
PHYSICAL REVIEW RESEARCH 5, 043274 (2023)

Quantum field heat engine powered by phonon-photon interactions
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We present a quantum heat engine based on a cavity with two oscillating mirrors that confine a quantum field.
The engine performs an Otto cycle during which the walls and a field mode, together representing the working
substance of the engine, interact via a nonlinear Hamiltonian. Resonances between the frequencies of the cavity
mode and the walls allow one to transfer heat from the hot and the cold bath by exploiting the conversion between
phononic and photonic excitations. We study the time evolution of the system and show that net work can be
extracted after a full cycle. We evaluate the efficiency of the process.
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I. INTRODUCTION

Quantum thermodynamics studies physical processes at
the quantum scale through the lens of thermodynamics [1–3].
The overall aim of this field of research is to extend con-
cepts initially developed in the classical theory, such as heat,
work, and thermodynamic efficiency, into the quantum do-
main where purely quantum features can be exploited [4,5].
These include quantum correlations [6], quantum coherence
[7], and vacuum fluctuations [8,9]. One task is to propose and
characterize novel thermodynamic cycles by taking advantage
of the nonclassical nature of the working substance to extract
work for different tasks [10–12]. The interest in studying
thermodynamical cycles at the quantum level goes beyond
the mere possibility of reaching higher degrees of efficiency
but aims towards miniaturization of future thermal machines
based on quantum systems.

The quantum Otto cycle is a thermodynamic cycle that en-
joys relative ease of theoretical implementation in a quantum
framework compared to other cycles, especially if imple-
mented in cavity optomechanics [13–18]. It consists of a
combination of two thermodynamic “strokes”: (i) the iso-
choric transformation, performed by maintaining constant the
spacing of the energy levels of the system during thermaliza-
tion with the bath; (ii) the adiabatic transformation, where
the thermally isolated system evolves with the total number
of excitations kept constant. A time optimization of the latter
benefits the performance of the heat engine in the generation
of output power [19,20]. Also for this reason, such a simple
cycle has been implemented and studied in the context of
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finite-time Otto cycles [21–23], Otto-engine power generation
[24–26], heat engines with interacting systems [27], and quan-
tum heat engines based on phononic fields in Bose-Einstein
condensates [28].

In this work we study the quantum Otto cycle in the
context of quantum optomechanics [29]. The system con-
sists of a cavity-optomechanical setup where two movable
mirrors confine a quantum field. The mirror and field modes
strongly interact via phonon-photon vacuum fluctuations and
the mirrors are also coupled individually to a thermal bath. We
employ our system to show that the proposed quantum field
heat engine can generate power in finite time after each cycle
and we estimate the efficiency of such a process. We note
that the platforms considered here have already allowed for
the experimental observation of thermal-phonon hopping, i.e.,
the exchange of thermal energy between individual phonon
modes [30].

In the quantum Otto cycle under consideration, the work-
ing substance consists of three interacting subsystems: these
are the two movable walls (whose quantized position de-
termines a quantum degree of freedom for each wall) and
the confined quantum electromagnetic field. While the two
movable walls individually interact with the hot and the cold
bath, the cavity mode does not interact with any of these baths
directly, but only through the mediation of the respective wall.
More precisely, each wall is connected to a single thermal
bath: the first wall (called W1) interacts with a cold bath at
temperature Tc, while the second wall (called W2) interacts
with a hot bath at temperature Th. The transfer of thermal
excitations from the bath to the cavity mode occurs whenever
the frequency of the cavity is resonant with the frequency
of the corresponding wall. The field modes are driven by an
external drive that controls the length of the cavity.

We stress that the photon-phonon interaction occurs be-
yond linearization, thereby retaining the dynamical-Casimir-
like three-body terms in the Hamiltonian [31–36], with the
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FIG. 1. Pictorial representation of the cavity performing the
quantum Otto cycle: two movable walls, coupled to two baths at dif-
ferent temperatures, confine a cavity mode, which is weakly coupled
to a bath at T � 0. The four panels describe the four strokes of the
cycle: (a) cold isochoric, (b) adiabatic compression, (c) hot isochoric,
and (d) adiabatic expansion.

ambition of characterizing the thermodynamic performance
of the system in its full nonlinear regime. This includes also
the multimode character of the interaction [37]. Moreover, in
contrast to standard studies of four-stroke thermal machines
that consider the single strokes separately, we employed the
master equation formalism in order to run two consecutive
cycles as a function of time. The need for the master equa-
tion approach throughout the whole dynamics is explained by
the fact that we effectively change the length of the cavity
in a time-dependent way through the external drive, thereby
controlling the heat transfer between the cavity and the baths
through the walls.

