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The Kondo effect is one of the most studied examples of strongly correlated quantum many-body physics.
Another type of strongly correlated physics that has only recently been explored in detail (and become exper-
imentally accessible) is that of ultrastrong coupling between light and matter. Here, we study a system which
we denote as “Kondo QED” that combines both phenomena, consisting of a two-impurity Anderson model
ultrastrongly coupled to a single-mode cavity. While presented as an abstract model, it is relevant for a range
of future hybrid cavity-QED systems. Using the hierarchical equations of motion approach we show that the
ultrastrong coupling of cavity photons to the electronic states (impurity) noticeably suppresses the electronic
Kondo resonance due to the destruction of many-body correlations of the Kondo cloud. We observe this transfer
of correlations from the Kondo cloud to the cavity by computing the entropy and mutual information of the
impurity-cavity subsystems. In addition, in the weak lead-coupling limit and at zero bias, the model exhibits a
ground-state photon accumulation effect originating entirely from counter-rotating terms in the impurity-cavity
interaction. Interestingly, in the strong lead-coupling limit, this accumulation is “Kondo enhanced” by new
transition paths opening when increasing the hybridization to the leads. This suggests a new mechanism for
the generation of real photons from virtual states. We further show that the suppression of the Kondo effect
is stable under broadening of the cavity resonance as a consequence of the interaction to an external bosonic
continuum. Our findings pave the way for the simultaneous control of both the Kondo QED effect and a photon
accumulation effect using the ultrastrong coupling of light and matter.
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I. INTRODUCTION

Understanding the properties of strongly correlated open
quantum systems remains one of the significant challenges in
quantum many-body physics, with applications in quantum
computation [1], machine learning [2], quantum optics [3,4],
and condensed matter physics [5]. The Kondo resonance,
arising from the strong quantum correlations formed between
magnetic impurities and the surrounding electrons, has
provided a testing ground not only for fundamental theories,
but also for quantitative comparisons between theory and
experiments [6].

Quantum dots (or single molecules [7,8]) are often
used as controllable impurities and can be engineered to
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manifest the Kondo effect [9–14]. In addition, they are
promising for a range of technological applications, like
single-electron transistors [7,15–17]. Importantly, for our pur-
pose, it has been demonstrated experimentally that both
charge and spin degrees of freedom can be coupled to mi-
crowave photons [18–21]. So far, electronic systems (ESs),
like quantum dots or impurity spin, operating in the Kondo
regime in concert with electron-photon interactions [22,23]
have offered a way to noninvasively probe quantum correla-
tions in fermionic many-body systems through the phases and
amplitudes of the photonic signals [24,25]. In these studies
the electronic properties are largely unaffected by the cavity
photons due to the weak electron-photon interaction.

At the same time, it has been shown that light-matter cou-
pling can be tuned to be on the same order of magnitude as
the bare frequencies of the isolated systems [26–28]. In this
ultrastrong-coupling (USC) regime, virtual processes which
simultaneously create or annihilate both light and matter exci-
tations (usually neglected by the rotating wave approximation
in the weak- and strong-coupling regimes [26,27]) become
important. Interestingly, these processes, enabled by the so-
called counter-rotating terms in the Hamiltonian, induce a
hybridization between light and matter even in the ground
state, which becomes dressed by virtual excitations [29].
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This allows for the emergence of counterintuitive phe-
nomena in various fields, such as quantum optics [29–31],
transport [32,33], chemistry [34–36], and condensed matter
[37,38]. USC can also be realized in the context of open
quantum systems [39]. Additional novel potential applica-
tions have been explored in relation to quantum information
processing [40,41], quantum memories [42], quantum plas-
monics [43], and quantum thermodynamics [44,45].

Kondo QED: An overview

In this section, we start with an intuitive overview and ex-
planation of our results. In this work, we provide a qualitative
description of how Kondo resonance behaves in the presence
of light-matter interactions, which we term Kondo quantum
electrodynamics (QED). In particular, we are interested in
what occurs when those interactions are allowed to be of the
order of other system energies (the USC regime).

We investigate two scenarios, (i) a single-mode cavity and
(ii) a bosonic continuum, both ultrastrongly coupled to a two-
impurity ES. In both cases the ES is sandwiched between two
fermionic environments that are designed to interact solely
with the lower-energy impurity |g〉 [see Fig. 1(a)].

Each impurity can have the following four electronic con-
figurations: a vacant impurity with no electrons, two states
where the impurity is occupied by an electron with either spin
up or spin down, and a state featuring double occupancy (with
both a spin-up and a spin-down electron).

When the coupling between the ES and the leads is large,
strong correlations are established between the impurity and
the electrons in the leads at the Fermi energy, allowing them
to form spin-antisymmetric states. The “bare” basis of single-
and double-electron occupancy described above is then insuf-
ficient to describe this regime. In addition, these correlations
cause the emergence of a zero-frequency peak in the den-
sity of states (DOS) of the electronic system, as shown in
Fig. 1(b). This peak is a well-known spectroscopic signature
of the Kondo effect [46–49], and it has been experimentally
detected [50].

