
PHYSICAL REVIEW RESEARCH 6, 023123 (2024)

Effective field theories and finite-temperature properties of zero-dimensional
superradiant quantum phase transitions

Zi-Yong Ge ,1 Heng Fan,2,3,4,5 and Franco Nori 1,6,7

1Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako-shi, Saitama 351-0198, Japan
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China

3Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
4CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China

5Beijing Academy of Quantum Information Sciences, Beijing 100193, China
6Quantum Information Physics Theory Research Team, Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan

7Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 19 September 2023; revised 19 February 2024; accepted 1 April 2024; published 3 May 2024)

The existence of zero-dimensional superradiant quantum phase transitions seems inconsistent with conven-
tional statistical physics. This work clarifies this apparent inconsistency. We demonstrate the corresponding
effective field theories and finite-temperature properties of light-matter interacting systems, and show how this
zero-dimensional quantum phase transition occurs. We first focus on the Rabi model, which is a minimum model
that hosts a superradiant quantum phase transition. With the path-integral method, we derive the imaginary-time
action of the photon degrees of freedom. We also define a dynamical critical exponent as the rescaling between
the temperature and the photon frequency, and perform dimensional analysis to the effective action. The
dynamical critical exponent shows that the effective theory of the Rabi model is a free scalar field, where a
true second-order quantum phase transition emerges. These results are also verified by numerical simulations
of imaginary-time correlation functions of the order parameter. Furthermore, we also generalize this method to
the Dicke model. Our results make the zero-dimensional superradiant quantum phase transition compatible with
conventional statistical physics, and pave the way to understand it in the perspective of effective field theories.
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I. INTRODUCTION

Quantum phase transitions (QPTs) and quantum critical
phenomena are two fundamental concepts in modern physics
[1–4], and have been extensively studied in condensed matter
physics [3,4], high-energy physics [5], and quantum infor-
mation sciences [6]. Recently, it has been shown that there
exists a novel second-order QPT from a normal phase to a
superradiant phase in light-matter interacting systems [7,8],
such as the Dicke model [9–17] and the Rabi model [18–31].
The uniqueness of this superradiant QPT manifests in the
“dimension” of these quantum optical systems, where there
is no spatial dimension. Meanwhile, special “thermodynamic
limits” are also required for the true superradiant QPT. For
instance, the “thermodynamic limit” in the Rabi model is the
photon frequency tending to zero [23], while it is the large-
atom limit in the Dicke model [10,11]. The superradiant QPT
can also be described by the language of spontaneous symme-
try breaking, where the corresponding superradiant phase is
a Z2-symmetry-breaking phase. Moreover, like conventional
QPTs, the system can also host universal scaling laws near the
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superradiant critical point [25], which is strong evidence of a
true second-order QPT. This superradiant QPT has attracted
considerable interest due to recent achievements of ultrastrong
and even deep strong coupling regimes in light-matter inter-
acting systems [32–53].

In statistical physics, thermodynamic phase transitions are
forbidden in 1D classical systems (or QPTs in 0D quantum
systems), due to strong thermal (or quantum) fluctuations
[3,54]. For instance, there is no ordered phase in the 1D clas-
sical Ising model at finite temperatures. From this viewpoint,
the existence of the superradiant QPT in 0D quantum systems
seems inconsistent with conventional statistical physics. The
general practice to understand the superradiant QPT is us-
ing perturbation theories to obtain a Gaussian-type effective
Hamiltonian [23], and the superradiant QPT can be identi-
fied by the spectrum of this solvable effective Hamiltonian.
This perturbation theory is equivalent to the mean-field ap-
proximation, where the high-order terms correspond to the
quantum fluctuations. According to statistical physics, the
fluctuations in 0D quantum systems (or 1D classical systems)
cannot be neglected. Therefore, it is still unclear why the
mean-field approximation is valid in these 0D quantum sys-
tems, and this is significant for understanding the superradiant
QPT [3,54]. The conventional Hamiltonian-based methods
seem insufficient to explain why superradiant QPTs can oc-
cur. A natural question is whether we can use quantum field
theories to describe the superradiant QPT, making it more
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compatible with conventional statistical physics. In addition,
finite-temperature physics is also a significant aspect to un-
derstand QPTs [3]. Hence, another open question is how
superradiant QPTs affect finite-temperature behaviors in light-
matter interacting systems.