II. QUANTUM MODEL

The system is composed of two movable walls that confine
an uncharged massless scalar quantum field and interact with
a local bath. Our choice of field is a good approximation for
a single-polarization version of a confined electromagnetic
spin-1 field [38]. We further simplify the setup by considering
a one dimensional cavity, which allows us to obtain the system
Hamiltonian Ĥs following the standard procedure of solving
the classical field equations and then quantizing [34] (see
also Appendix A). The system is schematically represented
in Fig. 1.

The Hamiltonian can be split as usual as Ĥs = Ĥ0 + ĤI,
where Ĥ0 = ω1b̂†

1b̂1 + ω2b̂†
2b̂2 + ωcâ†â is the bare Hamilto-

nian and HI is the interaction Hamiltonian. The latter has been
previously obtained [29] and reads

ĤI =g1

2
(â + â†)2(b̂1 + b̂†

1) + g2

2
(â + â†)2(b̂2 + b̂†

2). (1)

Here, â, â† are the photonic operators for the cavity-field
mode, while b̂ j, b̂†

j ( j = 1, 2) are the phononic operators
for the walls-field mode. The operators satisfy the canonical
commutator relations [â, â†] = 1 and [b̂ j, b̂†

j′ ] = δ j j′ . Further-
more, ω j are the frequencies of the two movable walls (ω1 <

FIG. 2. Lowest-energy levels of the system Hamiltonian as a
function of ωc. Circles highlight the avoided levels in which the
dressed resonances (blue) ω1 = 2ωc,1 and (red) ω2 = 2ωc,2 occur.
For each resonance condition, the effective cavity frequency ω̃c was
estimated. Here ω̃c,1 = 1.01, ω̃c,2 = 1.31, ω1 = 2, ω2 = 2.6, and
g1 = g2 = 0.05. Frequencies are normalized with respect to the bare
frequency of the cavity mode ωc,1.

ω2 for convenience), whereas ωc is the frequency of the cavity
field mode. In addition, the coupling constants gj quantify the
strength of the coupling between the field mode and the jth
wall (see Appendix A). Finally, eigenvalues and states will be
labeled by l, m, n ∈ N, which stand for l excitations of the
field mode, m excitations of W1, and n excitations of W2.
Throughout this work we assume that h̄ = c = kB = 1.

The interaction Hamiltonian Eq. (1) contains three types
of terms as follows. (i) The radiation pressure â†â(b̂ j + b̂†

j ),
paramount in standard optomechanics [39,40], which shifts
the cavity frequency ωc in case of coherent motion of the
wall. (ii) The excitation transfer terms â2b̂†

j + (â†)2b̂ j , which
convert single-phonon excitations into photon pairs (and vice
versa). In other words, they convert mechanical and electro-
magnetic energy into each other. In order for the photons
to appear and contribute during the dynamics, resonance
conditions kω j = 2ωc with k ∈ N involving high-frequency
movable walls must be fulfilled [33]. Such resonances can
be achieved in current optomechanical setups using real mov-
able mirrors [30,41]. However, they play the most significant
role in experimental platforms based on superconducting cir-
cuits [42–45]. (iii) The counter-rotating terms â2b̂ j + (â†)2b̂†

j ,
which generally contribute to modifying the energy density
of the cavity field (because of the quantum wall fluctuations
[32]). They are also responsible for the nonconservation of
the particle number and, in the ultrastrong regime, the pres-
ence of quantum correlations [46]. Counter-rotating terms
are involved in virtual processes that would allow one to
observe higher-order coherent processes in cavity optome-
chanics [47,48].

The interaction between the bosonic modes not only in-
evitably alters the structure of the energy levels with respect
to the bare ones, but it also lifts the degeneracy in the presence
of resonances. To this end we diagonalize the Hamiltonian
Hs numerically and plot the energy levels in Fig. 2 for dif-
ferent values of the frequency ωc. The figure clearly shows
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the presence of avoided level crossings due to the energy
split in proximity of the frequency values ωc,1 = ω1/2 and
ωc,2 = ω2/2, i.e., where the resonances are expected to oc-
cur as discussed above. The dashed vertical lines in Fig. 2
highlight the shift in the bare frequencies. The effective cavity
frequencies ω̃c,i (i = 1, 2) involved in the coherent resonant
processes can be estimated numerically by calculating the
minimal splitting of the avoided level crossings.