Because of the many-body nature of the fermionic leads,
one must resort to sophisticated numerical methods to
describe this parameter regime. One such method, the hier-
archical equation of motion (HEOM) approach, allows us to
calculate the DOS in a numerically exact manner, account-
ing for strongly non-Markovian bath correlations without
resorting to perturbative approximations [51–55]. This means
that the zero-frequency Kondo peak, which describes the
many-body correlations between electrons in the lead and
the ES, can be accurately captured by the HEOM method.
Furthermore, our analysis verifies that the DOS derived from
HEOM complies with the Luttinger theorem and/or Friedel
sum rule and shows the expected scaling behavior adjacent to
the Kondo resonance. Detailed explanations can be found in
Appendix B.

In order to characterize the impact of the light-matter in-
teractions in the USC limit on the Kondo effect, which will
also hybridize with the impurity states, we employ the HEOM
method in two ways: first, by explicitly including the light de-
grees of freedom in the system part of the model (for the cavity

FIG. 1. (a) An electronic system, described by two states having
energy εg = −6ωc and εe = −5ωc, coupled to a high-quality-factor
single-mode cavity with strength gct and sandwiched between left
and right leads with coupling strengths �L and �R, respectively.
On the right, we represent the four possible electronic states of
each impurity |g〉 and |e〉: (bottom) two states where the impurity
is occupied by an electron with either spin up or spin down, (middle)
an empty state with no electrons, and (top) a double-occupied state
with both spin-up and spin-down electrons. (b) Illustration of the
Kondo regime, characterized by strong correlations between system
electrons in |g〉 and the lead electrons at the Fermi level. As a
consequence, a Kondo peak at the Fermi level (zero frequency) in
the DOS appears which requires nonperturbative methods, such as
the HEOM approach. (c) Suppression of the Kondo peak around
zero frequency for the equilibrium DOS (μL = μR = 0) of the
ES due to increasing the transverse light-matter coupling gct from
0 (black dotted line) to ωc (purple dash-dotted line) at temperature
T = 0.5ωc. The Coulomb repulsion between spin-up and spin-down
electrons is set to Un = 15ωc. The coupling strengths to both leads
are �L = �R = � = ωc with bandwidth Wf = 10ωc. The truncation
of the Fock space dimension, of the HEOM tiers, and of the Padé
series are set to Nb = 3, Nc = 3, and u = 5, respectively.
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FIG. 2. (a) The zero-frequency component A|g〉(0) of the DOS as
a function of the transverse coupling strength gct, with � = 0.6ωc

(red stars) and � = ωc (blue squares). (b) The zero-frequency com-
ponent of the DOS, A|g〉(0), plotted against the cavity frequency, ωc.
The suppression of the Kondo peak diminishes as ωc increases.

limit), and second, by including them in the so-called auxiliary
HEOM degrees of freedom (for the continuum limit).

The HEOM approach has been successfully applied to
various interacting systems, such as molecular junctions [56],
quantum dots [57], photosynthetic complexes [58,59], and
cavity QED settings [39,60,61]. These systems involve differ-
ent types of environments, such as electronic leads, phonon
baths, or electromagnetic fields. The HEOM approach can
capture the complex interplay between electronic and vibra-
tional degrees of freedom [62,63], as well as the effects of
coherence and dissipation on the transport and energy trans-
fer processes [53]. The HEOM approach can also deal with
nonequilibrium situations, such as voltage or thermal gradi-
ents [64], and hybrid environments that combine bosonic and
fermionic components [54,65,66].

Due to this versatility, the HEOM method has become
a popular method in many different fields. However, appli-
cations to the study of the ultrastrong light-matter coupling
between a cavity and strongly correlated impurities have so
far been limited. With this method we calculate the DOS and
find that the hybridization between light and matter (emerging
as a consequence of the ultrastrong coupling of the cavity
field with the ES) can reduce the electronic Kondo resonance
[see Fig. 1(c)] by suppressing the correlations with the Kondo
cloud (see Fig. 3).

FIG. 3. Correlations between subsystems. As a function of the
light-matter coupling strength gct, we show (a) the von Neumann
entropy (Sec ), (b) the cavity (Sc) and ES (Se) entropy, (c) the mutual
information (Iec ), and [(d), (e)] the average photon number (Nph).
The scaling of the correlations depends on the coupling strength to
the leads (Kondo regime in red and non-Kondo regime in blue).

This result can be understood as a competition between
ES-cavity and ES-leads hybridization. Stronger correlations
between the system and the cavity intuitively decrease the
electron availability to form delocalized states with the leads,
thereby modulating the Kondo effect.

Furthermore, in the USC regime, the presence of quantum
fluctuations in the light-matter ground state [26] enables new
transition paths which result in a steady-state photon accu-
mulation effect in the cavity. This intriguing effect manifests
under both weak and strong matter-lead-coupling conditions
[see Fig. 4(a)].