In this paper, we demonstrate how superradiant QPTs oc-
cur in 0D quantum-optical systems based on effective field
theories. We first investigate the Rabi model, which is a min-
imum model to host a superradiant QPT. The imaginary-time
action of the photon degrees of freedom is obtained by the
path-integral method. In addition, we define a dynamical crit-
ical exponent as the rescaling between the temperature and the
photon frequency. By dimensional analysis, we find that, for
a small dynamical critical exponent, the system is described
by a massless free scalar field, and is critical for an arbitrary
coupling strength. For a marginal dynamical critical exponent,
the effective theory becomes a free scalar field or φ4 theory
with mass term, and a true second-order QPT indeed emerges.
For a large dynamical critical exponent, higher-order interac-
tion terms become relevant, and the true QPT is absent. We
also perform numerical simulations of imaginary-time corre-
lation functions of the order parameter. Our numerical results
show that the correlation function increases when increasing
the imaginary-time distance, which is a unique property of
a 0D quantum phase. Meanwhile, the scaling of correlation
functions is consistent with the effective field theory. By iden-
tifying the dynamical critical exponent with the gap at the
critical point, we can map this imaginary-time action to the
ground state. We show that the effective theory is a free scalar
field with a marginal 4th-order term. Thus, the mean-field
approximation is indeed valid to describe the superradiant
QPT in the Rabi model. Moreover, we also generalize this
quantum-field method to the Dicke model.

The remainder of the paper is organized as follows. In
Sec. II, we take the Rabi model as an example to show how
a superradiant QPT occurs in a 0D quantum-optical system.
We first review previous results of the superradiant QPT in
the Rabi model, then we derive the effective theory and use
dimensional analysis to show how the superradiant QPT oc-
curs. We also perform numerical simulations to support these
analytical results. In Sec. III, we generalize this quantum-field
method to the Dicke model. We present a discussion of our
main results in Sec. IV. We conclude in Sec. V. In the appen-
dices, we present more derivation details.

II. RABI MODEL

Here we first consider the Rabi model, which is a mini-
mum model to describe light-matter interacting systems [18].
Meanwhile, the Rabi model is also a minimum model to host a
0D superradiant QPT. In this section, we take the Rabi model
as an example to show how the superradiant QPT occurs in
a 0D quantum system. We mainly apply quantum field theo-
ries, and use numerical simulations to support our analytical
results.

A. Review of the Rabi model

The Hamiltonian reads

ĤRabi = ωâ†â + �σ̂ z + gσ̂ x(â† + â), (1)

where â† (â) is the creation (annihilation) operator of photons,
σ̂ α (α = x, y, z) are the Pauli matrices describing the two-level
atom, ω is the frequency of the photon, � is the gap of the
atom, and g is the strength of the dipole interaction. The
Hamiltonian Ĥ possesses parity symmetry

[P̂, ĤRabi] = 0, P̂ = (−1)n̂σ̂ z, (2)

where n̂ = â†â is the number operator. In addition, we can
define a dimensionless parameter

λ := 2g√
2ω�

, (3)

which describes the characteristic light-matter coupling
strength.

Previous works [23] show that, under the special thermo-
dynamic limit

�

ω0
→ 0, (4)

there exists a second-order QPT in this 0D quantum system
when varying λ. The critical point is exact at gc = 1, and
this QPT can be described by the spontaneous breaking of
the parity symmetry. In the regime g < gc, the system is in
its normal phase with no symmetry breaking. However, when
g > gc, the system is in the superradiant phase, where the
parity symmetry is spontaneously broken. Moreover, like con-
ventional critical phenomena, this system also hosts universal
scaling laws near the critical point [25]. Hereafter, we derive
the effective field theory of the Rabi model to show how this
0D QPT occurs.

B. Effective action

For simplicity, we use a harmonic oscillator to describe the
photon degrees of freedom, and represent the spin operator by
a spinor [55,56]. Hence, the Hamiltonian can be rewritten as
(choosing oscillator mass m = 1)

ĤRabi = 1
2 p̂2 + 1

2ω2x̂2 + �ψ̂†σ zψ̂ + 1
2λω

√
2�x̂ψ̂†σ xψ̂,

(5)

where ψ̂† = [ĉ†
↑, ĉ†

↓] is a spinor with ĉ†
↑,↓ being a spin- 1

2

fermion creation operator, x̂ = (â† + â)/
√

ω is the displace-
ment operator of the harmonic oscillator, and p̂ = i

√
ω(â† −

â) is the momentum operator. Here, we apply the path-integral
method to obtain the effective field theory of the photon [54].
The partition function of the system takes the form

Z =
∫

Dx Dψ̄ Dψ exp[−S(x, ψ̄, ψ )]. (6)

According to Eq. (5), the imaginary-time action can be
obtained as

S(x, ψ̄, ψ ) = S0(x) + S1(x, ψ̄, ψ ), (7)

where S0 is the free term, and S1 is the interacting term, with
the detailed forms

S0(x) =
∫ β

0
dτ

[
1

2
(∂τ x)2 + 1

2
ω2x2

]
, (8a)

S1(x, ψ̄, ψ ) =
∫ β

0
dτ ψ̄

(
∂τ + �σ z + 1

2
λω

√
2�xσ x

)
ψ,

(8b)
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where β = 1/T is the inverse of the temperature (kb = 1), x is
a real scalar field representing the coordinate of the oscillator,
and ψ̄ (ψ ) is a spinor field.

