N,1

∣∣2∣∣(hP )−1
1,N

∣∣2 = 2ε2κ2β2τ

(
2

κ

)4

exp{4A(N − 1)},

n̄tot(0) = κβ2[(hX)−1�(hX)−1]1,1, (E1)

where we have used (hX)−1
N,1 = − 2

κ
exp{A(N − 1)}, and (hP )−1

1,N = − 2
κ

exp{A(N − 1)} (see Appendix G).
As for the noise power,

N (0) = 1
2

(
1 + κQP

1,1

)2 + κ
[
QP (YY � + ZZ�)QP�]

1,1 = 1
2

(
1 + κ (hP )−1

1,1

)2 + 2κ[(hP )−1ZZ�(hP )−1�]1,1 = 1
2 , (E2)

where (hP )−1
1,1 = − 2

κ
has been used (see Appendix G). Thus, we now have SNR ∝ exp{2A(N − 1)}.

APPENDIX F: DERIVATIONS OF THE SNR PER PHOTON BEYOND LINEAR RESPONSE

In this Appendix, we consider the case where the parameter to be detected, ε0, is not infinitesimally small. Thus, as
opposed to the infinitesimal case, not only the linear response of ε0, but all orders in ε0 of the output field should be
calculated.
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The signal power and the total average photon number can be straightforwardly calculated from Eq. (B2). From the definition
of M̂, we have

〈M̂〉ε0 = 1√
2i

(〈B̂〉ε0 − 〈B̂†〉ε0

) = 1√
2τ i

∫ τ

0

√
κ
√

2i〈p̂1〉ε0 dt = 1√
2τ i

∫ τ

0

√
κ
√

2iH[ε0]−1
N+1,1

√
2κβdt

= 1√
τ

∫ τ

0

√
κH[ε0]−1

N+1,1

√
2κβdt =

√
2κτ

√
κβH[ε0]−1

N+1,1. (F1)

According to the definition of the signal powers, we have

S (ε0) = 2τκ2β
∣∣H[ε0]−1

N+1,1 − H[0]−1
N+1,1

∣∣2. (F2)

It is clear that under (C2), H[ε0] and H[0] are the same as those of the noise-free case; so is the signal power, accordingly.
The total average photon number n̄tot can be calculated as

n̄tot = n̄tot(0) + n̄tot(ε0)

2
=
∑N

n=1〈x̂n〉2
0 + 〈p̂n〉2

0

4
+
∑N

n=1〈x̂n〉2
ε0

+ 〈p̂n〉2
ε0

4

= κβ2∑N
n=1

∣∣(hX)−1
n,1

∣∣2
2

+ κβ2∑N
n=1

(∣∣H[ε0]−1
n,1

∣∣2 + ∣∣H[ε0]−1
N+n,1

∣∣2)
2

. (F3)

Similar to the signal power, we can see that under (C2), the total average photon number is the same as that of the noise-free
case.

We now calculate the noise power. Since ε0 is no longer infinitesimal, we have to compute all the orders of the output field
with respect to ε0. According to the definition of M̂, we have

M̂|ε=ε0 − 〈M̂〉|ε=ε0

= 1√
τ

∫ τ

0

⎧⎨
⎩κH[ε0]−1

N+1,1X̂ in + κH[ε0]−1
N+1,N+1P̂in + P̂in +

N∑
i=1

H[ε0]−1
N+1,i

√
2κ

⎛
⎝ NY∑

j=1

Yi, jĈ
in
j,X +

NZ∑
j=1

Zi, j D̂
in
j,X

⎞
⎠

+
N∑

i=1

H[ε0]−1
N+1,N+i

√
2κ

⎛
⎝−

NY∑
j=1

Yi, jĈ
in
j,P +

NZ∑
j=1

Zi, j D̂
in
j,P

⎞
⎠
⎫⎬
⎭dt . (F4)

Then the noise power N (ε0) can be calculated as

N (ε0) = 〈M̂2〉ε0 − 〈M̂〉2
ε0

= 1

2

{
κ2
(
H[ε0]−1

N+1,1

)2 + (1 + κH[ε0]−1
N+1,N+1

)2 + 2κ

[
H[ε0]−1

(
Y
0

)
· (Y � 0)H[ε0]−1�

]
N+1,N+1

+ 2κ

[
H[ε0]−1

(
Z
0

)
· (Z� 0)H[ε0]−1�

]
N+1,N+1

+ 2κ

[
H[ε0]−1

(
0
Y

)
· (0Y �)H[ε0]−1�

]
N+1,N+1

+ 2κ

[
H[ε0]−1

(
0
Z

)
· (0 Z�)H[ε0]−1�

]
N+1,N+1

}

= 1

2

{
κ2
(
H[ε0]−1

N+1,1

)2 + (1 + κH[ε0]−1
N+1,N+1

)2 + 2κ

[
H[ε0]−1

(
YY � + ZZ� 0

0 YY � + ZZ�

)
H[ε0]−1�

]
N+1,N+1

}

= 1

2

{
κ2
(
H[ε0]−1

N+1,1

)2 + (1 + κH[ε0]−1
N+1,N+1

)2 + 4κ

[
H[ε0]−1

(
ZZ� 0

0 ZZ�

)
H[ε0]−1�

]
N+1,N+1

}
. (F5)