When the system and the leads interact weakly, this
photon accumulation effect is enhanced as the light-matter
coupling increases. This can be intuitively understood us-
ing an effective master equation valid in the limit of small
system-lead coupling. This clearly demonstrates how, in this
weak-coupling limit, increasing light-matter coupling leads to
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FIG. 4. (a) An energy diagram for the uncoupled system (gct = 0, � = 0). The cavity states |i〉 describe i photons while the ES states (|e〉
and |g〉) can be occupied by electrons with arbitrary spin configuration. As the USC of cavity to ES occurs, the tunneling of an electron from
the leads causes a transition from the empty state |s〉 to the intermediate transient states |G±〉 and |ϕ±

l=9,10〉 (red arrow). Shortly afterwards,
another entering electron will participate in this process, further inducing the transition to the stationary dressed states |ϕi=1,...,4〉 (blue arrow)
and |ϕ j=5,...,8〉 (blue dashed arrow). By increasing the ES-lead couplings, there is a transition from the non-Kondo to the Kondo regime where
the dressed states with higher energy, i.e., |G↑↓〉 and |ϕk=11,...,15〉, can be excited. (b) The short-time dynamics of different dressed states
obtained by solving the HEOM are shown with markers while the solid lines represent the solutions of the Born-Markov quantum master
equation (BMME). The two methods are in good agreement in the non-Kondo regime (� = 0.01ωc). (c) Evolution time needed to accumulate
an expected number of photons equal to one as a function of the light-matter coupling gct in the non-Kondo (� = 0.01ωc) and the Kondo
(� = ωc) regimes.

increased virtual photon accumulation due to larger ground-
state light-matter hybridization [32]. The trapping (conversion
from virtual to real), or accumulation, of those photons occurs
due to an inherent light-matter decoupling mechanism which
activates when both impurities are occupied.

However, when the lead-system interaction enters the non-
perturbative Kondo regime, a different trend is observed. We
first see a larger overall photon accumulation magnitude,
but with a counterintuitive suppression of the photon accu-
mulation effect taking place as the light-matter coupling is
increased [see Fig. 3(d)]. This suppression can be traced back
to the cavity-induced decoupling effect which reduces the
importance of higher-order transitions enabled by the com-
bination of system-lead and light-matter hybridization.

In addition, another surprising feature is that, despite being
triggered by the counter-rotating terms in the light-matter
Hamiltonian, the photon accumulation effect appears for rel-
atively weak light-matter couplings and, as mentioned above,
its magnitude can be “Kondo enhanced” in the strong matter-
lead-coupling regime [see Fig. 5(d)]. This feature may provide
a new way to indirectly detect the presence of ground-state
virtual photons in the Rabi Hamiltonian [67–70].

In parallel, we also note that the time required to accumu-
late a photon in the cavity remains sensitive to the intensity of
the light-matter and matter-lead interaction strengths.

The rest of this article is organized as follows. In Sec. II,
we start by introducing our primary cavity-based model.
In Sec. III, we lay out our principal findings, specifically

highlighting the suppression of the Kondo peak provoked by
the ultrastrong coupling to the single-mode cavity, and the
photon accumulation effect which is reciprocally influenced
by the Kondo effect. In Sec. III C we consider a continuum
bosonic bath rather than a single-mode cavity, and show how
it impacts the Kondo resonance. In Sec. IV, we wrap up with
a conclusion of our findings, their potential applications, and
directions for future research. For those interested in more
detail, we have included several Appendixes. They cover the
step-by-step derivation of the DOS using HEOM, an examina-
tion of the convergence of the DOS, a derivation of a modified
master equation for degenerate systems, a description of the
dressed states of the Kondo QED system, and an explanation
of the reabsorption of the diamagnetic term in the light-matter
interaction.

II. THE MODEL

Kondo QED: A two-level ES ultrastrongly
coupled to cavity photons

Here, we consider a two-level ES ultrastrongly coupled to
a single-mode cavity and sandwiched between left and right
leads as shown in Fig. 1(a). Such an ultrastrongly coupled
ES-cavity system can be practically implemented by various
near-future cavity-QED and circuit-QED setups, such as hy-
brid superconducting circuits [71], semiconductor quantum
wells coupled to a microcavity circuit [72], molecular ex-
citons coupled to a metal-clad microcavity [73], and hybrid
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FIG. 5. Short-time quantum dynamics showing the failure of the BMME (solid curves) in comparison with the HEOM (markers) in the
Kondo regime. Due to the Born-Markov approximation, the BMME can be seen to underestimate the populations of |G±〉 and |ϕ±

l=9,10〉 in
(a) but to overestimate the populations of |ϕi=1,...,4〉 and |ϕ j=5,...,8〉 in (b). (c) The populations of dressed states with higher energy can only be
obtained by solving a nonperturbative method such as the HEOM. (d) The populations of stationary dressed states as a function of gct in both
the non-Kondo and Kondo regimes.

solid-state architectures [24,74–76], especially quantum-dot-
based systems [18,77,78]. We model this setup by the
Hamiltonian (with h̄ = 1 throughout)

HT = Hs + Hf + Hef, (1)

where the system Hamiltonian

Hs = He + Hc + Hec (2)

describes the ES (He), the single-mode cavity (Hc), and their
interactions (Hec). Here, the Hamiltonian of the electronic
system is given by

He =
∑
n=g,e

∑
σ=↑,↓

εnn̂nσ + Unn̂n↑n̂n↓, (3)

where d†
nσ creates an electron at level n = g, e with energy

εn. Here, n̂nσ = d†
nσ dnσ is the electronic number operator with

spin σ . The Coulomb repulsion energy Un represents a non-
linear effect and requires both spin-up (↑) and spin-down (↓)
electrons to occupy the same state. The two-level ES is near
resonance with the fundamental frequency (ωc) of the single
mode a inside the cavity with Hamiltonian