When β → ∞, the action S describes the ground-state
physics of the Rabi model. Integrating out the spinor field,
we can obtain the effective action of the oscillator as

Seff(x) =
∫ β

0
dτ

[
1

2

(
1 + λ2ω2

4�2

)
(∂τ x)2 + 1

2
(1 − λ2)ω2x2

+ a4ω
4x4 + a6ω

6x6 + · · ·
]
, (9)

where the factor a2n is a function of � and λ, and the explicit
form is unimportant. The detailed derivations of Seff(x) are
presented in Appendix A. There exists a parity symmetry in
Eq. (9); i.e., Seff is invariant under the transformation x → −x,
which corresponds to the original parity P̂ in ĤRabi.

C. Dimensional analysis and phase transition

Now we perform the dimensional analysis [54] of the
effective action Seff. As usual, the kinetic term is set to be
unity: [

∫
dτ (∂τ x)2] = 1, where [F (x)] ∼ βdF implies that the

canonical dimension of the term F (x) is dF . Thus, the canon-
ical dimension of the scalar field x and other terms satisfy

[x] = β1/2,

[∫
dτx2n

]
= βn+1. (10)

Therefore, if the frequency ω is finite (i.e., dimensionless),
then an arbitrary order of the interaction term is relevant,
which cannot be neglected in the renormalization group (RG)
flow. In this case, the mean-field theory and φ4 theory are both
invalid, and there should not exist any true second-order QPT.
This is also the reason why second-order QPTs are generally
absent in 0D quantum systems (or thermodynamical phase
transitions in 1D classical systems).

However, in the “thermodynamic limit” ω → 0, a con-
tinues QPT indeed exists in the Rabi model at the critical
point λc = 1. Now we understand this special QPT from the
viewpoint of the effective action in Eq. (9). A conventional
d-dimensional (d � 1) quantum critical phenomenon can be
described by the (d + 1)-dimensional imaginary-time action
under the condition of β ∼ Lz [3], where L is the system
size and z is the dynamical critical exponent. Meanwhile, the
finite size in critical systems corresponds to an infrared (IR)
cutoff ξ ∼ L ∼ β1/z [3], where ξ is the maximal wavelength.
Therefore, in the Rabi model, if we regard the finite photon
frequency as an IR cutoff, then considering the condition ω →
0 as a “thermodynamic limit” is reasonable in this picture.

To describe the quantum critical phenomenon of the Rabi
model by Seff, we need to define an analogous “dynamical
critical exponent” z′. Here, the maximal wavelength is ξ ∼
1/ω, so this dynamical critical exponent can be defined as the
rescaling between ω and β,

ω ∼ β−1/z′
. (11)

Thus, z′ can also be understood as giving ω a nonzero dimen-
sion, i.e., [ω] = β−1/z′

. Since β → ∞ for the ground state,
the photon frequency also satisfies ω ∼ β−1/z′ → ∞, which
recovers the thermodynamic limit of the Rabi model. The

mass term and interaction terms now have the dimension[
ω2n

∫
dτx2n

]
= βn−2n/z′+1. (12)

Therefore, these terms are now not necessarily relevant when
the dynamical critical exponent z′ is small enough, and the ef-
fective theory can be truncated to finite order. Note that z′ is a
constant in a specific model. In the following, we first consider
z′ as a tunable parameter at finite temperatures, and discuss the
corresponding effective theory. We will confirm z′ in the Rabi
model when discussing ground-state properties in Sec. II E.

According to Eq. (12), we can find that different z′ may
lead to different effective theories of the Rabi model. When
0 < z′ < 1, i.e., (n − 2n/z′ + 1) < 0 for n � 1, the mass term
and all interaction terms become irrelevant. In this case, the
system is described by a massless free scalar field, leading to
a critical phase for an arbitrary λ.

When 1 < z′ < 4/3, the mass term is relevant, while all
interaction terms are irrelevant. Thus, the effective theory is a
free scalar field with relevant mass term, and the system hosts
a critical point at λ = 1, where the mass of the scalar field
vanishes.

For 4/3 < z′ < 3/2, the ω4x4 term becomes relevant with
higher-order interaction terms irrelevant, so the effective ac-
tion is a φ4 theory, which also hosts a critical point at λ = 1.

When z′ > 3/2, higher-order interaction terms are also rel-
evant, and the true second-order QPT is absent.

D. Numerical simulations

We have presented an effective field theory and the dimen-
sional analysis of the Rabi model to show how superradiant
QPTs occur in this 0D quantum system. To support the above
discussions and further understand superradiant QPTs, we
perform numerical simulations of the finite-temperature sys-
tem. Here we mainly calculate correlation functions of the
order parameter x̂ in the imaginary-time coordinate, defined as

Cx(τ ) := 〈x̂(τ )x̂(0)〉β . (13)

Here, Ô(τ ) = eτ Ĥ Ôe−τ Ĥ is the operator in the Heisenberg
picture at imaginary time τ , and 〈·〉β := Tr(·e−βĤ )/Tr(e−βĤ )
is the thermodynamic average at temperature 1/β.
Meanwhile, we also fix the relation between the temperature
and photon frequency as β = ω−z′