Combining with Eq. (B8), the total noise power N beyond linear response reads

N = N (0) + N (ε0)

2
= 1

4

{
κ2
(
H[ε0]−1

N+1,1

)2 + (1 + κH[ε0]−1
N+1,N+1

)2 + (1 + κ (hP )−1
1,1

)2 + 4κ[(hP )−1ZZ�(hP )−1�]1,1

+ 4κ

[
H[ε0]−1

(
ZZ� 0

0 ZZ�

)
(H[ε0]−1)�

]
N+1,N+1

}
. (F6)

Note that in the above equations, the first three terms do not depend on the noise. To regain the SNR per photon in the ideal case,
it is necessary to design the loss structure Z such that the total effect of the noise on the noise power N is canceled out. The last
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term in the above equation can be expressed as[
H[ε0]−1

(
ZZ� 0

0 ZZ�

)
(H[ε0]−1)�

]
N+1,N+1

=
NZ∑
j=1

(
N∑

i=1

H[ε0]−1
N+1,iZi, j

)2

+
NZ∑
j=1

(
N∑

i=1

H[ε0]−1
N+1,N+iZi, j

)2

=
NZ∑
j=1

(
N∑

i=1

−2ε

κ
h−1

N,i

1

1 + ε2 4
κ2

eA(2N−1−i)Zi, j

)2

+
NZ∑
j=1

(
N∑

i=1

(
h−1

N,i

(
1

1 + ε2 4
κ2

− 1

)
+ h−1

1,i

)
eA(i−1)Zi, j

)2

=
4ε2

κ2

1 + ε2 4
κ2

e2A(N−1)
NZ∑
j=1

N∑
i=1

(
N∑

i=1

(hX)−1
N,iZi, j

)2

+
(

1

1 + ε2 4
κ2

− 1

)2

e2A(N−1)
NZ∑
j=1

(
N∑

i=1

(hP )−1
N,iZi, j

)2

+
NZ∑
j=1

(
N∑

i=1

(hP )−1
1,i Zi, j

)2

+ 2

(
1

1 + ε2 4
κ2

− 1

)
eA(N−1)

NZ∑
j=1

(
N∑

i=1

(hP )−1
N,iZi, j

)(
N∑

i=1

(hP )−1
1,i Zi, j

)

=
4ε2

κ2(
1 + ε2 4

κ2

)2 e2A(N−1)[(hX)−1ZZ�(hX)−1�]N,N +
(

1

1 + ε2 4
κ2

− 1

)2

e2A(N−1)[(hP )−1ZZ�(hP )−1�]N,N

+ [(hP )−1ZZ�(hP )−1�]1,1 + 2

(
1

1 + ε2 4
κ2

− 1

)
eA(N−1)[(hP )−1ZZ�(hP )−1�]N,1, (F7)

where the details of calculating the elements of H[ε0]−1 can be found in Appendix H.
It can be seen that under (C3) and (C4),

[(hP )−1ZZ�(hP )−1�]1,1 = [CC�]1,1 = 0,

[(hP )−1ZZ�(hP )−1�]N,N = [CC�]N,N = 0,

[(hP )−1ZZ�(hP )−1�]N,1 = [CC�]N,1 = 0,

[(hX)−1ZZ�(hX)−1�]N,N = 0. (F8)

Hence, under (C2), (C3), and (C4), the noise power is the same as that of the ideal case. Thus, we have regained the best
sensitivity, which is the same as when there is no noise.

APPENDIX G: CALCULATION OF THE ELEMENTS OF H[ε]−1

In this Appendix, we calculate the elements of H[ε]−1 when ε is infinitesimal. Using Dyson’s equation and keeping it up to
the first order in ε, we have

H[ε]−1 = (H1[0] + HN [ε])−1 = H1[0]−1 − H1[0]−1HN [ε]H1[0]−1, (G1)

where H1[0] = (hX + YY � − ZZ� 0
0 hP + YY � − ZZ�) and HN [ε] = ε|N〉〈2N | − ε|2N〉〈N |.