Hc = ωca†a. (4)

In addition, the light-matter coupling between the electronic
system and the cavity (c) photons, known as the light-matter

coupling, is described by

Hec =
∑

σ=↑,↓
gct(d

†
gσ deσ + d†

eσ dgσ )(a† + a), (5)

where the coupling constant gct can originate from a purely
transverse (t) engineered interaction [79–82]. It is important
to note that we assume gct and ωc have been implicitly renor-
malized by the A2 term [26], as demonstrated in Appendix F.
To study the influence of the light-matter USC on the Kondo
effect, we further assume a high-quality microwave cavity
so that the dissipation to its bosonic environment can be
neglected. The leads (labeled by α) are electronic reservoirs
described by the Hamiltonian εα,k ,

Hf =
∑

α

∑
k

εα,kc†
α,kcα,k, (6)

where c†
α,k creates a fermion (f) in the state k of the lead α.

Importantly, the electrons in the leads are assumed to couple
to only the lowest level |g〉 of the ES. Hence, the interactions
between the ES and two separate leads can be characterized
by the interaction Hamiltonian

Hef =
∑

k

∑
α=L,R

∑
σ=↑,↓

gα,k (c†
α,kdgσ + d†

gσ cα,k ). (7)
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The interaction between the ES and the fermionic leads can
be fully characterized by the Lorentzian spectral density

Jfα (ω) = 1

2π

�αW 2
f

(ω − μα )2 + W 2
f

, (8)

where �α represents the coupling strength between the system
and the α lead with bandwidth Wf and chemical potential μα .

III. RESULTS

A. Suppression of the Kondo peak

We now compute the DOS of the electronic system. This
is a key quantity in describing the Kondo effect [48] and can
be engineered to improve electronic device performance. The
DOS of this ultrastrongly coupled ES-cavity system can be
calculated as in Eq. (A1) using a parity-dependent HEOM
based on a recent canonical derivation of the influence super-
operator [66,83] (see Appendix A for more details).

Here, to have a better resolution of the Kondo effect, we
restricted our analysis to the DOS of the lowest state A|g〉(ω).
We further set a large repulsion energy as Un = 15ωc, to avoid
any overlap between the Kondo peak and other resonances
when increasing the transverse coupling. By varying the cav-
ity coupling from gct = 0.6ωc to gct = ωc (deep in the USC
regime), the Kondo peak gradually disappears as shown in
Fig. 1(d).

We note that, to optimize the memory requirement of the
simulation, we truncated the Fock space to three photons.
While this is typically insufficient to achieve convergent USC
effects, an increase in the truncation only slightly affects the
zero-frequency component of the DOS in the Kondo regime.
The convergence properties of the whole DOS with respect to
the truncation of Nc and Nb are shown in Appendix C.

Remarkably, in order to observe a noticeable impact on the
zero-frequency component of the DOS in the Kondo regime,
the strength of the transverse coupling gct has to be in the deep
strong-coupling regime; i.e., it has to be comparable to the
cavity resonant frequency ωc. As illustrated in Fig. 2, when
we decrease the lead coupling from �α = ωc to 0.6ωc, the
suppression of the Kondo peak, A|g〉(0), only occurs as gct

approaches ωc, not at the reduced value of �α .
Similarly, as the cavity resonant frequency ωc increases,

even up to twice its original value, we see a reduction in
the Kondo suppression effect, correlated with leaving the
USC regime into the strong-coupling range. Consequently,
maintaining the cavity coupling within the deep ultrastrong-
coupling regime is also a crucial prerequisite for observing a
noticeable Kondo suppression.

Additionally, the suppression of the Kondo effect shows
that a potential reduction of the correlations between the sys-
tem and the leads occurs in the USC regime. To clarify this,
we analyzed the von Neumann entropy of the steady-state
reduced density operator ρec(∞) = Trf[ρT(∞)] by partially
tracing over the Hilbert space of the fermionic leads,

Sec = −Trec{ρec(∞)ln[ρec(∞)]}. (9)

As shown in Fig. 3(a), increasing the light-matter coupling
gct results in reducing the entropy of the system, indicating a
decoupling of the ES from the leads.

In Fig. 3(b) we also show the von Neumann entropy of the
cavity,

Sc = −Trc{ρc(∞)ln[ρc(∞)]}, (10)

and the ES,

Se = −Tre{ρe(∞)ln[ρe(∞)]}, (11)

alone, where ρc = Tre,f [ρT(∞)] and ρe = Trc,f [ρT(∞)].
Combined with the mutual information

Iec = Sc + Se − Sec (12)

[see Fig. 3(c)], these quantities show that correlations between
ES and cavity increase when the gct increases. This is con-
sistent with the mentioned suppression of the Kondo peak in
the DOS, providing more evidence that the USC decouples
the ES from the leads (akin to the decoupling seen in the
tunnel-coupled two-impurity Anderson model [84]).

B. Photon accumulation

In Fig. 3(d) we plot the average photon occupation, Nph, of
the cavity in the steady state as a function of the light-matter
coupling strength gct. The blue curve shows the result for
weak coupling to the leads, while the red one shows the result
for strong coupling to the leads. For weak lead coupling, we
see an order-unity occupation in the steady state, moderately
increasing with the light-matter coupling. Conversely, in the
strong-lead-coupling limit, the average photon number in the
cavity increases overall, but shows a decrease with increasing
light-matter coupling.

