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Realizing quantum optics in structured environments with giant atoms
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To go beyond quantum optics in free-space setups, atom-light interfaces with structured photonic environ-
ments are often employed to realize unconventional quantum electrodynamics (QED) phenomena. However,
when employed as quantum buses, those long-distance nanostructures are limited by fabrication disorders.
In this work, we alternatively propose to realize structured light-matter interactions by engineering multiple
coupling points of hybrid giant atom–conventional environments without any periodic structure. We present
a general optimization method to obtain the real-space coupling sequence for multiple coupling points. We
report a broadband chiral emission for frequency-tunable giant emitters, with no analog in other quantum setups.
Moreover, we show that the QED phenomena in the band-gap environment, such as fractional atomic decay and
dipole-dipole interactions mediated by a bound state, can be observed in our setup. Numerical results indicate
that our proposal is robust against fabrication disorders of the coupling sequence. Our work opens up a route for
realizing unconventional light-matter interactions.
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I. INTRODUCTION

Harnessing interactions between quantum emitters and
quantized electromagnetic fields is a central topic of quantum
optics [1–6]. In recent years, a burgeoning paradigm with
giant atoms, which are coupled to waveguides at multiple
separate points with their sizes comparable to photonic wave-
lengths, provides unanticipated opportunities to gain insights
into exotic quantum optics beyond the dipole approxima-
tion [7–21]. The nonlocal coupling points cause nontrivial
phase accumulation of the propagating field from a single
giant emitter [22–24], allowing us to observe exotic phe-
nomena with no analog in small-atom setups. The examples
include decoherence-free interaction and oscillating bound
states, which are caused by quantum interference and time-
delay effects, respectively [25–27].

Structured dielectric environments, which are scalable in
integrated chips, have achieved tremendous progresses in
quantum optics [28–34]. Compared with free-space setups,
the vacuum mode properties and dispersion relation can be tai-
lored freely by shaping the dielectric structures [35–41]. One
emblematic example is photonic crystal waveguides (PCWs),
where the dielectric profile is periodically modulated, lead-
ing to the appearance of band gaps [42–48]. Inside the gap,
stable bound states of the hybrid photon and emitter are
formed, which can alternatively mediate long-range inter-
actions between emitters [49–57]. Moreover, when light is
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tightly transversely confined in high-refractive-index materi-
als, chiral emission occurs in nanophotonic structures owing
to spin-momentum locking [58–65]. However, fabricating
long-distance nanostructures is very challenging when con-
figuring those nanophotonic materials as quantum buses for
quantum information processing [51,52]. Due to unavoidable
fabrication disorders and defects, photons are scattered re-
peatedly, and their fragile quantum coherence is destroyed
[66–69].

Here we show that structured light-matter interactions can
be realized from the viewpoint of giant atoms, i.e., by spatially
designing the coupling sequence with a conventional pho-
tonic waveguide without any periodic structure. We present a
general optimization method to obtain real-space coupling se-
quences for a target structured environment, which has never
been discussed in previous studies. As examples, we show that
both broadband chiral emission for frequency-tunable giant
emitters (with no analog in other quantum setups) and band-
gap effect scan be realized by considering tens of coupling
points in a conventional one-dimensional (1D) waveguide.
Numerical results indicate that our proposal is robust against
fabrication disorders in the coupling sequences, and can avoid
localization and decoherence of photons appearing in long-
distance nanostructures.

II. OPTIMIZING THE COUPLING SEQUENCE

The generic Hamiltonian of a quantum emitter interacting
with a bosonic bath can be written as (setting h̄ = 1)

Hint =
∑

k

�ka†
kak +

∑
k

Gk (a†
kσ− + H.c.), (1)
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FIG. 1. Sketch of our proposal: A giant atom couples to a
conventional 1D waveguide at positions x1, . . . , xN . The coupling
sequence g(xi ) = A(xi )eiθ (xi ) is obtained via optimization methods.

where �k = ωk − ωq, with ωq being the atomic transition
frequency. Assuming a giant atom interacting with the waveg-
uide at multiple points X = {x1, . . . , xN } (see Fig. 1), the
k-space interaction is thus written as

Gk =
∑

xi

g(xi )e
−ikxi , g(xi ) = A(xi )e

iθ (xi ),

where g(xi ) is the interaction strength at xi (see Fig. 1). For
small-atom setups, Gk is approximately a constant due to the
pointlike coupling between the emitter and waveguide. There-
fore, the structural engineering of the photonic waveguide’s
dispersion relation �k plays an important role in achieving
exotic quantum dynamics in previous studies [70–74]. In con-
trast, for our proposal, the bosonic environment is no longer
designed, and a conventional waveguide is used. It has a
linearized dispersion within the photonic bandwidth to which
the giant atom significantly couples, i.e., ωk = c|k| with c
being the group velocity. An intuitive method for realizing the
desired Gk is to find the real-space function g(xi ) via inverse
Fourier transformation (iFT) [8]. However, our following dis-
cussions indicate that this method has many problems and
introduces many experimental overheads.

A. Analytical method and its problems

We assume giant atoms interacting with a 1D waveguide,
which has a linearized dispersion within the photonic band-
width to which the giant atom significantly couples. The
following k-space coupling function equivalently describes an
atom interacting with a band-gap environment,

GI
k =

⎧⎪⎨
⎪⎩

0,
{
k0 − kd

2 < |k| < k0 + kd
2

}
,

G0,
{
k0 + kd

2 < |k| < kmax
}
,

G0,
{−k0 + kd

2 < k < k0 − kd
2

}
.

(2)

That is, the gap’s width is kd and is centered at ±k0. The
coupling constant is denoted by G0. For convenience the ultra-
violet cutoff frequency is set at ckmax, which should be large
enough to approximate the regime {k0 + kd

2 < |k| < kmax} as
an infinite-bandwidth environment.