. During the numerical
calculation, the parity symmetry is preserved in the density
matrix, so we have 〈x̂(τ )〉β = 0. Thus, in the ordered phase,
Cx(τ → ∞) = x̄2, where x̄ is the susceptibility, i.e., the
expectation value of x̂ in either parity-symmetry-broken state.
If the system is critical, then the correlation function Cx(τ )
exhibits a power-law decay/increase as τ increases due to
scale invariance,

Cx(τ ) ∼ τ 2
x , (14)

where 
x is the observed dimension of the operator x̂.
To reduce the finite-size (finite-β) effect, we calculate the
“half-chain” correlation function Cx(β/2) for different β, and
study the relation between Cx(β/2) and β. In addition, we
enlarge the Fock space of the photon until the result converges.

The “half-chain” correlation function Cx(β/2) versus β for
different λ and z′ is presented in Fig. 1. We can find that
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FIG. 1. Imaginary-time correlation function of displacement operator Cx (β/2). (a) λ = 0.8. When z′ � 1, Cx (β/2) shows a power-law
increase. Two black dashed lines are linear fits. (b) λ = λc = 1. In this case, Cx (β/2) has a power-law increase when z′ � 1.5. The black
dashed line is a linear fit. (c) λ = 1.2. Here, Cx (β/2) has a power-law increase for all cases.

Cx(β/2) exhibits an increase when increasing β for all cases,
which is distinct to conventional high-dimensional systems,
where the correlation function should decay for increasing
distance. Equation (10) shows that the canonical dimension
of the operator x̂ is positive. Thus, generally, the correlation
function Cx(β/2) tends to increase when increasing the size β.
However, for higher-dimensional quantum systems (d � 1),
the corresponding order parameter has the canonical dimen-
sion (1 − d )/2 � 0, so the correlation function tends to decay
for increasing β. Therefore, this result, i.e., the correlation
function of the order parameter increases as β increases, is a
unique property of 0D quantum phases.

Now we discuss the correlation function Cx(β/2) in detail.
When λ < 1, Fig. 1(a) shows that Cx(β/2) hosts a power-law
increase only when z′ � 1, with the observed dimension

x = 1/z′ − 1/2 [see Fig. 2(a)]. This demonstrates that,
when z′ � 1, the system is described by a massless scalar
field even for λ < 1; i.e., the mass term in Eq. (9) is indeed
irrelevant in this case.

In the case of λ = 1, Cx(β/2) can exhibit a power-law
increase when z′ � 3/2; see Fig 1(b). This is a strong evi-
dence that there is no true second-order QPT at λ = 1 when
z′ > 3/2; i.e., the superradiant criticality is absent in this case.
Moreover, we also fit the dimension of x̂ at the critical point
as 
x = 1/z′ − 1/4 [Fig. 2(b)].

When λ > 1, Cx(β/2) shows a power-law increase for an
arbitrary z′; see Fig. 1(c). In addition, the dimension of x̂ is

x = 1/z′ in this case; see Fig. 2(b).

The observed dimension of x̂ versus z′ and λ is summarized
in Table I. Now we understand numerical results of Cx(β/2) in
terms of the dynamical critical exponent z′, where the system
can be divided into three regions. When 0 < z′ � 1, the sys-
tem is critical for an arbitrary λ, and there is no second-order
QPT at λ = 1, though 
x is not continuous at λ = 1. Here,
the sudden change of 
x originates from the exact zero of
the mass term at λ = 1. For 1 < z′ � 3/2, there is a true
second-order QPT at λ = 1, where the susceptibility in the
ordered phase is x̄ ∼ β1/z′ ∼ ω−1. When z′ > 3/2, the true
superradiant QPT is absent, since there is no scale invariance
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FIG. 2. The observed dimension of the displacement operator.
(a) 
x versus λ for z′ � 1. There is a sudden change for 
x at λ =
1. When λ < 1, 
x ≈ 1/z′ − 1/2; when λ = 1, 
x ≈ 1/z′ − 1/4;
and 
x ≈ 1/z′ for λ > 1. (b) 
x versus z′ for λ � 1. The orange
dashed curve is the function 
x = 1/z′, while the magenta one is

x = 1/z′ − 1/4.
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TABLE I. The observed dimension of the displacement operator

x . Here, “NSI” means “no scale invariance” in the corresponding
case.

0 < z′ � 1 1 < z′ � 3/2 z′ > 3/2

λ < 1 1/z′ − 1/2 NSI NSI
λ = 1 1/z′ − 1/4 1/z′ − 1/4 NSI
λ > 1 1/z′ 1/z′ 1/z′

at λ = 1. Therefore, the numerical results are consistent with
the effective theory and dimensional analysis.