We use open quantum system dynamics to compute all
quantities of interest [49]. This requires us to solve the master
equation for the density operator ρ̂ representing the state.
Since we are considering a strongly interacting system, we
employ tools developed in the literature [34,50,51]. In partic-
ular, we employ the Lindblad equation ˙̂ρ = −i[Ĥ, ρ̂] + L̂Dρ̂,
where L̂D indicates the Lindblad superoperator expressed in
the dressed base (see Appendix B). Here we assume that the
three subsystems are coupled to three different baths: W1 is
coupled to a cold bath with damping rate γ1 and temperature
Tc; W2 is coupled to a hot bath with damping rate γ2 and
temperature Th > Tc; the cavity mode interacts with its own
bath with damping rate κ � 0 and temperature T � 0. Note
that low damping rates in platforms based on cavity resonators
are achievable with the current state of art of the technology
[52–55].

III. QUANTUM OTTO CYCLE

The main idea of this work is to exploit the mechanical-
electromagnetic energy conversion to perform the quantum
Otto cycle using the two walls as bosonic channels, thereby
facilitating the heat transfer between the hot and cold baths
through the cavity mode. We present here the framework
employed to achieve our goal.

Any heat engine can be characterized by evaluating the out-
put power P and the efficiency η of a single thermodynamic
cycle. Thus we consider the total Hamiltonian Ĥtot(t ) = Ĥs +
Ĥdr(t ) that includes the time-dependent drive term Ĥdr(t ). This
contribution is expressed in the dressed picture and periodi-
cally drives the cavity frequency from ω̃c,1 to ω̃c,2 and vice
versa, simulating the physical process of compression and
expansion of the cavity. This can be understood from the
fact that the frequency of a trapped field mode decreases or
increases by respectively increasing or reducing the length
of the cavity. Thus changes in frequency simulate changes
in length. Concretely, we have Ĥdr(t ) = f (t )�ωÂ†Â, where
�ω = ω̃c,2 − ω̃c,1 is the dressed-frequency difference, Â, Â†

are the cavity dressed operators obtained by diagonalizing the
Hamiltonian, and f (t ) is a periodic smooth step function (see
Appendix C). Such functions are commonly employed in cir-
cuit quantum electrodynamics (QED) [56–61]. Furthermore,
time-dependent drives have also been considered in studies of
nonlinear optomechanics [62–64].

In order to investigate the thermodynamic features of the
system, we define the change of internal energy �U (t ) =
Tr[Ĥtot(t )ρ(t )] − Tr[Ĥtot(0)ρ(0)], the change in heat Q(t ) =∫ t

0 dτ Tr[Ĥtot(τ )ρ̇(τ )], and the change in work W (t ) =∫ t
0 dτ Tr[ ˙̂Htot(τ )ρ(τ )]. These three quantities satisfy the first

law of thermodynamics in its quantum formulation:

�U (t ) = Q(t ) + W (t ). (2)

We then provide a formal definition for the output power P
and the efficiency η of a thermodynamical process as

P := d

dt
W (t ), η := −Wout

Qin
, (3)

where Wout and Qin are, respectively, the work provided and
the heat absorbed by the system. These are the main expres-
sions evaluated in our work.

We now present our quantum Otto cycle, which is com-
posed of a preliminary phase and four steps as follows. (0)
Initialization: the working substance is prepared in its vacuum
state ρ(0) = |0〉〈0| and we assume that the cavity is initially
coupled to W1 by means of the resonance condition ωc,1 =
ω1/2 (see Fig. 1). (a) Cold isochoric: thermal cold phonons
from W1 are converted into photons, until the subsystem
W1 + cavity is thermalized. (b) Adiabatic compression: the
external drive quickly shifts the field frequency from ω̃c,1 to
ω̃c,2, thereby ensuring the classical adiabaticity of the process
(see Appendix C). (c) Hot isochoric: the newly activated
resonance ωc2 = ω2/2 facilitates the excitation transfer be-
tween the cavity mode and W2, during which hot phonons
are converted into photons. (d) Adiabatic expansion: the drive
changes the cavity mode frequency back to the resonance
regime ωc,1 = ω1/2. After this step, the system is ready to
restart from the cold isochoric stroke of step (a).