The inverse Fourier transform (iFT) of GI
k is derived as

gI (x) = sin kmaxx

πx
− 2

sin kd x/2

πx
cos k0x, (3)

which is a continuous function in real space. In experiments,
giant atoms usually couple at multiple discretized positions on
a waveguide. Therefore, we assume that the coupling function

gI (x) is sampled by the following function,

S(x) = W (x)P(x), W (x) =
{

1, |x| � L,

0, |x| > L,

P(x) =
n=+∞∑
n=−∞

δ(x − nXT ), (4)

where W (x) is a window function with a width 2L, and P(x) is
the sample sequence composed by δ-function series which are
equally spaced with distance XT . To avoid retardation effects,
the total coupling length 2L (i.e., the giant atom’s size) should
be much smaller than the size of the decaying photonic wave
packet [26]. All those physical constraints will be addressed
below.

According to the convolution theorem, the Fourier trans-
formation of S(x) is written as

S(k) = W (k) ∗ �(k), W (k) = 2
sin(kL)

k
,

P(k) = 2π

XT

n=∞∑
n=−∞

δ

(
k − 2πn

XT

)
, (5)

where ∗ represents the convolution of two functions.
Equation (5) indicates that the width of the δ functions δ(k −
2πn
XT

) in k space are broadened as ∼2π/L. To resolve the
narrow band gap, the following relation should be satisfied,

2π/L � kd −→ L � 2π

kd
. (6)

Additionally, to avoid the spectrum aliasing effect, the sample
distance is bounded by the Nyquist-Shannon sampling
theorem

2π

XT
� 2kmax −→ XT � π

kmax
. (7)

Consequently, the coupling number of the giant atom is
bounded by

N = 2L

XT
� 4kmax

kd
. (8)

We now consider the target k-space coupling function with
kmax = 2k0 and kd = 1/15 [see Fig. 2(a)]. According to
Eq. (8), the minimum coupling number is calculated as
N = 120. In Fig. 2(d), we plot the sampled real-space
coupling sequence by setting N = 300. The corresponding
k-space coupling function is shown in Fig. 2(a), and the
amplitude is mapped with color in Fig. 2(b). Note that
λ0 = 2π/k0 is the wavelength of the central mode in the
gap, and is employed as the unit length in this work. The
unit for the frequency is adopted as ωc = ck0. To mimic the
band gap, the most important feature of Gk is the vanishing
of the coupling strength around k0. The enlarged plot of this
regime is depicted in Fig. 2(c), which shows that the remnant
coupling is still about 0.02G0. In principle one can keep
increasing both N and L to suppress the nonzero coupling.
However, many more coupling points are needed, which is
very challenging in experiments. Moreover, given that L is
comparable to the wave packet decaying from a single point,
the propagating time cannot be neglected.

Additionally, we note that the coupling strengths g(xi )
which are sampled from Eq. (3) alter their signs [see
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FIG. 2. (a) The k-space coupling for the real-space sequence by discretizing gI (x) in Eq. (3) [see plot in (d)]. The target coupling function
has two symmetric dips centered at k0 with width kd/k0 = 1/15. (b) The waveguide is assumed to be of linear dispersion with a phase velocity
c. The coupling strength Gk in (a) is mapped with color, where two symmetric dips around k0 are equivalent to band gaps in a structured
environment. (c) The enlarged plot around k0 of plot (a). Inside the band gap there is still remnant nonzero coupling (∼0.02G0) even with a
large sampling number N = 300. (d) Real-space coupling sequence g(xi ) (with N = 300). The sampling interval and total length are set as
XT = 0.24λ0 and L = 35λ0, respectively.

Fig. 2(d)]. That is, g(xi ) needs an additional π -phase differ-
ence, which leads to another problem when implementing
the coupling sequence in experiments. We now consider the
circuit QED as an example, where giant atoms are mostly
discussed. As depicted in Fig. 3, a transmon (working as a
giant atom) is capacitively coupled to a 1D waveguide at
multiple points. As discussed in Refs. [5,75], the interaction
strength is written as

Gk =
∑

xi

g(xi )e
−ikxi , (9)

g(xi ) = e

h̄

Cg(xi )

C	

√
h̄ωk

Ct
� e

h̄

Cg(xi )

C	

√
h̄ωq

Ct
, (10)

FIG. 3. Sketch of a feasible setup to realize our proposal: a trans-
mon couples to a 1D coplanar waveguide at multiple coupling points
via local capacitances Cg(xi ). The real-space discretized coupling
function is encoded into the capacitance sequence Cg(xi ).

where CJ is the Josephson capacitance of the transmon, Cg(xi )
is the coupling capacitance at point xi, C	 = CJ + ∑

i Cg(xi ),
and Ct is the total capacitance of the waveguide. In Eq. (10)
we replace ωk → ωq for the zero-point fluctuations of the
voltage operators because only modes around ωq contribute
significantly to the dynamics. Under this condition, the local
coupling strength g(xi ) is proportional to the coupling capac-
itance Cg(xi ), and the coupling sequence in Fig. 2(d) can be
directly encoded into Cg(xi ) (see Fig. 3). We notice that the
coupling signs of g(xi ) are fixed because {Cg(xi ),C	} � 0.
That is, there are no additional π -phase differences between
different coupling points, and the discretized coupling ob-
tained via the iFT method cannot be implemented with a
linear coupling capacitance (or inductance). The additional
local phase θ (xi ) can be encoded at xi via the time-dependent
modulating of the nonlinear QED elements, which however
will add more overheads in the experiments [76–78].

In conclusion, to realize a structured environment with
a giant atom, the analytical iFT method has the following
problems:

(i) Too many coupling points might be needed, which is
challenging for the experimental realization.

(ii) The remnant nonzero coupling in the band gaps is still
high.

(iii) The coupling strengths alter their signs, which is
unfeasible with the linear coupling elements used in the ex-
periments.
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B. Optimization method

To solve the above problems, we now present a general
optimization algorithm to find the desired coupling sequence.
Unlike previous setups using identical giant atom–photon in-
teracting strength at each coupling point and equal distances
between coupling points [25–27], our device relies on the
optimal design of the coupling sequence.