E. Mapping to the ground state

We have studied the effective theory of the Rabi model at
finite temperatures. Now we apply the above results to the
ground state. Here, the key is to confirm the dynamical critical
exponent z′ in the Rabi model. According to conventional
QPTs, the definition of dynamical critical exponent can also
be expressed as the scaling between the gap and the length
scale, i.e., 
 ∼ ξ−z. Similarly, in the Rabi model, the length
scale at the critical point is ξ ∼ 1/ω, and z′ can be confirmed
by the relation


 ∼ ωz′
. (15)

Now we numerically obtain the dynamical critical exponent
as

z′ = 4/3, (16)

which is consistent with Ref. [23]; see also our Fig. 3(a).
According to Eq. (12), when z′ = 4/3, the mass term is

relevant, the ω4x4 term is marginal, and other higher-order
terms are irrelevant. Thus, the system can be described by a
1D real free scalar field. Since the fluctuation terms are all
negligible, the mean-field approximation is indeed valid to
understand the superradiant QPT.

To further uncover the phase transition by the effective ac-
tion, we can apply the principle of least action. For simplicity,
we use the following simplified effective action of the free
scalar field:

Seff =
∫ β

0
dτ

[
1

2
(∂τ x)2 + 1

2
(1 − λ2)ω2x2

]
. (17)

(i) For positive mass, i.e., |λ| < 1, to minimize the action
we have x = 0. Thus, in this case, the parity symmetry is
unbroken, corresponding a normal phase.

(ii) For negative mass, i.e., |λ| > 1, to minimize the action
we have x = ∞. This shows that there exists an instabil-
ity leading to a condensation of x, which corresponds to
a symmetry-breaking phase. When mapping to the original
Hamiltonian, we can know this symmetry-breaking phase is
indeed a superradiant phase.

We can also obtain the scaling of the order parameter x̂ at
the critical point

〈x̂〉 ∼ β1/2 ∼ ω−2/3, (18)

which is consistent with the result in Ref. [23].
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FIG. 3. The scaling of the gaps in (a) the Rabi model and (b) the
Dicke model, respectively. The orange dashed lines are linear fittings.

III. DICKE MODEL

Now we consider the Dicke model, which describes light
interacting with a large ensemble of two-level atoms [9]. The
Hamiltonian reads

ĤDicke = ωâ†â + �

N∑
j=1

σ̂ z
j + 2J√

N
(â† + â)

N∑
j=1

σ̂ x
j , (19)

where σ̂ α
j (α = x, y, z) describe the jth two-level atom, and N

is the number of atoms. Parity symmetry implies

[P̂, ĤDicke] = 0, P̂ = (−1)n̂
N∏

j=1

σ̂ z
j . (20)

In the thermodynamic limit N → ∞, there also exists a
second-order QPT in this 0D system from the normal phase to
the superradiant phase when increasing λ [10,11]. The critical
point is exact at

λ = λc =
√

ω�/2, (21)

and this QPT can also be described by the spontaneous break-
ing of the parity symmetry.

Now we apply the above method in the Rabi model to
discuss how the superradiant QPT occurs in the Dicke model.
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Here, the effective imaginary-time action can be obtained as

Seff(x) =
∫ β

0
dτ

[
1

2
(∂τ x̃)2 + 2ω

�

(
λ2

c − λ2
)
x̃2

+ α4

N
x̃4 + α6

N2
x̃6 + · · ·

]
, (22)

where x̃ is also a real scalar field, and α2n is a finite factor
with the explicit form unimportant. The detailed derivations
are presented in Appendix B. Similar to the Rabi model, the
canonical dimension of the field x is also [x̃] = β1/2. Since
ω and � are both finite in the Dicke model, the mass term is
always relevant, i.e., [

∫
dτ x̃2] = β2. In the case of finite size,

i.e., finite N , each interaction term is relevant, so there should
be no true second-order QPT.

In the “thermodynamic limit” N → ∞, analogous to the
Rabi model, we can define a dynamical critical exponent as
N ∼ β1/z′

. Thus the dimensions of the interaction terms are
now [

Nn−1
∫

dτ x̃2n

]
= βn+1−(n−1)/z′

. (23)

When z′ < 1/3, all interaction terms become irrelevant, and
the system can be effectively described by the free real scalar
field with a mass term.

For 1/3 < z′ < 1/2, the x4 term is relevant, while higher-
order interaction terms are irrelevant, and the effective theory
is a φ4 theory. In the above two cases, there exists a QPT at
the critical point λ = λc.

However, when z′ > 1/2, the higher-order interaction
terms are relevant, leading to the absence of a true QPT.
Therefore, the superradiant QPT of the Dicke model can also
be described by the effective field theory in Eq. (22).

Here, we discuss the ground-state properties of the Dicke
model, where we need to know the dynamical critical expo-
nent z′. Similar to the Rabi model, z′ can be calculated by the
relation


 ∼ N−z′
, (24)

where 
 is the gap. Via numerical simulations, we obtain
z′ = 1/3; see Fig. 3(b). Thus, the x̃4 term is marginal, and
other higher-order terms are irrelevant. Therefore, similar to
the Rabi model, the effective theory of the Dicke model can be
described by the mean-field approximation, and there indeed
exists a QPT when tuning the mass from positive to negative.