A. Analysis of the dynamics

We have solved numerically the master equation and
therefore calculated the time evolution of the average
internal energy �U (t ) directly, while we have com-
puted the average work W (t ) by integrating the expres-
sion of the power P (t ) ≡ Tr[ρ(t )Ḣtot(t )] = Tr[ρ(t )Ḣdr(t )] =
ḟ (t )�ωTr[ρ(t )Â†Â] defined in Eq. (3). The average heat
change Q(t ) can be easily derived employing the first law
of thermodynamics in Eq. (2). We have used the parameters
indicated in Fig. 3 and our choice of frequencies has followed
two important criteria: we need to clearly distinguish the
two avoided levels in order to perform the jump, but at the
same time we must avoid any degeneracy with other possible
resonances in order to prevent unwanted heat flows that could
reduce the efficiency. Our results can be found in Fig. 3.

We now discuss our findings. Once the dynamics start,
a transient phase occurs in which both walls absorb ther-
mal excitations from their own baths. However, while the
interaction between W1 and the cavity converts part of the
thermal phonons into photons, W2, which is momentarily not
interacting with the cavity, thermalizes. In Fig. 3(a), �U = 0
corresponds to the energy of the system at the end of this
transient phase. Recall that thermalization of the cavity while
interacting with W1 is defined as stroke (I). During stroke
(II), i.e., during compression, the cavity absorbs work from
the drive and increases ω̃c,1 to ω̃c,2, eventually starting to
absorb thermal excitations from the hot wall and converting
them into photons [which defines stroke (III)]. This causes a
drastic enhancement of the photon population at the expense
of part of the phonon population, as seen in Fig. 3(b). At the
same time, the population of the cold wall, now off resonance,
increases and W1 thermalizes completely. Once the internal
energy becomes constant and the populations stop fluctuating,
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FIG. 3. Time evolution of the quantities of interest. (a) Variation
of internal energy �U (dashed, black), the work W (blue), and the
heat Q (red). (b) Population of the cavity photon (black), the cold
wall 1 phonons (dashed green), and the hot wall 2 phonons (dashed
red). The background colors indicate the four stokes shown in Fig. 1:
cold isochoric (orange), adiabatic compression (green), hot isochoric
(red), and adiabatic expansion (blue). Here ω1 = 2, ω2 = 2.6, ω̃c,1 =
1.01, ω̃c,2 = 1.31, g1 = g2 = 0.05, Tc = 0.15, Th = 0.40, γ1 = γ2 =
γ = 0.01, κ = 10−6, and T0 = 10−7. Frequencies and temperatures
are normalized with respect to ωc,1.

we perform the rapid expansion of the cavity as described in
stroke (IV), which causes the system to release an amount
of energy which is higher than the one initially absorbed, a
key feature of a properly functioning heat engine. This net
gain becomes evident by looking at W in Fig. 3(a). After
this last stroke, the cavity thermalizes with W1 again and the
system reaches its initial configuration: a new cycle can now
take place. We conclude that, after each cycle, we can extract
a net amount of work using our system. An analysis of the
efficiency is presented in the next section.

We now provide a few remarks on our proposal. As men-
tioned before we note that, once the resonance with the wall
j is implemented, the interaction between wall j and the
cavity mode is given by terms (â†)2b̂ j + â2b̂†

j in ĤI, which
mediate the phonon-photon conversions. Therefore, during
the isochoric transformation the change in photon population
is not a direct consequence of the thermalization of the cavity
mode with the relative bath; instead it is a consequence of
the partial conversion of thermal phonons into photon pairs.
This process continues until the system wall cavity reaches
the steady state, as can be observed in Fig. 3(b). Thus the
number of photons at the end of any isochoric process will

be less than N = (eωc/Ti − 1)−1, with i = c, h, as predicted by
Bose-Einstein statistics and expected in the Otto cycle with
a single mode as working substance [65,66]. In particular,
the photon population in Fig. 3(b) can be compared with the
average number of photons for a single cavity mode with
frequency ω̃c,1 = 1.01 and temperature Tc = 0.15, which is
N = 1.2 × 10−3, and the population of a single-cavity mode
with frequency ω̃c,2 = 1.31 and temperature Th = 0.4, which
is N = 3.96 × 10−2. It can be seen that the photon population
in our system is about 94% less than what was expected by
a direct thermalization with the bath at the end of the cold
isochoric and about 95% less at the end of the hot isochoric.