We consider the unequal contribution of the modes with
different unbalanced weights. For the band-gap environment,
the coupling strength should be exactly zero inside the gap
area, which is the most important feature for a band-gap en-
vironment. Outside the band-gap area, even if the interaction
varies with k slightly (of the same order), the dynamics, such
as trapped bound state and nonexponential decay led by band
gaps, can still be observed. For the modes far away from
the gap, strong coupling strengths does not affect the sys-
tem’s evolution due to large detuning relations. Therefore, the
constraint requiring the k-space coupling strength outside the
band gap to be identical is too strong. All these indicate that
the desired k-space coupling can be obtained even when the
real-space coupling strengths are of the same sign. Moreover,
relaxing the restrict conditions by allowing Gk to vary with k
can also reduce the required number of coupling points.

Now we convert realizing the target k-space coupling
function as an optimization problem, which can be solved
numerically. Given that the QED setup is constructed via
conventional linear elements, the local phase θ (xi ) ≡ 0, and
G∗

k = G−k is valid. In this case, ∀g(xi ) � 0 should be added
in the constraint conditions. The constraint conditions for this
problems are summarized as follows:

1. ∀g(xi ) � 0,

2. ηλ0 < min {xi+1 − xi},

3. − L

2
< x1 < xN <

L

2
, L � L̄0,

4. N � Nmax, (11)

where L̄0 = (
∑N

i Li )/N with Li being the size of a decaying
photonic wave packet from a small atom which just couples to
the waveguide at a single point g(xi ). Condition 1 restricts that
all real-space coupling strengths are of the same sign, which
avoids the coupling sign problem in QED setups with linear
couplers.

Condition 2 sets the lower bound of the distance between
two neighbor points. The reason for this restriction is that
the coupling is mediated via physical elements with finite
sizes (for example, capacitances or inductances in circuit
QED). Due to fabrication limitation and to avoid crosstalk,
two neighboring points cannot be too close to each other.

In condition 3, L̄0 is the average size of all the decaying
wave packets. This restriction guarantees that the reabsorption
and reemission of photons due to time retardation can be
neglected.

Condition 4 sets the maximum coupling number, which is
much smaller than that bounded by Eq. (8).

Considering a real-space sequence g′(xi ) satisfying condi-
tions 1–4, its k-space coupling function is denoted as G′(k),
which is obtained from Eq. (10). To find the optimized real-

space sequence, we define an objective function

Cm =
∫ kmax

−kmax

dk||G′(k)| − |GI (k)||w(k), (12)

which can quantify the difference between obtained G′(k) and
the target coupling function. In Eq. (12) we introduce a weight
function w(k) to control the similarities for modes in different
regimes. For simplicity, in this work we assume w(k) to be

w(k) =

⎧⎪⎨
⎪⎩

w1,
{
k0 − kd

2 < |k| < k0 + kd
2

}
,

w0,
{
k0 + kd

2 < |k| < kmax
}
,

w0,
{−k0 + kd

2 < k < k0 − kd
2

}
.

(13)

Since the similarity between G′(k) and GI (k) in the band-gap
regime is much more important, we set w1 � w0 in Eq. (12).
The optimization process minimizes Cm by searching the
possible functions g(xi ) satisfying the constraint condition in
Eq. (11). Note that the constraint conditions stated in Eq. (11)
can be different, depending on problems studied and experi-
mental setups employed.

To simulate a band-gap environment, we set kd/k0 = 1/15,
L � 17λ0, η = 0.1λ0, Nmax = 30, and w1 = 60w0, and the
obtained coupling sequence g(xi ) (of the same sign) is listed in
Table I of Appendix A. We employ the proposed optimization
method by searching the sets {xi, g(xi )}. The optimized Gk

is depicted in Fig. 4(a), and the enlarged plot around the
band gap is in Fig. 4(b). We find that the number of points
is reduced as N = 28, and the remnant nonzero coupling in
gap area is decreased below 10−4G0, which is much weaker
than those in Fig. 2(c). Specially, Gk varies slightly with k
for the modes outside the band gap, and the dc part (around
k � 0) will strongly couple to the giant atom because the
g(xi )’s signs are the same [see Fig. 4(a)]. To demonstrate the
band-gap effect, the atomic frequency is usually set around
ck0, and therefore, the interaction with those low-frequency
components is negligible due to large detuning effects, which
can be verified from the numerical discussion in next section.

In experiments, reducing the number of coupling points
can significantly simplify the whole setup. However, when
N is too small, G′(k) obtained by the proposed optimization
algorithm will differ significantly from the target coupling
function Gk . For example, when N = 9, we find G′(k) unable
to capture the important features of the band-gap environment,
as shown in Fig. 4. Outside the band-gap area, the interaction
strength begins to vary drastically. Moreover, the band gap
obtained becomes much wider than the target coupling G(k).
Therefore, there is a lower bound for the coupling number
in our proposal, below which the proposed algorithm cannot
successfully find a suitable sequence.

We now summarize nontrivial differences between inter-
ferences in the photonic structure and giant atoms. First,
photonic media are often fabricated with periodic structures
to satisfy the Bragg reflection relation. However, in our pro-
posal with giant atoms, the coupling points can distribute with
unequal spacing, and the coupling amplitudes can also differ
considerably (see Table I).