We now present an intuitive description of this effect, fol-
lowed by a more detailed analysis. To do this, it is important
to note that in this work, we consider idealized cavities whose
interaction with the external electromagnetic environment is
negligible. This implies that the number of photons in the
cavity is completely determined by the interactions with the
system electrons. We further assume the system to be initially
empty in terms of both electrons and photons. Electrons sub-
sequently populate the system thanks to the coupling to the
leads.

In the weak-lead-coupling limit, when an electron tunnels
into the system in the low-energy state |g〉, it can undergo a
transition to a higher-energy one, |e〉, while simultaneously
creating a photon. This happens because of the counter-
rotating terms in the interaction. The now vacant |g〉 state
allows another electron to tunnel into the system. At this point,
due to the large Coulomb repulsion U , and because |e〉 and
|g〉 are below the bias window of the leads, further electron
transport processes are suppressed, justifying a photon occu-
pation in the cavity of order unity in the long-time limit. This
stability persists even with a relatively modest cavity coupling
of gct = 0.01ωc, as depicted in Fig. 3(e). The presence of an
order-unity photonic population in the long-time limit, even
when the light-matter coupling is decreased (which typically
reduces the probability of the process happening), is why we
use the term “photon accumulation.”

The scenario becomes more complex when we consider
the strong-lead-coupling regime. As we will show in more
detail below, the strong lead coupling opens up additional
pathways to higher-energy light-matter hybrid states involving
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a larger number of photons, leading to a larger steady-state
photon population. The subsequent counterintuitive reduction
of this population for larger light-matter couplings has the
same origin as the suppression of the Kondo peak: com-
petition between light-matter hybridization and matter-lead
hybridization.

In more detail, we first consider the weak ES-lead-coupling
regime. In this “non-Kondo” regime, shown in Fig. 4, we can
employ a Born-Markov quantum master equation (BMME) to
describe the influence of the leads on the ES-cavity system.
In situations where interactions within the system are particu-
larly intense, as observed in USC or when the ES has a large
Coulomb repulsion U , the conventional local Lindblad master
equation might not be reliable. It could, at times, predict
unphysical behaviors, such as suggesting the emergence of
excitations at absolute zero temperature [85] or inaccuracies
in electron occupations within the ES.

The dressed Born-Markov master equation is more ac-
curate in these situations. Importantly, this equation focuses
on transitions between the combined “dressed” states of the
system rather than the isolated states of its individual com-
ponents. It uses a Lindblad dissipator written in terms of a
decomposition on the different eigenstates |ϕi〉 of Hs with
eigenenergies εI , i.e.,

∂tρs(t ) = −i[Hs, ρs(t )] +
∑
ασ

∑
εk−εl =ω

∑
p=±

γα,l→k (ω)

×
{

p|ϕk〉〈ϕl |ρ p
s (t )|ϕl〉〈ϕk| − 1

2

{|ϕl〉〈ϕl |, ρ p
s (t )

}}
,

(13)

where [·, ·] ({·, ·}) denotes the commutator (anticommutator).
Note that the density operator in this Born-Markov quantum
master equation is allowed to contain both even and odd
parity, i.e.,

ρs(t ) = δp,1ρ
+
s (t ) + δp,−1ρ

−
s (t ). (14)

Here, we assume that there is no coherence in the initial
system states (otherwise, the Born-Markov quantum master
equation should be modified to take into account degener-
ate energy levels in the eigenoperator decomposition). The
details of the derivations are shown in Appendix D. The
Born-Markov quantum master equation provides information
on the transitions between different system eigenstates which
happen at the rates

γα,l→k (ω) = 2π
∑
ν=±1

∑
u=↑,↓

∣∣〈ϕk|dν
gu|ϕl〉

∣∣2Jfα (ω)nfα (ω), (15)

written in terms of the spectral density of leads Jfα
and Fermi-Dirac distribution nfα = 1/(eβω + 1), with β =
(kBT )−1 (kB = 1). Assuming an initially empty electronic
system, an electron will rapidly enter the system due to the
higher potential of the leads relative to the impurity energies.
Due to the USC between cavity and ES, this electron can enter
the ground (|G±〉 with Nph ≈ 0.5) and higher (|ϕ±

l=9,10〉 with
Nph ≈ 1.5) photon-dressed states as shown in Fig. 4(a).

Importantly, these states contain components in which the
ES is excited to impurity 2 (state |e〉) and virtual photons
are present in the cavity, due to the counter-rotating terms

in the light-matter interaction. These components allow for
a nonzero rate to two-electron states, where both impurity 1
(state |g〉) and 2 (state |e〉) are occupied, and physical photons
populate the cavity, through the paths

|s〉 γs→G−−→ |G±〉 γG→i−−→ |ϕi=1,...,4〉,
|s〉 γs→l−−→ |ϕ±

l=9,10〉
γl→ j−−→ |ϕ j=1,...,8〉,

(16)

where |s〉 represents the state empty of photons and elec-
trons. Here, the stationary dressed states can be approximately
written as

|ϕi=1,...,4〉 ≈ fi1 |↑,↓, 1〉 + fi2 |↑,↑, 1〉
+ fi3 |↓,↓, 1〉 + fi4 |↓,↑, 1〉 (17)

and

|ϕ j=5,...,8〉 ≈ f j1 |↑,↓, 3〉 + f j2 |↑,↑, 3〉
+ f j3 |↓,↓, 3〉 + f j4 |↓,↑, 3〉. (18)