Furthermore, we notice that, during the isochoric strokes,
quantum excitations are extracted from the thermal fluctua-
tions of the walls and converted into photons without requiring
the walls to perform any classical motion. This is in contrast
to the semiclassical description of our setup, wherein walls
are treated as classical degrees of freedom [36]. The phonon-
photon conversion occurs between two quantum channels by
simply activating the resonance ωi = 2ωc,i (i = 1, 2). The
possibility of extracting thermal excitations from the walls in
case of no coherent motion is a consequence of the fact that
the two mirrors operate in the quantum regime [34,67].

Finally, we stress that, in contrast to other works study-
ing optomechanical systems in a quantum thermodynamic
framework [13,14], we employ a nonlinear Hamiltonian that
includes the nonlinear interaction between the movable walls
and the electromagnetic mode. Similar nonlinear Hamilto-
nians have recently started to acquire a dominant role in
the interplay between optomechanics and quantum thermody-
namics [68]. In our case, the entire dynamics of the system is
based on the resonant conversion of phonons into photons and
vice versa. To our knowledge, this effect has never been con-
sidered in a quantum thermodynamic context. This highlights
the importance of moving beyond the linearized regime.

B. Analysis of the efficiency

In order to check the relation between efficiency and
power, we first studied the efficiency of our device by fixing
the frequency of the cold wall W1 and varying the frequency
of the hot wall W2. It is crucial to stress that any modification
to the frequency of one wall automatically leads to a change of
the effective frequency of the cavity mode (it must be resonant
to guarantee the energy flows) and consequently it also leads
to a change of the interaction coupling constant, since the
coupling strength g j linearly depends on the frequency of the
cavity mode [see Eq. (A10)]. Due to the complexity of the
interactions between the various subsystems, together with
the fact that only the two walls (and not the cavity mode) are
constantly coupled with the heat baths, an analytical descrip-
tion of the dynamics is extremely difficult to carry out without
significant approximations. For these reasons, we opted for a
numerical investigation.

Concretely, we varied the frequency of the hot wall from
2.4 to 2.9 with a step of 0.1 and, for every value, we solved
the master equation in Eq. (B1) for a single cycle in order to
study the dynamics of the quantities of interest. Except for ω2,
we employed the same parameter as in Fig. 3 of the main text.
The results of these simulations are resumed in Table I.
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TABLE I. Trend of both the extracted work and the efficiency of
the quantum heat engine for different frequency ω2.

Frequency ω2 Wout (10−4) η

2.4 −4.04 0.223
2.5 −4.19 0.281
2.6 −4.07 0.334
2.7 −3.80 0.384
2.8 −3.44 0.431
2.9 −3.06 0.475

Beyond the value ω2 = 2.6 we observe that the efficiency
of the engine increases by enhancing ω2, at the price of the
output work. On the other hand, at ω2 = 2.4 we observe
that the engine generates more power, but wastes a higher
amount of energy in terms of dissipated heat. This is due
to the fact that reducing the frequency of the hot wall also
means diminishing both the frequency of the cavity mode and
the wall-cavity coupling. The reduction of both cavity and
wall frequencies leads to a lowering of the spacing of the
eigenvalues, causing a general increase of the internal energy.
The system therefore absorbs more heat from the environment
during the thermalization and it is consequently capable of
releasing more power. However, the lower coupling between
the wall and the cavity inhibits the internal flows of energy and
facilitates the exchange with the hot bath. The final effect is
that, during the hot isochoric, the internal energy of the system
enhances; the system therefore provides more work during the
adiabatic expansion, but due to the lower wall-cavity coupling,
it also dissipates a higher amount of energy in the form of heat.

Nevertheless, the engine can reach a maximum value of
the output work at ω2 = 2.5, at which it reaches the efficiency
η = 0.281. This efficiency is less than the Curzon-Ahlborn
efficiency [69], which in our case reads ηCA = 1 − √

Tc/Th =
0.388. One of the main causes of this discrepancy is that the
engine performs a sudden frequency switch during the adia-
batic transformation [65]. In any case, we observe an increase
of both the efficiency and the extracted work by decreasing
the coupling constants g1 and g2. Results of numerical simu-
lations are shown in Table II, where we conventionally fixed
g1 = g2 = g. A reasonable explanation of this trend is that, in
the strong coupling regime, excitations tend to be exchanged
back and forth between the cavity mode and the wall, thereby
attenuating the release of energy during the expansion. On
the other hand, lower couplings allow excitations to easily
leave the system, reducing this friction. However, although the
efficiency increases further with lower gain, we also observe a
drastic reduction of the extracted work once approaching the
weak coupling regime. This result is expected for two reasons:
on the one hand, simply because a low coupling inhibits the
interaction between the subsystems and, consequently, the
necessary heat flow to power the engine. On the other, because
in the weak coupling regime the particle flow between the wall
and the environment overcomes that between the optical and
the mechanical modes, therefore slowing down the intermode
heat transfer.