Second, in principle periodic photonic structures should
be infinitely long (or at least much larger than the
wavelength/wave-packet size); otherwise the photons will be
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TABLE I. The real-space coupling sequence obtained via the optimized method proposed in this work. The corresponding k-space coupling
is shown in Fig. 4(a).

position (xi/λ0) −8.196 −7.901 −6.992 −6.682 −4.721 −4.396 −3.726 −3.419 −2.732 −2.441
coupling strength 0.0184 0.0291 0.0268 0.0146 0.0306 0.0502 0.0302 0.086 0.0317 0.1206
position (xi/λ0) −1.71 −1.46 −0.507 −0.006 0.244 0.544 1.488 2.459 3.439 4.448
coupling strength 0.0906 0.0748 0.0223 0.1413 0.1553 0.9543 0.0458 0.1441 0.1305 0.1152
position (xi/λ0) 4.861 5.44 5.88 6.383 6.846 7.166 7.857 8.168
coupling strength 0.0298 0.0393 0.0402 0.0219 0.0472 0.0184 0.0366 0.0265

reflected by the boundary and the properties of structured
environments cannot be observed. When configured as a quan-
tum bus, the quantum coherence will inherently be destroyed
by fabrication disorders along the long waveguide. For pro-
posals with giant atoms, the coupling sequences are of finite
length, with a finite number of couplings.

Those differences indicate that the interference mecha-
nisms in those two paradigms are fundamentally different,
even though the observed quantum optical phenomena are
similar. Revealing the interference mechanism in giant atoms
is of both fundamental and technological significance, which
cannot follow the old routines used in photonic media.

III. QED IN BAND-GAP ENVIRONMENTS

A. Bound states

In Fig. 4(a), Gk is zero only in a narrow band with width kd

around ±k0; otherwise it remains a constant. This scenario is
very similar to an atom interacting with a waveguide environ-
ment with band gaps in periodic structures. We now show that
our setup shares very similar QED phenomena with conven-
tional light-matter hybrid structures with photonic band gaps.
Owing to suppression effects of the unbalanced weight func-
tion, the remnant coupling in the gap area is approximately
zero, which can exactly mimic a band-gap environment.

We mainly focus on the fractional decay and bound state
of the setup. In the single-excitation subspace, considering an
initial excitation in the giant atom, the time-dependent state

vector of the hybrid system is

|ψ (t )〉 =
∑

k

ck (t )|g, 1k〉 + ce(t )|e, 0〉.

The evolutions of the atomic population |ce(t )|2 are shown
in Fig. 5(a) for different ωq. There, |ce(t )|2 shows frac-
tional decay with most energy being trapped inside the
atom when ωq is in the band gap. As discussed in
Appendix A, the trapped population is approximately

|ce(t → ∞)|2 �
(

1 +
∑

k

|Gk/�k|2
)2

.

Once ωq is shifted far away from the gap area, |ce(t )|2 can
exponentially decay to zero. Moreover, there exists a static
bound state with its wave function localized around the atom.
As derived in Appendix A, the real-space distribution for the
photonic part of the bound state is

ψb(x) ∝
∫ ∞

∞
dk

Gk

�k
ekx =

N∑
i=1

∫ ∞

−∞

g(xi )

�k
ek(x−xi )dk. (14)

In Fig. 5(b), we plot the field distribution by solving the
system evolution to ωct = 1350, which is well described by
the stable bound state obtained in Eq. (14). All the above
phenomena are very similar to those observed in setups with
band-gap environments [51–55]. The counterintuitive phe-
nomenon is that there is no stable bound state if a small
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FIG. 4. (a) Coupling function Gk obtained via out optimization algorithm with N = 28 and N = 9. The real-space coupling sequence for
N = 28 is listed in Table I of Appendix A. (b) The enlarged plot around k0. The detuning between ωq and the band edge of N = 28 is denoted
as �0.
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FIG. 5. (a) Time evolution of |ce(t )|2 for different atomic frequencies ωq. (b) The photonic part of the bound state by setting ωq = ωc

(in the band gap). (c) In the presence of different disorder strengths, the trapped population |ce(t )|2 (ωct = 1350) changes with ωq.

atom is coupled to the conventional waveguide, while for giant
atoms coupled to the waveguide, fields emitted from different
coupling points interfere with each other [see Eq. (14)], which
results in a time-independent φb(x). Note that in our discus-
sion, the propagating time inside the giant atom is negligible.
Since the waveguide supports only modes with nonzero group
velocity, the wave packet outside the coupling regime cannot
be reflected by any point and will propagate away. Therefore,
φb(x) exactly lies within the coupling regime, which can be
viewed as bound states in continuum studied in Refs. [11,26].
The structured environment supports modes with zero group
velocity [52,55,73]; φb(x) can spread far away from the cou-
pling point.

To include disorder effects, we sample the error δg(xi )
randomly from a Gaussian distribution centered around zero
with width σAg(xi ). The simulation method is presented in
Appendix B. We plot the disorder-averaged excitation being
trapped inside the atom versus ωq (ωct = 1350), as shown
in Fig. 5(c). The averaged coupling inside the gap becomes
nonzero due to the random noise. Therefore, the protection
from the band gap is destroyed, and |ce(t )|2 decays. The deco-
herence rate increases with growing σA, as shown in Fig. 5(c).
However, for σA < 0.1, the evolution is only slightly affected
by disorders. The experiments with giant emitters (with two or
three coupling points) in Refs. [22,79] indicate that the ampli-
tudes of the coupling sequence can be fabricated with a high
accuracy. There is no fundamental limitation of increasing the
coupling number to be tens of couplers. With the development
of fabrication method, we believe that our proposal is within
the capability of setups with giant atoms in the near future.

B. Dipole-dipole interactions

Considering multiple giant atoms coupled to a common
waveguide with the optimized sequences for band-gap en-
vironments, these will interact with each other given that
their bound states overlap with each other. We derive their
dipole-dipole interaction strength by taking two giant atoms
as an example. The Hamiltonian describing two giant atoms
interacting with a common waveguide is expressed as

Hint2 =
∑

k

�ka†
kak +

∑
i=1,2

∑
k

(Gkia
†
kσ

−
i + H.c.), (15)

where we assume two atoms’ transition frequencies to
be identical, and Gki = ∑

j gi(x j )G0e−ikxi j is the coupling
strength between giant atom i and the waveguide. For sim-
plicity, the optimized coupling sequences of two atoms are
assumed the same, i.e., g2(xi ) = g1(xi + ds) with ds being
their separation distance. Given that their frequencies are in
the band gap [see Fig. 4(b)], two atoms will exchange photons
without decaying.