We only compute H[ε]−1
N+1,1 as an illustration, and the other elements can be computed in a similar way. Multiplying Eq. (G1)

from the left by 〈N + 1| and from the right by |1〉 yields

H[ε]−1
N+1,1 = H1[0]−1

N+1,1 + εH1[0]−1
N+1,2NH1[0]−1

N,1 = ε(hP + YY � − ZZ�)−1
1,N (hX + YY � − ZZ�)−1

N,1 = εQX
N,1QP

1,N . (G2)

Under (C2), we only need to compute the elements of (hX)−1 and (hP )−1. Defining T = diag{1, eA, e2A, . . . , eA(N−1)}, it can
be verified that

(hX)−1 = T h−1T −1, (hP )−1 = T −1h−1T, (G3)

where

h = −κ

2
|1〉〈1| +

N−1∑
n=1

(−J|n〉〈n + 1| + J|n + 1〉〈n|). (G4)

Then the elements of (hX)−1 are related to the elements of h−1 as

(hX)−1
i, j = h−1

i, j eA(i− j); (G5)
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while the elements of (hP )−1 relate to the elements of h−1 as

(hP )−1
i, j = h−1

i, j eA( j−i). (G6)

We now introduce how to compute the elements of h−1. According to the definition of h, we have

I =
(

J
N−1∑
n=1

(|n + 1〉〈n| − |n〉〈n + 1|) − κ

2
|1〉〈1|

)
h−1, (G7)

where I is the N × N identity matrix. Multiplying this equation from the left by 〈i| and the right by |1〉, for i = 1, . . . , N , yields

1 = − J〈2|h−1|1〉 − κ

2
〈1|h−1|1〉,

0 =(J〈1| − J〈3|)h−1|1〉,
0 =(J〈2| − J〈4|)h−1|1〉,

...

0 =(J〈N − 2| − J〈N |)h−1|1〉,
0 =J〈N − 1|h−1|1〉.

(G8)

Simplifying the above recursive formula, we have

h−1
1,1 = h−1

3,1 = · · · = h−1
N,1 = − 2

κ
, h−1

2,1 = h−1
4,1 = · · · = h−1

N−1,1 = 0. (G9)

The other elements can be computed in a similar way.

APPENDIX H: CALCULATION OF THE ELEMENTS OF H[ε0]−1

In this Appendix, we calculate the elements of H[ε0]−1 under (C2). Since the parameter ε0 is not infinitesimal, we have to
consider all orders of ε0.

Define

H̃1[0] =
(

T 0
0 T −1

)−1

H1[0]

(
T 0
0 T −1

)
=
(

h 0
0 h

)
,

H̃N [ε0] =
(

T 0
0 T −1

)−1

HN [ε0]

(
T 0
0 T −1

)
= ε0e−2A(N−1)|N〉〈2N | − ε0e2A(N−1)|2N〉〈N |. (H1)

It can be seen that

(H1[0] + HN [ε0])−1
i, j = (H̃1[0] + H̃N [ε0])−1

i, j eA(i− j), for i, j = 1, . . . , N. (H2)

The other elements have similar relationships. Thus, to calculate the elements of H[ε0]−1 = (H1[0] + HN [ε0])
−1

, we can
calculate the elements of (H̃1[0] + H̃N [ε0])

−1
. It can be verified that

(H̃1[0] + H̃N [ε0])−1 =
∑
n=1

{
(−1)nε2n

0 H̃1[0]−1|N〉(h−1
N,N

)2n−1〈N |H̃1[0]−1

+ (−1)nε2n
0 H̃1[0]−1|2N〉(h−1

N,N

)2n−1〈2N |H̃1[0]−1
}+ H̃1[0]−1

+
∑
n=0

{
(−1)n+1ε2n+1

0 H̃1[0]−1|N〉(h−1
N,N

)2n〈2N |H̃1[0]−1e−2A(N−1)

+ (−1)nε2n+1
0 H̃1[0]−1|2N〉(h−1

N,N

)2n〈N |H̃1[0]−1e2A(N−1)
}
. (H3)

Multiplying this equation from the left by 〈1| and the right by |1〉, yields

(H̃1[0] + H̃N [ε0])−1
1,1 =

∑
n=1

(−1)nε2n
0

(
− 2

κ

)2n+1

+
(

− 2

κ

)
= − 2

κ
· 1

1 + ε2
0

4
κ2

, (H4)

and then

(H1[0] + HN [ε0])−1
1,1 = (H̃1[0] + H̃N [ε0])−1

1,1eA(1−1) = − 2

κ
· 1

1 + ε2
0

4
κ2

. (H5)

The other elements can be computed in a similar way.
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