Finally, we want to discuss the role of the counter-rotating
terms on the efficiency. To see whether their presence affects
the performance of the heat engine, we carry out a simula-

TABLE II. Trend of both the extracted work and the efficiency of
the quantum heat engine for different values of the coupling constant.

Coupling g Wout (10−4) η

0.1 −3.65 0.317
0.2 −4.51 0.311
0.3 −4.55 0.302
0.4 −4.39 0.291
0.5 −4.19 0.281

tion of the thermodynamic cycle by employing the following
Hamiltonian:

ĤI =g1

2
(â†â + â â†)(b̂1 + b̂†

1) + g1

2
(â†)2b̂1 + g1

2
â2b̂†

1

+ g2

2
(â†â + â â†)(b̂2 + b̂†

2) + g2

2
(â†)2b̂2 + g2

2
â2b̂†

2,

(4)

where the counter-rotating terms have been removed.
Employing the same parameters as in Fig. 3, the effi-

ciency of the engine excluding the counter-rotating terms is
η = 0.325, namely slightly less than the efficiency reported
in Table I, η = 0.334. A reasonable explanation of this small
discrepancy is the following: since the engine is working in
the strong coupling regime, any interaction within the system
is favored compared to the interaction with the environment.
Albeit only at higher orders, counter-rotating terms contribute
to the internal interactions between the cavity mode and the
single walls via virtual processes. Therefore, the presence
of counter-rotating terms facilitates the inner energy transfer
between the single wall and the cavity mode within a unit of
time and consequently it slightly inhibits the heat flows with
the baths, therefore amplifying the power of the engine.

IV. CONCLUSIONS

In this work we proposed a quantum heat engine based on
a cavity system composed of a scalar field trapped by two
fluctuating walls that performs an Otto cycle. In our setup, we
exploit the phonon-photon conversion mechanism to let the
working substance exchange heat with the thermal baths dur-
ing the cycle. We demonstrated that it is possible to extract net
work using carefully modulated resonances and we have eval-
uated the overall efficiency of the cycle. We believe that this
work opens the way to the systematic study of quantum field
thermodynamic engines, to be used for fundamental science,
as well as the development of novel quantum technologies.
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APPENDIX A: DERIVATION OF THE HAMILTONIAN

The literature shows different ways to derive the Hamil-
tonian of the system. A possible starting point could be the
classical equation of motion of both the cavity and the two
walls using time-dependent boundary conditions, as done by
Law in [31]. However, in this section we show how to derive
the Hamiltonian of the system from first principles employing
the protocol in [34]. This procedure is based on the idea
that the position of a nonfixed wall undergoes a fluctuation
described by a quantum harmonic oscillator. This concept
avoids the treatment of the problem starting from dynamical
equations, since a real (classical) motion of the wall would
occur only in the presence of coherence.

We start from the Lagrangian density of a massless scalar
field in (3 + 1) dimension:

L(t, x) = 1
2∂μφ∂μφ. (A1)

The equation of motion of such Lagrangian density with
static Dirichlet boundary conditions is the Klein Gordon equa-
tion ∂2

t φ − ∇2φ=0, which can be solved by any scalar field of
the form

φ(t, x) =
∑

n

[αn φn(t, x) + α∗
n φ∗

n (t, x)], (A2)

with modes

φn(t, x) =
√

4

ωnV
e−iωntχn(x), (A3)

where

χn(x) = sin

(
nxπ

Lx
x

)
sin

(
nyπ

Ly
y

)
sin

(
nzπ

Lz
z

)
, (A4)

and the dispersion law reads

ωn :=
√(

nxπ

Lx

)2

+
(

nyπ

Ly

)2

+
(

nzπ

Lz

)2

, (A5)

with n ≡ (nx, ny, ny) a set of positive integer numbers and box
having volume V = LxLyLz [70]. With the typical formalism,
well known from field theory, we can calculate the Hamil-
tonian density H(t, x) = 1

2 {�2(t, x) + [∇φ(t, x)]2}, with
canonical momentum �(t, x) := −∂tφ(t, x).