In principle, the exchange rate between two atoms can
be tediously obtained by the standard resolvent-operator
techniques [4]. This method is valid even when the atom-
waveguide coupling enters into the strong-coupling regime.
Here we focus on the weak-coupling regime, and the proba-
bility of photonic excitations in the waveguide is extremely
low. In this case, the Rabi oscillating rate between two
atoms corresponds to their interaction strength mediated by
the waveguide’s modes, which can be simply derived via
the effective Hamiltonian method [80]. Only the modes
outside the band gap interact with two atoms, and the dipole-
dipole interacting Hamiltonian mediated by one mode k is
derived as

Hd−d,k = Gk1G∗
k2

�k
(σ−

1 a†
kσ

+
2 ak − σ+

2 akσ
−
1 a†

k ) + H.c. (16)

The waveguide is just virtually excited and the photonic pop-
ulation is approximately zero. Therefore, by adopting the
approximations 〈a†

kak〉 � 0 and 〈aka†
k〉 � 1, we can trace off

the photonic freedoms in Eq. (16), and simplify Eq. (16) as

Hd−d,k � −Gk1G∗
k2

�k
σ+

2 σ−
1 + H.c. (17)

Note that the interaction Hamiltonian Hd−d,k in Eq. (17)
is only mediated by one mode k. By taking all the mode’
contributions into account, we derive the total dipole-dipole
interaction as

Hd−d = JAB(σ+
2 σ−

1 + H.c.), (18)

with

JAB = −
∑

k

Gk1G∗
k2

�k
= Lw

2π

∫ kmax

−kmax

|Gk1|2eikds

�k
dk, (19)

where Lw → ∞ is the waveguide’s length adopted in the
numerical simulations, and we assume that the coupling se-
quence of atom b is the same with a, translated a distance
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a

b

a b

(a)

(b)

FIG. 6. A QED setup where two giant atoms a, b interact with
the same waveguide. (b) When two atoms’ bound states overlap with
each other, their dipole-dipole exchange rate is nonzero. (b) Relative
to (a), two giant atoms decouple with each other when their coupling
regimes are separated.

ds to a. A long waveguide is utilized to avoid photons being
reflected by the boundary. Note that we adopt the transla-
tion relation between two coupling sequences, i.e., Gk2 =
Gk1e−ikds . From Eq. (19), one can find that the coherent ex-
change channel is proportional to the overlap area between
two bound states. Figure 7(a) depicts JAB versus ds [Eq. (19)],
which matches well the numerical dynamical evolutions [ob-
tained from the two atoms’ Rabi oscillating frequency 2JAB;
see Fig. 7(b)]. When ωq lies in the band gap, due to the
protection of the band gap effects, both collective and indi-
vidual decays are zero. and the dipole-dipole exchange is free
of decoherence. Since each bound state’s distribution area
coincides with the coupling regime, JAB is nonzero only when
two atoms’ coupling regimes overlap with each other. The
dipole-dipole interaction vanishes when ds is larger than the
coupling distance L (L = 17λ0), as depicted in Fig. 6(b). We
also consider two coupling sequences both experiencing inde-
pendent disorders; the average Rabi oscillations are shown in
Fig. 7(c). For σA � 0.02, the decay of the exchange process
is not apparent, and the two atoms can coherently exchange
excitations with a high fidelity.

IV. BROADBAND CHIRAL EMISSION

In the above discussions, we assume that the coupling
strengths g(xi ) are real and of the same sign, which can be
realized in experiments with linear QED elements. In this
case, the k-space interaction satisfies Gk = G∗

−k , indicating
that the spontaneous emission rates into the right (k > 0) and
left directions (k < 0) are identical. Therefore, the photonic
field along the waveguide has no chiral preference. Given
that additional local phases are generated via synthetic meth-
ods, i.e., g(xi ) = A(xi )eiθ (xi ), the relation |Gk| = |G−k| is not
valid again. In circuit QED this additional phase can be real-
ized via nonlinear Josephson junctions. As demonstrated in
Refs. [76,77,81], by applying a time-oscillating flux signal
with phase θ (xi ) through the coupling loop at point xi, the

0 16

0 9000

Eq. (19)
dynamical Rabi frequency

J A
B
/ω
c

ds/λ0

(a)

L

0

1.8
×10-3

(b)

(c)
P e
1,
2(
t) ds=17 0

〈σ〉=0.1

1

0

P e
1,
2(
t)

ct

ds=0

〈σ〉=0.02

0

1

FIG. 7. (a) The dipole-dipole interaction strength vs the separa-
tion distance ds (ωq = 4.4). (b) The Rabi oscillations for ds = 0 and
ds = 17λ0 > L, respectively. (c) The dissipative Rabi oscillations
under different disorder strengths.

local phase θ (xi ) was successfully encoded into the coupling
point.

To achieve chiral emission, the left-propagating modes
should be decoupled from the giant atoms, a most important
feature for Gk . Therefore, the weight function w(k) inside the
asymmetric gap is set to be much larger than outside the gap.
Similar to realizing band-gap effects, we first define a target
function:

GI
k =

⎧⎪⎨
⎪⎩

0,
{−k0 − kd

2 < k < −k0 + kd
2

}
,

G0,
{−kmax < k < −k0 − kd

2

}
,

G0,
{−k0 + kd

2 < k < kmax
}
,

(20)

where the chiral bandwidth is kd . We define a weight function
during the optimizing process

w(k) =

⎧⎪⎨
⎪⎩

w1,
{−k0 − kd

2 < k < −k0 + kd
2

}
,

w0,
{−kmax < k < −k0 − kd

2

}
,

w0,
{−k0 + kd

2 < k < kmax
}
.