IV. DISCUSSION

The correlation length is divergent at the critical point,
so the long-wavelength physics is a significant aspect to
understand QPTs [3]. However, the original Hamiltonian gen-
erally contains too many microscopic details, which are not
useful for analyzing long-wavelength physics. Thus, to fur-
ther understand the QPT, we can integrate out all of the
microscopic details to obtain an effective field theory. This
long-wavelength-limit effective field theory can be used to
provide insight on the QPT. Specifically, it can tell us which
symmetry dominates the QPT, and how the quantum fluctu-
ations impact the phases. This is common practice in many
conventional QPTs. Here, to understand how superradiant

QPTs occur in 0D systems, we also introduce effective field
theories in the long-wavelength limit.

According to Eq. (9), we can find that the high-order term
ω2nx2n (the quantum fluctuations) contains a prefactor ω2n. In
the thermodynamic limit ω → 0, it seems that ω2nx2n also
tends to zero; i.e., the mean-field approximation is conver-
gent. However, for this 0D system, the expectation value of
the field x is divergent, i.e., x2n → ∞; see Fig. 1. Thus, the
fluctuation term ω2nx2n is not necessarily convergent. From
this viewpoint, the validity of the mean-field approximation
for the Rabi model is not obvious. To address this puzzle, we
study its effective field theory to analyze whether the quantum
fluctuations are relevant. Here, the core idea is introducing
the dynamical critical exponent z′ to relate two divergent
quantities, i.e., 1/ω and x2n. By dimensional analysis, we
find that the ω4x4 term is marginal, while the higher-order
terms are irrelevant. Therefore, the quantum fluctuation is
indeed negligible, and the mean-field approximation is valid
to describe this 0D superradiant QPT.

V. SUMMARY

In conclusion, we have investigated the effective theories
and finite-temperature properties of the superradiant QPT, and
shown how these occur in 0D light-matter interacting systems.
Using the path-integral method, we first derive the effective
imaginary-time action of the photon in the Rabi model. We
also define the dynamical critical exponent as the rescaling be-
tween the temperature and the photon frequency. We perform
a dimensional analysis to discuss whether high-order terms
are relevant, and the results show the following:

(i) When the dynamical critical exponent is small enough,
the system is described by a massless free scalar field, leading
to a critical phase for an arbitrary coupling strength.

(ii) The effective theory can be a free scalar field or φ4

theory with mass term for a marginal dynamical critical expo-
nent, and a true second-order QPT indeed emerges.

(iii) For a large dynamical critical exponent, higher-order
interaction terms become relevant, and the true QPT is absent.
These results were also verified by numerical simulations.

We also numerically obtain the dynamical critical expo-
nent, and our results show that the superradiant QPT in the
Rabi model can indeed be described by a mean-field approx-
imation. We also generalize this quantum-field method to the
Dicke model.

Our results make the 0D superradiant QPT compatible
with conventional statistical physics, and pave the way to
understand the superradiant criticality from the viewpoint of
effective field theories. There also remain several interesting
topics that deserve further study: We find that the 4th-order
terms are marginal for both the Rabi model and Dicke model,
and it would be an interesting issue to explore whether this
is universal in 0D or systems with all-to-all connectivity. In
addition, it will also be relevant to obtain the universal scaling
law of 0D superradiant QPTs by effective field theories. Other
meaningful topics include whether our field-theory methods
can be generalized to dispersive QPTs in light-matter inter-
acting systems [57–60], and what will happen to the effective
theory when adding the spatial dimension, i.e., considering the
Rabi lattice [61,62].
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APPENDIX A: EFFECTIVE ACTION
OF THE RABI MODEL

Here we derive the effective action of the Rabi model. For
simplicity, we rewrite the effective Hamiltonian in terms of
the harmonic oscillator

Ĥ = 1
2 p̂2 + 1

2ω2x̂2 + �σ̂ z + g
√

ωx̂σ̂ x. (A1)

We can also define the spinor ψ̂† = [ĉ†
↑, ĉ†

↓], where ĉ†
α is the

fermion operator. Thus, the spin operator can be obtained as

σ̂αγ = ψ̂†σαγ ψ̂. (A2)

Expressed in the form of path integral, the partition function
of the system takes the form

Z =
∫

Dx Dψ̄ Dψ exp[−S(x, ψ̄, ψ )], (A3)

where the action S(x, ψ̄, ψ ) has the form

S(x, ψ̄, ψ ) = S0(x) + S1(x, ψ̄, ψ ), (A4a)

S0(x) =
∫ β

0
dτ

[
1

2
(∂τ x)2 + 1

2
ω2x2

]
, (A4b)

S1(x, ψ̄, ψ ) =
∫ β

0
dτ ψ̄ (∂τ + �σ z + g

√
ωxσ x )ψ. (A4c)

We rewrite the partition function as

Z =
∫

Dx e−S0(x)
∫

Dψ̄Dψ e−S1(x,ψ̄,ψ )