Note that |↑(↓),↑(↓), nc〉 represents the uncoupled eigenstate
containing the electrons with spin-up ↑ (spin-down ↓) config-
uration singly occupying the lower |g〉 and higher |e〉 energy
levels. Here, fi( j)k is the corresponding amplitude of each
uncoupled eigenstate. In this sense, |ϕi=1,...,4〉 and |ϕ j=5,...,8〉
mainly contain around one and three photons, but, because of
the double electron occupation, they are uncoupled from the
cavity (see Appendix E for more details).

As shown in Fig. 3(d), in the long-time limit of the non-
Kondo regime, photons accumulate in the cavity, even for
arbitrarily small light-matter coupling [e.g., gct = 0.01ωc to
0.1ωc in Fig. 3(e)] in a time which depends on gct. A larger
gct enhances this ground-state photon accumulation rate as
shown in Fig. 4(c). Importantly, this photon is not virtual, and
will eventually decay into the electromagnetic environment,
allowing for a potential observation of this effect.

As we increase the ES-lead coupling to reach the Kondo
regime, this strong ES-lead coupling can allow for higher-
order transitions to transient states, such as |G↑↓〉 with double
occupation in the lower state and |2〉 with no electrons but two
photons, leading to the dressed states |ϕ11〉 and |ϕk=13,14,15〉
as illustrated in Fig. 4(a). Meanwhile, compared to the non-
Kondo regime, such strong ES-lead coupling in the Kondo
regime can drastically enhance the ground-state photon ac-
cumulation rate, as displayed in Fig. 4(c). As expected, in the
Kondo regime, the dynamics of the corresponding low-energy
states cannot be described by the dressed Born-Markov master
equation, as shown in Figs. 5(a) and 5(b). This master equa-
tion also fails to model the nonperturbative effects causing
transitions to higher excited states such as |G↑↓〉, |2〉, and
|ϕk=11,14,15〉, which did not play a role in the non-Kondo
regime, as seen in Figs. 4(a) and 5(c).

In the long-time limit, shown in Fig. 5(d), single-photon
dressed states (|ϕi=1,...,4〉) dominate the steady-state occupa-
tion in the non-Kondo regime. The photon occupation of these
states increases as we increase gct (due to an increase in
the expected photon number of intermediate transient states),
giving rise to the increase of Nph [see Fig. 3(d)]. However,
in the Kondo regime, at weaker light-matter couplings [e.g.,
gct = 0.6ωc, as illustrated in Fig. 5(d)], we see larger aver-
age populations because of access to new transition paths
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involving three-photon dressed states (|ϕ j=5,...,8〉) and even
higher-energy dressed states (|ϕ±

k=9,...,15〉), resulting in Kondo-
enhanced dressed photon accumulation.

As the cavity coupling increases, specifically from gct =
0.6ωc to ωc, the intensity of light-matter hybridization am-
plifies. This stronger hybridization in the dressed light-matter
states intuitively reduces the effective number of electrons
which can interact with the leads, thereby contributing to
a decoupling of the leads from the system. As a result of
this enhanced electron-photon coupling, the likelihood that a
strong coupling to the leads will prompt transitions to higher-
energy dressed states diminishes. This leads to a noticeable
suppression of certain transition pathways, further isolating
the ES-cavity system from the leads.

As a consequence, populations of states like |ϕ j=5,...,8〉
which, in the previous case, were enhanced by the transi-
tions to higher-energy dressed states, begin to decrease. This
leads to a reduction in photon occupation and subsequently
suppresses the photon accumulation effect, as depicted in
Fig. 3(d). In essence, this suppression can be attributed to
the cavity-induced decoupling effect of the ES on the leads,
which counteracts the enhancement obtained by allowing for
higher-order transitions. In turn, this also provides additional
evidence for the suppression of the Kondo effect.

C. Two-impurity Anderson model ultrastrongly
coupled to a bosonic continuum

In this section, we generalize the previous analysis based
on the resonant interaction to single-mode cavities to allow
for a coupling to a continuum of environmental modes. This
setting is usually introduced to investigate a richer domain
of phenomena such as hybridization with the bath [39], un-
raveling of multiple excitation bound states [86], harvesting
single photons from the vacuum [87], developing robust long-
distance entanglement protocols [88], and also to promote
advancements in the design of quantum computing and sens-
ing devices [89].

Thus, in addition to single-mode cavities, we also explore
systems comprised of a two-level ES ultrastrongly coupled to
a bosonic continuum and positioned between two leads, as
illustrated in Fig. 6(a).