(21)

We optimize the target k-space interaction GI
k with a wide

asymmetric band gap (with a width kd/k0 = 2/3) centered
at k0, as shown in Fig. 8(a). We achieve |Gk| �= |G−k|
[16,82–84], indicating that chiral emission of photons
can be observed [79,85–87]. To achieve the optimal sets
{xi, A(xi ), θ (xi )}, we choose the constraint conditions 2–4 of
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FIG. 8. (a) The averaged k-space coupling coefficient Gk for the
sequence in Fig. 1 under different disorder strengths. (b) Chiral factor
β+ changes with ωq in the presence of the disorder in (a).

Eq. (11). We search the optimized sequence by adopting
η = 0.125, Nmax = 8, w1 = 30w0, and L � 2λ0. Similarly,
searching the optimal sets {xi, A(xi ), θ (xi )} is now converted
as a convex optimization problem by minimizing Cm.

Contrasting previous studies on chiral quantum optics tar-
geting only on a single frequency [58,60], our proposed
system can emit photons in a broadband frequency regime,
given that the frequency of the giant atoms is freely tuned. The
amplitudes A(xi ) and phases θ (xi ) of the coupling sequence
are listed in Table II. In contrast to photonic media with
periodic structures, the coupling points are now distributed
with unequal spacing, and their strengths differ considerably.
Moreover, the total coupling number is N = 10 and the giant
atom size is L = xN − x1 < 2λ0, which is much shorter than
in a structured photonic media. As depicted in Fig. 8(a), in-
side the asymmetric gap, the optimized Gk is approximately
zero, and matches the target coupling function. Compared to
realizing chiral emission from a pair of entangled emitters
[88], the Lorentz reciprocity in our proposed setup is broken.
Moreover, chiral emissions in our proposal do not need any
preparation of fragile entangled states, and therefore are more
robust to decoherence noise. The chiral factor β± can be

derived by employing the Weisskopf-Wigner theory

β± = |G±kr |2
|Gkr |2 + |G−kr |2

, (22)

where kr = ωq/c, G±kr are the coupling strengths at the
resonant positions, and + (−) corresponds to the right
(left) propagating mode. The asymmetric coupling with
Gkr � G−kr indicates a right chiral emission. Moreover,
the asymmetric regime is very wide [see Fig. 8(b)],
indicating a broadband chiral emission for frequency-tunable
giant emitters.

When ωq varies in a wide frequency regime, the chi-
ral factor always approaches β+ � 1. Such broadband chiral
behavior for frequency-tunable giant emitters has not yet
been reported in other quantum setups. For example, the
chiral bandwidth of nanophotonic structures is equal to
the Lorentzian transmission width of the emitter, which is
much narrower than that in our proposal [64]. In strongly
confined nanophotonic structures, the chirality is linked to
spin-momentum locking, while the chiral emission in our
proposal is based on interference effects. This is another fun-
damental advantage of our proposal.

For the experimental realization of our setup, the fabrica-
tion errors can perturb the optimized coupling sequence. To
include this disorder effect, we add random perturbations to
the coupling strength as (see discussion in Appendix B)

g(xi ) → [A(xi ) + δA(xi )]e
i[θ (xi )+δθ (xi )].

The random offsets are sampled from Gaussian distributions
with amplitude (phase) disorder width σαA(xi ) (σφ). We plot
the disorder-averaged k-space coupling for different {σA, σφ},
as shown in Fig. 8(a). The asymmetric band gap is lifted
due to disorders. The evolution shows that the chiral factor is
approximately 1 in a very wide frequency range for disorder
strengths {σA = 0.02, σφ = 0.02π} [see Fig. 8(b)]. Even with
stronger disorders, i.e., {σA = 0.1, σφ = 0.1π}, the chirality
remains above 0.85, indicating that the broadband chiral emis-
sion realized in our proposal is robust to fabrication errors in
the coupling sequence.

V. CONCLUSION

In this work, we explore the possibilities to realize quantum
optics in structured photonic environments with giant atoms.
We show that most phenomena can be reproduced by de-
signing the couplings between giant atoms and conventional
environments without any nanostructure. We first introduce
a general method to find the optimized coupling sequences
for arbitrarily structured light-matter interaction. Given that a
position-dependent phase is added to each coupling point, the
giant atom can chirally emit photons in a very wide frequency
regime, which has no analog in other quantum setups. We
also show that the quantum effects in a band-gap environ-

TABLE II. The amplitudes and phases of the coupling sequence in Fig. 7, which is obtained via the proposed optimization method.

position (xi/λ0) −0.909 −0.757 −0.383 −0.508 −0.0975 −0.222 0.393 0.120 0.641 0.909
amplitude A(xi ) 0.088 0.130 0.628 0.429 0.392 0.591 0.365 0.198 0.615 0.243
phase θ (xi ) 0.388π −0.500π −0.446π 0.500π −0.500π 0.500π −0.500π 0.179π 0.0048π 0.460π
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ment (such as atomic fractional decay, static bound state, and
nondissipative dipole-dipole interactions) can all be observed.
Numerical results indicate that all the above QED phenomena
can be observed even in the presence of fabrication disorder in
coupling sequences. Our proposed methods are very general
and can also realize other types of structured environments,
e.g., with multiple band gaps or a narrow spectrum bandwidth.
Other quantum effects in those artificial environments, such
as non-Markovian dynamics or multiphoton processes, can
also be revisited [89–92], and new quantum effects might be
observed.
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APPENDIX A: FRACTIONAL DECAY AND BOUND STATES

We first estimate the size of the decaying wave packet for
a single coupling point. According to the Weisskopf-Wigner
theory, given that a small-atom coupling at point xi, the decay
rate, and the corresponding wave packet size are respectively
derived as

�i = 2π |g′
xi
|2

c
, g′

xi
= g(xi )

√
Lw

2π
, Li � 2c�−1

i , (A1)

the coupling constant is set as G0 = 0.002ωc in our discus-
sion. In numerical simulations, the mode number in the regime
−kmax < k < kmax is discretized with an interval δk = 0.67 ×
10−3k0, which is equal to considering a waveguide with length
Lw = 1.5 × 103λ0. Such a long waveguide guarantees the
propagating wave packet never touches the boundary. By em-
ploying the coupling sequence in Table I, the maximum and
average sizes of the wave packet are respectively calculated
as max{Li} � 2 × 102λ0 and L̄0 � 8 × 104λ0, which are both
much larger than the giant atom’s size L. Therefore, we can
neglect the time retardation effects.