:=
∫

Dx e−S0(x)Z1(x). (A5)

Applying the Fourier transformation

ψn = 1√
β

∫ β

0
dτψ (τ )eiνnτ , (A6a)

ψ̄n = 1√
β

∫ β

0
dτ ψ̄ (τ )e−iνnτ , (A6b)

νn = (2n + 1)π/β, (A6c)

we can obtain

Z1(x) =
∫

Dψ̄Dψ exp

{ ∑
νm,νn

ψ̄m[−iνnδm,n + �σ zδm,n

+ tx(νm − νn)σ x]ψn

}
, (A7)

where

t = λω
√

�/2β, x(pn) = 1√
β

∫ β

0
dτ x(τ )e−ipnτ . (A8)

According to the Gaussian integral, we have

Z1(x) = det
[
G−1

0 + tV
]

= det
[
G−1

0 + tx(νm − νn)σ x
]

:= exp(−S̃), (A9)

where G0 = (−iνn + �σ z )−1 is the Green function of the free
spinor field, and the matrix V satisfies Vm,n = x(νm − νn)σ x.
The corrected action S̃ can be obtained as

S̃ = − ln det
[
G−1

0 + tV
] = −Tr ln

[
G−1

0 + tV
]
. (A10)

Here the factor t is small, so we can use the Taylor expansion

S̃ = − Tr ln
[
G−1

0 + tV
] = −Tr ln G−1

0 − Tr ln[1 + tG0V ]

= − Tr ln G−1
0 +

∑
n

t2n

2n
Tr[G0V ]2n, (A11)

where the first term Tr ln G−1
0 is a constant.

First, we calculate the second-order contribution of
Eq. (A11), i.e.,

S̃2 = t2

2
Tr[G0V ]2 = t2

2

∑
νn,νm

Tr[G0(νn)Vn,mG0(νm)Vm,n]

= t2
∑
νn,pn

|x(pn)|2Tr
1

−iνn + �σ z
σ x 1

−iνn − ipn + �σ z
σ x

:= t2
∑

pn

π (pn)|x(pn)|2. (A12)

Now we calculate π (pn) as

π (pn) =
∑
νn

Tr
1

−iνn + �σ z
σ x 1

−iνn − ipn + �σ z
σ x

=
∑
νn

Tr
1

−iνn + �σ z

1

−iνn − ipn − �σ z

=
∑
νn

(
1

−iνn + �

1

−iνn − ipn − �

+ 1

−iνn − �

1

−iνn − ipn + �

)
. (A13)

Here we apply the common method of Matsubara frequency
summation. Let

π1(pn) =
∑
νn

h(νn)

=
∑

nn

1

−iνn + �

1

−iνn − ipn − �
, (A14a)

g(z) = β

eβz + 1
. (A14b)

023123-7



ZI-YONG GE, HENG FAN, AND FRANCO NORI PHYSICAL REVIEW RESEARCH 6, 023123 (2024)

Then we can introduce a contour integration

I : = lim
R→∞

∮
dz

2π i
g(z)h(−iz)

= lim
R→∞

∮
dz

2π i

1

−z + �

1

−z − ipn − �

β

eβz + 1

=
∑

zk

Res[g(z)h(−iz), zk], (A15)

where Res[ f (z), zk] is the residue of f (z) at zk . We can find
that iνn = 2iπn/β is the singularity of g(z)h(−iz), and the
corresponding residue is

Res[g(z)h(−iz), iνn] = h(νn). (A16)

In addition to iνn, another two singularities of g(z)h(−iz) are
z1 = � and z2 = −� − ipn, and the corresponding residues
are

Res[g(z)h(−iz), z1] = 1

ipn + 2�

β

eβ� + 1
, (A17a)

Res[g(z)h(−iz), z2] = 1

ipn + 2�

βeβ�

1 − eβ�
. (A17b)

Therefore, we have

I :=
∑
νn

h(νn) + Res[g(z)h(−iz),�]

+ Res[g(z)h(−iz),−� − ipn]. (A18)

Meanwhile, since we consider the infinite radius of the con-
tour, we have I = 0. Thus,

π1(pn) =
∑
νn

h(νn)

= − Res[g(z)h(−iz),�]−Res[g(z)h(−iz),−�−ipn]

= − β

ipn + 2�

e2β� + 1

e2β� − 1
. (A19)

Similarly, we also have

π2(pn) =
∑
νn

1

−iνn − �

1

−iνn − ipn + �

= β

ipn − 2�

e2β� + 1

e2β� − 1
. (A20)

Hence, we can obtain π (pn) as

π (pn) = π1(pn) + π2(pn)

=
(

β

ipn − 2�
− β

ipn + 2�

)
e2β� + 1

e2β� − 1

= − 4β�

p2
n + 4�2

coth(β�). (A21)

Since β → ∞, we have coth(β�) = 1. In addition, we
mainly concern the infrared limit, i.e., pn � �; thus π (pn)
can be approximated as