The Hamiltonian describing the bosonic continuum (b)
fields b j with energy ωb, j is denoted as

Hb =
∑

j

ωb, jb
†
jb j . (19)

The interaction between the ES and the bosonic continuum
can be characterized by

Heb =
∑

j

∑
σ=↑,↓

gbt, j (d
†
gσ deσ + d†

eσ dgσ )(b†
j + b j ). (20)

Assuming the coupling is of the transverse type (t), as referred
to in Eq. (A11), we recast the interaction Hamiltonian into
the correlation function given by Eq. (A22). Subsequently,
we characterize the spectral density of the bosonic continuum

FIG. 6. (a) An electronic system, characterized by two states
with energies εg = −6ωc and εe = −5ωc, is coupled to the jth mode
in a bosonic continuum with strength gct, j . Simultaneously, this elec-
tronic system is situated between left and right leads, with coupling
strengths �L and �R, respectively. (b) The spectral density of the
bosonic continuum is characterized by the Drude-Lorentz model
with its peak at ω = ωc.

using the Drude-Lorentz model,

Jb(ω) = 2λWbω

ω2 + W 2
b

, (21)

where λ represents the coupling strength between the elec-
tronic subsystem (ES) and the bosonic continuum, which
functions as a bosonic reservoir with a bandwidth of Wb.
Assuming that Wb = ωc as depicted in Fig. 6(b), the bosonic
continuum can still have a high amount of energy in the
particular mode, which can simulate the single-mode cavity in
the previous example but with broadening energy distribution
contributed by other modes. This assumption offers an advan-
tage in comparing the effects of the coupled cavity between
its distinctive single- and multimode characteristics.

To examine the influence of the ultrastrongly coupled
bosonic continuum on the Kondo effect, we determine the
DOS by employing the hybrid HEOM approach, which en-
compasses both fermionic and bosonic hierarchy [refer to
Eq. (A33)].

For the numerical implementation, we truncate the bosonic
hierarchy to Nb = 4 and set the number of exponents in
the bosonic correlation to mmax = 10 [see Eq. (A24)]. The
convergence properties of the entire DOS concerning the trun-
cation of Nb and mmax are further shown in Appendix C.
Upon implementing a coupling strength of λ = 0.25ωc for
the bosonic continuum on the ES, there is virtually no impact
on the Kondo peak in the DOS, as demonstrated in Fig. 7(a).
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FIG. 7. (a) The DOS of the ES ultrastrongly coupled to a bosonic
continuum with λ = 0, λ = 0.25ωc, and λ = 0.5ωc is represented by
black dotted, light blue dashed, and red solid curves, respectively.
At λ = 0.5ωc, the decrease in the zero-frequency DOS peak, A|g〉(0),
indicates the suppression of the Kondo effect. (b) The height of the
zero-frequency DOS peak, A|g〉(0), is plotted as a function of the
coupling strength. Blue squares and red stars represent the coupling
of the ES to a single mode with coupling strength gct and to a bosonic
continuum with rescaled coupling strength

√
λωc, respectively. The

Kondo effect is suppressed as the effective coupling to the bosonic
environment is increased.

Moreover, when we increase λ to 0.5ωc, a noticeable suppres-
sion of the Kondo effect becomes apparent.

To compare these results with the single-mode-cavity
case depicted in Fig. 1(b), it is important to introduce a
renormalization of the parameter λ to account for the broad
nature of the system-bath coupling described by Eq. (21). This
could be done by mapping, in specific parameter regimes, the
overdamped spectral density in Eq. (21) to its underdamped
version [90,91].

Alternatively, it is also possible to follow a more intuitive
route and consider that the continuum can be approximately
replaced by a single effective ancillary mode whose coupling
strength to the system scales as the residue

√
λωc of the spec-

tral density Jb(ω) at iωc (see Eq. (E18) in Ref. [92]). Using this
scaling, we observe a remarkable similarity in the Kondo peak
suppression (as a function of the effective, normalized cou-
pling strengths to both the bath gct/ωc and

√
λ/ωc) between

the cases of a single-mode and a continuum bath. These results
suggest that, even in the presence of broadening, the resonant
interaction to an environmental bosonic mode continues to
play a dominant role in suppressing the Kondo correlation
between electrons in the ES and the leads.

IV. CONCLUSION

In summary, we have shown that the ultrastrong light-
matter interaction can suppress the Kondo screening and
simultaneously allow for a Kondo-enhanced steady-state
photon-trapping effect (via counter-rotating terms and virtual
transitions), which is reduced due to lead isolation as the
light-matter coupling is increased.

For the latter, our results indicate that, in the Kondo
regime, an increase of the ultrastrong coupling to the cavity
does not necessarily imply stronger light-matter hybridiza-
tion. While increasing the lead coupling allows more electrons
to participate in the light-matter hybridization, simultaneously
increasing the ultrastrong coupling to the cavity generates
competition between cavity-induced delocalization across the
ES and ES-lead coupling-induced delocalization of electrons
between the ES and leads. This competition gives rise to the
counterintuitive decoupling effect between the system and the
leads which, in turn, further reduces the photon accumulation
effect and the suppression of the Kondo correlation. There-
fore, our work offers a comprehensive perspective to gain
both qualitative and quantitative understanding of the complex
interplay between light-matter coupling and Kondo physics at
the nanoscale.