Assuming a single excitation initially trapped inside the
giant atom, the system’s state at time t is expanded as
|ψ (t )〉 = ∑

k ck (t )|g, 1k〉 + ce(t )|e, 0〉. The dynamical evolu-
tion is numerically solved in this single-excitation subspace
by discretizing the waveguide’s modes in k space. A similar
method can be found in Ref. [16]. We start from the evolution

governed by the interaction Hamiltonian in Eq. (1), which is
derived as

ċe(t ) = −i
∑

k

Gkck (t ), (A2)

ċk (t ) = −i�kck (t ) − iG∗
kce(t ). (A3)

The above equations can be expressed in Laplace space as

sc̃e(s) − ce(t0) = −i
∑

k

Gkc̃k (s), (A4)

sc̃k (s) − ck (t0) = −i�k c̃k (s) − iG∗
k c̃e(s), (A5)

and the initial conditions are ck (t = 0) = 0 and ce(t = 0) = 1.

The time-dependent evolution is derived by the inverse
Laplace transformation [82]

ce(t ) = 1

2π i
lim

E→∞

∫ ε+iE

ε−iE
c̃e(s)est ds, ε > 0. (A6)

Finally, we obtain

c̃e(s) = 1

s − 	e(s)
, 	e(s) =

∑
k

−|Gk|2
s + i�k

, (A7)

where 	e(s) is the self-energy of the giant atom. Given that
the atomic frequency is in the gap area, part of the energy will
be trapped inside the giant atom since there is no resonant
pathway to radiate the excitation away. This point can also
be verified from the roots of the transcendental equation s −
	e(s) = 0, which correspond to the intersection points of
f (s) = s and f (s) = 	e(s) [see Fig. 9(a)]. We find that there
is only one purely imaginary solution s0 (blue dots), which
increases with G0. Since s0 is the imaginary pole for c̃e(s), it
corresponds to a static bound state which does not decay with
time [4]. In this scenario, part of the atomic energy will be
trapped without decaying, and the steady amplitude of ce(t )
can be obtained via the residue theorem

ce(t → ∞) = Res(s0) = 1

1 − ∂s	e(s)

∣∣∣
s=s0

= 1

1 − ∑
k

|Gk |2
(s0+i�k )2

. (A8)

In Fig. 9(b), we plot |ce(t → ∞)|2 versus the coupling
strength G0, which matches well with |Res(s0)|2. Given that
the coupling strength is weak, most of the energy was trapped
inside the atom, and the steady-state population is |ce(t →
∞)|2 � 1. When increasing G0, the trapped atomic excita-
tion will decrease, and more energy will distribute on the
waveguide.

We now show that the partial photonic field is trapped
inside the coupling area without propagating away, which
is akin to the bound state in QED setups with band-gap
media. The bound state, which is the eigenstate of the
system Hamiltonian, can be obtained by solving the follow-
ing Schrödinger equation Hint|ψb〉 = Eb|ψb〉, where |ψb〉 =
cos(θ )|e, 0〉 + sin θ

∑
k ck|g, 1k〉, with θ being the mixing an-

gle. The solution is obtained from the following equations:

ck = Gk

tan θ (Eb − �k )
, (A9)
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FIG. 9. (a) The root of transcendental equation s − 	e(s) = 0 can be numerically solved, which corresponds to the intersection point (blue
dots) for different values of G0. (b) The excitation population trapped inside the atom |Res(s0)|2 changes with G0 [calculated via the residue
theorem in Eq. (A8)], and matches well the dynamical evolution |ce(t → ∞)|2. The atomic frequency is fixed at ωq = ωc.

Eb =
∑

k

|Gk|2
Eb − �k

, (A10)

tan θ =
∑

k

|Gk|2
(Eb − �k )2

. (A11)

Note that Eq. (A10) is the same with Eq. (A7) (by replacing Eb

with is0). In our discussion, the interaction between the giant
atom and the waveguide is weak. Therefore, the eigenenergy
Eb is around zero [i.e., s0 � 0; see Fig. 9(a)]. Under this
condition, most of the energy will be trapped inside the atom,
and the mixed angle θ � 0. Employing the approximations
sin θ � tan θ and Eb � 0, the photonic field is derived as

ψb(x) = sin θ√
Lw

∑
k

ckekx � −
√

Lw

2π

∫ ∞

−∞

Gk

�k
ekxdk. (A12)

By substituting the real-space coupling in Eq. (10) into ψ (x),
we rewrite ψb(x) as

ψb(x) = −
√

L

2π

∑
xi

φbi(x),

φbi(x) =
∫ ∞

−∞

g(xi )

ωk − ωq
ek(x−xi )dk. (A13)

In Eq. (A13), φbi(x) is induced by a small atom which couples
to the 1D waveguide at the single point xi. In the weak-
coupling regime, the small atom will exponentially decay all
its energy into the waveguide given that t → ∞. Therefore,
there is no stable bound state for a small atom, which can also
be explained by the behavior of ψbi(x) in Eq. (A13), where

lim
ωk→ωq

g(xi ) e−ikxi

ωk − ωq
= ∞ (A14)

is divergent. That is, the expression for φbi(x) is nonintegrable.
The counterintuitive result is that a stable bound state ap-

pears when all the coupling points act simultaneously. The
interference between different points prevents the giant atom

from decaying, and results in a static bound state even when
its frequency lies inside the continuum spectrum.