Hence the protocol consists of the following four steps.
(i) Extension of the box length with respect to Lx: Lx →

Lx + �Lx, where �Lx/Lx � 1, and Taylor expansion of
H(t, x) up to the first order in �Lx/Lx.

(ii) Spatial integration of the Hamiltonian density in vol-
ume V , thereby obtaining the classical Hamiltonian H :=∫
H dV .

(iii) Quantization of the field Fourier coefficients αn:

αn → ân,

α∗
n → â†

n,

which now fulfill the standard commutation rules [ân, â†
n′ ] =

δnn′ . We now need to quantize also the position of the two
walls. If we assume that our system has a cylindrical symme-
try along the x axis and that in our frame of reference the wall
1 is always at x = 0, the second wall undergoes a fluctuation
characterized by two Fourier harmonics: �Lx = �L1 + �L2.
Such harmonic fluctuations do not interact with each other
and can be treated as two independent harmonic oscillators.
Therefore, the quantization of such degrees of freedom leads
to

�L1 →δL1(b̂†
1 + b̂1), (A6)

�L2 →δL2(b̂†
2 + b̂2), (A7)

where we introduced the annihilation and creation operators
of two quantum harmonic oscillators fulfilling the standard
commutation relations: [b̂1, b̂†

1] = [b̂2, b̂†
2] = 1, while all other

commutators vanish. We notice that δL1 and δL2 are the zero-
point fluctuations of two harmonic oscillators having different
masses [40].

(iv) As a last step, we rewrite the quantum Hamiltonian Ĥ
in normal order and we introduce two dimensionless ampli-
tudes ε1 := δL1/Lx � 1 and ε2 := δL2/Lx � 1.

In the end, this procedure yields the Hamiltonian

Ĥs =Ĥ0 + ĤI, (A8)

where each term reads

Ĥ0 :=
∑

n

ωn â†
nân + ω1b̂†

1b̂1 + ω2b̂†
2b̂2,

ĤI := 2
∑

n

[
k(ny)2 + k(nz )2

ωn
â†

nân

−2
∑
mx

(−1)nx+mx
k(nx )k(mx )√
ωn ωmx,ny,nz

X̂nX̂mx,ny,nz

⎤
⎦

× (ε1X̂b1 + ε2X̂b2). (A9)

In order to simplify the notation, we introduced the wave
vector k(nw ) = πnw/Lw, with w = x, y, z, the quadrature po-
sition operators X̂b, j = 1

2 (b̂†
j + b̂ j ), with j = 1, 2, and X̂n =

1
2 (â†

n + ân). We note that the ambiguity on the negative sign
in ĤI is solved by including all terms of the Taylor expansion
with respect to δL [31].

For our purposes, such Hamiltonian can be drastically sim-
plified by assuming the following.

(1) The constraint Lx  Ly, Lz on the magnitude of the
length of the edges of the piston. This is motivated by the
fact that there are no excitations initially present in the y and z
degrees of freedom. Given the higher energy required to excite
these degrees of freedom (since the energy gaps are inversely
proportional to the corresponding length) it is reasonable to
assume that they will remain unexcited. Thus we can drop the
first term in the square brackets and obtain Hamiltonian (1) in
the main text.
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(2) The presence of only one cavity mode, say the funda-
mental mode ω1,1,1 = ωc. This is a reasonable assumption,
since other cavity modes with nx > 1 are initialized in the
vacuum state.

Under such assumptions, the system Hamiltonian is re-
duced to Eq. (1) of the main text, where

g j = −ε j
k(nx )2

2ωn
, (A10)

with j = 1, 2 indicating the jth wall.

APPENDIX B: MASTER EQUATION IN THE DRESSED
PICTURE AND THE DRESSED OPERATORS

In this section we want to review the necessary tools to
describe the time evolution of the quantities of interest. Work-
ing in the Schrödinger picture, we first need to solve the
master equation for the density operator; however, since we
are dealing with a strongly interacting system, the best way
to proceed is to employ the master equation in the dressed
picture [50]. To do this, first let us introduce the transition
amplitudes for the canonical position operators calculated on
the dressed basis: ci j = 〈i|â + â†| j〉, ui j = 〈i|b̂1 + b̂†

1| j〉, and
vi j = 〈i|b̂2 + b̂†

2| j〉, where the state |i〉 is the ith eigenstate of
the Hamiltonian with eigenenergy Ei.