π2(pn) ≈ βp2
n

4�3
− β

�
. (A22)

Therefore, the second-order contribution of Eq. (A11) is

S̃2 = t2
∑

pn

(
βp2

n

4�3
− β

�

)
|x(pn)|2

= 1

2

∑
pn

(
λ2ω2 p2

n

4�2
− λ2ω2

)
|x(pn)|2. (A23)

Next, we calculate the 4th-order contribution of Eq. (A11),

S̃4 = t4

4
Tr[G0V ]4

= t4

4

∑
νn,νm,ν�,νk

Tr[G0(νn)Vn,mG0(νm)Vm,�G0(ν�)V�,kG0(νk )Vk,n]

= t4

4

∑
νn,pn,qn,rn

x(pn)x(qn)x(rn)x(−pn − qn − rn)

× Tr
1

−iνn + �σ z
σ x 1

−iνn − ipn + �σ z

× σ x 1

−iνn − ipn − iqn + �σ z

× σ x 1

−iνn − ipn − iqn − irn + �σ z
σ x. (A24)

Here, S̃4 can also be obtained by Matsubara frequency sum-
mation. However, we only consider the long-wavelength limit
rather than the explicit form of S̃4. Thus, we can neglect the
microscopic details, where S̃4 can be described by a simple
form

S̃4 = a4ω
4
∫ β

0
dτx4, (A25)

where a4 is a function of λ and �. Similarly, we can also give
estimations of higher-order contributions as

S̃2n = a2nω
2n

∫ β

0
dτx2n. (A26)

Therefore, the effective action of the harmonic oscillation can
be obtained as

Seff = S0 + S̃2 + S̃4 + S̃6 + · · ·

=
∫ β

0
dτ

[
1

2

(
1 + λ2ω2

4�2

)
(∂τ x)2 + 1

2
(1 − λ2)ω2x2

+ a4ω
4x4 + a6ω

6x6 + · · ·
]
. (A27)

APPENDIX B: EFFECTIVE ACTION
OF THE DICKE MODEL

In this section, we consider the Dicke model, which de-
scribes light interacting with a large ensemble of two-level
atoms. The Hamiltonian reads

ĤDicke = ωâ†â + �

N∑
j=1

σ̂ z
j + 2J√

N
(â† + â)

N∑
j=1

σ̂ x
j , (B1)

where σ̂ α
j (α = x, y, z) are the Pauli matrices describing

the jth two-level atom, and N is the number of atoms.
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There is also a parity symmetry [P̂, ĤDicke] = 0 with P̂ =
(−1)n̂

∏N
j=1 σ̂ z

j . In the thermodynamic limit N → ∞, there
also exists a second-order QPT in this zero-dimensional sys-
tem from the normal phase to the superradiant phase when
increasing λ. The critical point is exact at λ = λc = √

ω�/2,
and this QPT can also be described by the spontaneous break-
ing of the parity symmetry.

Here, to obtain the effective action of the Dicke model, we
need to apply the Holstein-Primakoff transformation. We first
introduce the angular momentum representation

Ŝα := 1

2

N∑
j=1

σ̂ α
j , (B2)

where Ŝα is the spin-N/2 angular-momentum operator. Ac-
cording to the Holstein-Primakoff transformation, we have

Ŝ+ = (
√

N − b̂†b̂)b̂, (B3a)

Ŝ− = b̂†(
√

N − b̂†b̂), (B3b)

Ŝz = N/2 − b̂†b̂, (B3c)

where b̂† (b̂) is the bosonic creation (annihilation) operator.
Thus, the Hamiltonian in Eq. (B1) can be written as

ĤDicke = ωâ†â + 2�b̂†b̂ + 4J√
N

(â† + â)

× (
√

N − b̂†b̂ b̂ + b̂†
√

N − b̂†b̂). (B4)

Here, we can use the Taylor expansion to expand the square
root term as

√
N − b̂†b̂ =

√
N

(
1 − b̂†b̂

2N
+ (b̂†b̂)2

4N2
+ · · ·

)
. (B5)

Thus we have

ĤDicke = ωâ†â + 2�b̂†b̂ + 4J (â† + â)(b̂† + b̂) + 4J (â† + â)

×
(

− b̂†b̂b̂ + b̂†b̂†b̂

2N
+ (b̂†b̂)2b̂ + b̂†(b̂†b̂)2

4N2
+ · · ·

)
.

(B6)

Therefore, according to the interaction between the bosons â
and b̂, we can write a general effective imaginary-time action
of the Dicke model as

Seff(x) =
∫ β

0
dτ

[
1

2
(∂τ x̃)2 + 2ω

�

(
λ2

c − λ2
)
x̃2

+ α4

N
x̃4 + α6

N2
x̃6 + · · ·

]
, (B7)

where x̃ is also a real scalar field, and α2n is a finite factor
with its explicit form unimportant. We note that the x̃ here is
not the coordinate of the bare oscillator â, while it is a linear
combination of â and b̂.
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