APPENDIX B: SIMULATING DISORDER EFFECTS

1. Disorder effects in band-gap environments

When implementing the optimal coupling sequences in
experiments, there will be fabrication errors in both cou-
pling positions and amplitudes. Next we evaluate their effects
by considering circuit-QED with a transmon qubit [with
frequency ωq/(2π ) = 3 GHz, for example]. The phase ve-
locity along the transmission-line waveguide is set as c =
2 × 108 m/s. Therefore, the wavelength is λ0 � 7 × 10−2 m.
We first investigate the disorder in positions by adding random
offsets to the coupling sequence, i.e., g(xi ) → g(xi + δxi ).
Here δxi is sampled from a Gaussian distribution centered
around zero and with a width σP.

Consequently, the average k-space coupling function is
defined as

Ḡk = 1

Ndis

Ndis∑
n=1

∑
xi

g(xi + δxi )e
−ik(xi+δxi ), (B1)

where Ndis is the number of disorder realizations in the nu-
merical simulations. In our discussion, we set Ndis = 200,
which is large enough for the errors considered in this work.
To investigate the disorder effects on the quantum dynamics,
we numerically simulate the evolution by taking the aver-
age of all the realizations. We define the disorder-averaged
population as

p̄e(t ) = 1

Ndis

Ndis∑
n=1

|ce(t )|2. (B2)

In Fig. 10(a), we plot Ḡk for different disorder strengths,
and find that the band gap is lifted higher than zero. Given
that σP = 0.001λ0 � 0.07 mm, the coupling strength in the
band gap is around zero, and the giant atom is still protected
from decaying [see Fig. 10(b)]. Only when the location error
is σP > 0.01λ0 � 0.7 mm (which should already be visible to
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FIG. 10. (a), (c) The average k-space coupling Ḡk in the band-gap regime under different position and amplitude disorders, respectively.
The disorder-averaged population | p̄e(t )| changes with time are shown in (b) and (d). In each realization the random offsets are added into the
optimal coupling sequence in Table I. Here we set ωq = ωc, and the other parameters are the same as those in Fig. 5(a).

the naked eye), the band gap will be lifted around Ḡk � 0.05
and the transmon will gradually decay due to the position
disorders. Current and future experiments on circuit QED can
locate coupling elements with accuracy higher than 0.01λ0.
Therefore, we can neglect the position errors in our discus-
sion.

Next we consider random offsets to the amplitude coupling
sequence, i.e., g(xi ) → g(xi ) + δg(xi ). Here δg(xi ) is sampled
from a Gaussian distribution centered around zero and with a
width σA g(xi ). In Fig. 10(c), we plot Ḡk for different disorder
strengths, and find that the band gap is lifted higher than zero.
The trapped excitation inside the atom becomes unstable and
will slowly leak into the waveguide [see Fig. 10(d)]. The deco-
herence rate led by disorder increases with disorder strengths.
It can be inferred that when σA > 0.2, the protection effects of
the band gap will be swamped by the disorder noise.

2. Disorder effects in broadband chiral emission

The obtained optimal set {xi, A(xi ), θ (xi )} for broadband
chiral emission is listed in Table II and plotted in Fig. 1.
We now consider that the coupling strength at each point
experiences disorders in both its amplitude and phase, i.e.,

g(xi ) → [A(xi ) + δA(xi )] exp[iθ (xi) + iδθ (xi )].

Both the amplitude and phase disorders are assumed to satisfy
a Gaussian distribution centered around zero. The amplitude
disorder widths σA are proportional to the local strength A(xi ),
while the phase disorder widths σφ are assumed identical for
all the coupling points. We plot the disorder averaged k-space
coupling function in Fig. 8(a). We find that the disorder does
not affect the coupling strength too much for the modes out-
side the chiral regime. Inside the asymmetric band gap, the
zero coupling will be lifted higher than zero with stronger
disorder strengths.

To show how disorder disturbs the chiral emission, we nu-
merically simulate disorder-averaged evolutions by defining
the photonic field as

�̄γ (x, t ) = 1

Ndis

Ndis.∑
n=1

|ψγ (x, t )|2, (B3)

ψγ (x, t ) ∝
∫ ∞

−∞
dkck (t )e−ikx. (B4)

In Figs. 11(a)–11(c), we plot how the disorder-averaged field
distribution ψγ (x, t ) changes with time in the presence of
{σA, σφ}. When the coupling disorders are as strong as {σA =
0.1g(xi ), σφ = 0.1π}, most of the photonic field still decays to
the right of the waveguide. To evaluate the chiral behavior of
our proposal, we define the chiral factor as

β± = �R(L)

�R + �L
, (B5)

�R/L = 1

Ndis

∑
dis.

lim
t→∞

∣∣∣∣
∫ ±∞

0
|ψγ (x′, t )|2dx′

∣∣∣∣. (B6)

Employing the above methods and definitions, we plot Fig. 8,
which shows that our proposal can chirally route photons in a
broadband range even in the presence of strong disorder.

There are many types of layouts which can encode the
required phases via nonlinear couplings. For example, by
applying a time-dependent flux through a coupler loop at
position xi, the coupling strength can be written as

g(xi, t ) = gi
�ext

�0
cos(�dt + φi ), (B7)

where gi is the coupling constant depending on the cir-
cuit parameters (such as the Josephson inductance and loop
inductance), �ext (�d ) is the time-dependent driving ampli-
tude (frequency), and φi is the phase to be encoded at xi.
Therefore, we do not require the circuit parameters to be
fabricated to a certain value. If gi is smaller (larger) than
the required value, the external driving amplitude �ext can be
increased (decreased) accordingly when calibrating the whole
setup. Therefore, the disorder is affected by the drive, which
is usually the output from devices such as arbitrary function
generators [95]. In many labs, both the amplitude and phase
of the drive can be controlled with high accuracy, indicating
that the disorder in the nonlinear coupling layout can be sup-
pressed to low values in experiments.
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FIG. 11. (a)–(c) Time evolution of the chiral field distributions for various disorder strengths. The atomic frequency is fixed at ωq = ωc.
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