We assume that the three subsystems are coupled to three
different baths: in particular, the wall 1 is coupled to a cold
bath with damping rate γ1 and the wall 2 is coupled to a hot
bath with damping rate γ2. Finally, we also assume that the
cavity always weakly interacts with its own bath at T � 0,
with damping rate κ � 0. Although it does not play an active
role in our dynamics, the interaction with the third bath whose
temperature is not exactly zero is expected in experimental
scenarios and prevents the violation of the third law of ther-
modynamics.

The master equation in the dressed picture has been ob-
tained before [50,51] and it reads

d ρ̂

dt
= −i[Ĥ , ρ̂] + (L̂c + L̂u + L̂v )ρ̂, (B1)

where we have defined

L̂xρ̂ = y
∑
j,i> j

|xi j |2{ni j (T )D[P̂i j]ρ̂ + [1 + ni j (T )]D[P̂ji]ρ̂},

(B2)

which needs to be supplemented by the quantities x = c, u, v,
the rates of losses y = γ1, γ2, κ , the thermal excitation num-
bers ni j (T ) = (e(Ei−Ej )/T − 1)−1, the superoperators

D[P̂i j]ρ̂ = 1
2 (2P̂i j ρ̂P̂†

i j − ρ̂P̂†
i j P̂i j − P̂†

i j P̂i j ρ̂ ), (B3)

and the transition operators P̂i j = |i〉〈 j|.
In order to evaluate the quantity of interest, it is necessary

to define a set of dressed annihilation operators for the various

subsystems, and we have

Â =
∑
j,i> j

ci j P̂i j, B̂1 =
∑
j,i> j

ui j P̂i j, B̂2 =
∑
j,i> j

vi j P̂i j . (B4)

We recall that the photon as well as the phonon population
at any instant t of time is given by Nc(t ) = Tr[Â†Âρ(t )] and
Nw j (t ) = Tr[B̂†

j B̂ jρ(t )] ( j = 1, 2), respectively.

APPENDIX C: EXTERNAL DRIVE

The total Hamiltonian includes a time-dependent term act-
ing as an external drive that periodically shifts the effective
frequency of cavity mode from ω̃c,1 to ω̃c,2 and backwards.
From a physical perspective, the role of such external drive
is to simulate the compression and the expansion of the
cavity, thereby activating the resonant phonon-photon con-
version with either ω̃c,1 or ω̃c,2. The explicit form of the
time-dependent term is Ĥdr(t ) = f (t )�ωÂ†Â, where �ω =
ω̃c,2 − ω̃c,1, and Â, Â† are the cavity dressed operators in
Eq. (B4). The function f (t ) is a periodic smooth step function
which allows us to rapidly vary the frequency of the cavity
during the adiabatic transformations. Its explicit form is

f (t ) =
N∑
i

{sin2[�(t − ti )]θ [t − ti]

+ sin2 [�(t − ti − τ )]θ [t − ti − τ ]

− sin2 [�(t − ti − �t )]θ [t − ti − �t]

− sin2 [�(t − ti − τ − �t )]θ [t − ti − τ − �t]},
(C1)

where ti indicate the instants of time when the cycle is run,
�t is the duration of the hot isochoric, τ is the duration of the
two adiabatics, and � = 2π/τ . θ [t] is the Heaviside function.
The duration of the cold isochoric was estimated such that �U
reaches zero at the end of the transformation (see Fig. 3 of the
main text) and it corresponds to t2 − t1 − 2τ − �t , whereas
the duration of one cycle is t2 − t1.

We finally stress that, since the frequency change due to the
external drive occurs much faster than the effective coupling,
the system does not have time to modify its eigenstates, which
implies that we do not need to diagonalize the Hamiltonian
at all times. Therefore, we can maintain the same eigenba-
sis, hence the same dressed operators, throughout the whole
dynamics. Moreover, the interaction between the cavity and
each wall occurs not only at the minimum point of the level
avoidance but also weakly in its proximity. It follows that this
rapid jump between ω̃c,1 and ω̃c,2 is necessary to ensure the
classical adiabaticity of the process [11], namely simulating
the deactivation of the interaction between the cavity and
the bath mediated by the wall. In this quantum description,
the two walls are thermalized via different baths. In particular,
the interaction between a specific bath and the cavity occurs
once the resonance condition with the relative wall is imposed
and it is halted once the system is driven off resonance. We
have W2 at frequency ω2 that thermalizes via a hot bath at Th,
while W1 has a lower frequency ω1 < ω2 and it is thermalized
via a cold bath at Tc < Th. The cavity interacts with its own
bath at T � 0.
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