We note that any physical cavity inevitably interacts with
its own electromagnetic environment, resulting in photon loss
[93]. At the same time, the choice of different gauges needs
to be done very carefully [94,95]. More general conditions,
including nonzero photonic decay, will be considered in fu-
ture work. Furthermore, the USC Kondo-photon interaction
considered in this work can also be combined with different
impurity configurations, e.g., coupling of both impurities to
leads, additional spin-orbit coupling [96], arbitrary mixing of
longitudinal and transverse couplings of the cavity photons
[81], or Ruderman-Kittel-Kasuya-Yosida interaction [84] to
generalize the possible physics observable in this interesting
regime and allow for other potential ways to tailor the compe-
tition between the formation of electron-photon dressed states
and many-body entangled states in the Kondo effect.
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APPENDIX A: CANONICAL DERIVATION
OF THE DENSITY OF STATES

The density of states (DOS) can be written in a compact
form as [46,49]

Anσ (ω) = i

2π

∫ ∞

−∞
dteiωt

[
GR

nσ (t ) − GA
nσ (t )

]
, (A1)

in terms of the retarded GR
nσ (t ) and the advanced GA

nσ (t ) which
depend on the system correlation functions as

GR
nσ (t ) = −i�(t )

{
Cdnσ d†

nσ
(t ) + Cd†

nσ dnσ
(−t )

}
,

GA
nσ (t ) = i�(−t )

{
Cdnσ d†

nσ
(t ) + Cd†

nσ dnσ
(−t )

}
. (A2)

Here, the Heaviside function �(t ) ensures that causality is
properly accounted for. The correlation functions of the sys-
tem are given by

Cdν
nσ d ν̄

nσ
(t ) = Tr

{
dν

nσGo(t )
{
d ν̄

nσ ρT(∞)
}}

, (A3)

where Ge/o(t ){ôe/o} represents the propagator with arbitrary
parity symmetry depending on whether it is applied on an even
(ôe) or odd (ôo) parity operator. Here, the density operator (ρ)
referred to the total system (T) is considered to be in the long-
time limit,

ρT(∞) = lim
τ→∞Ge(τ ){ρT(0)}, (A4)

where the initial density operator is evolved into a correlated
steady state from an initially uncorrelated condition

ρT(0) = ρ th
f ⊗ ρ th

b ⊗ ρs(0), (A5)

which depends on the thermal (th) equilibrium state of the
fermionic (f) bath (ρ th

f ), the thermal equilibrium state of the
bosonic (b) bath (ρ th

b ), and the initial state of the system (s),
ρs(0). The propagator Ge/o(t ){ρT(0)} describing the behavior
of the quantum system can be obtained by solving the hierar-
chical equations of motion (HEOM) as follows.

Without loss of generality, we consider an N-level elec-
tronic system (ES) coupled to nα metallic leads. In addition,
the ES is coupled to a bosonic field, which, generically, can
represent a cavity mode [28,32], phonon mode [97–99], or
surface plasmon [100,101]. We consider the Hamiltonian

HT = Hs + Hf + Hsf + Hsb + Hb, (A6)

where Hs = He + Hc + Hec is the Hamiltonian of the system
(s) including the electronic (e) system (He), cavity (c) field
(Hc), and their interaction (Hec). Here, Hb represents the
Hamiltonian of the bosonic bath. We further assume that the
degrees of freedom of the system can also be coupled to their
bosonic environment Hsb. The Hamiltonian of the N-level ES
can be written as

He =
N∑
n

∑
σ=↑,↓

εnd†
nσ dnσ +

N∑
n

Und†
n↑dn↑d†

n↓dn↓, (A7)

in terms of the bare energies εn and Coulomb interactions Un.
The interaction Hamiltonian between the ES and leads can
therefore be written as

Hsf =
∑
α,k

N∑
n=1

∑
σ=↑,↓

�α,k (c†
α,kdnσ + d†

nσ cα,k ). (A8)

Additionally, the Hamiltonian describing the cavity fields a
with energy ωc is denoted as

Hc = ωca†a. (A9)

The interaction between the ES and the cavity field with
coupling strength gc can be characterized by

Hec =
∑

σ=↑,↓
gcQσ (a† + a), (A10)

where Qσ represents the fermionic interaction operator of the
ES. The form of Qσ depends on the specific coupling type of
the cavity field. For example, one may have longitudinal or
transverse coupling [80,81]. The specific form of the interac-
tion operator Qσ we consider here is a transverse (t) coupling
gct. Moreover, the couplings of the bosonic environment to
the interior degrees of freedom of the system with coupling
strength gsb, j ( j labels the mode number) can be modeled by

Hsb =
∑

j

gsb, jVs(a
†
j + a j ), (A11)

where b†
j (b j ) represents the creation (annihilation) operator

of the bosonic environment,

Hb =
∑

j

ω jb
†
jb j . (A12)

Note that Vs refers to the Hermitian ES-interaction operators
acting on fermionic degrees of freedom. In the fermionic case,
Vs must have even parity to be compatible with charge con-
servation. For the system-bath interactions, we can then write
down the interaction Hamiltonian in the interaction picture as

Hs,env(t ) = Hsf(t ) + Hsb(t )

=
∑

α

∑
n,σ

[
�α

∑
k

c†
αkeiεαktU †

s (t )dnσUs(t )

− �α

∑
k

cαke−iεαktU †
s (t )d†

nσUs(t )

]

+
∑

j

gsb, j (b
†
je

iω j t + b je
−iω j t )U †

s (t )VsUs(t )

=
∑

α

∑
n,σ

[c†
α (t )dnσ (t ) − cα (t )d†

nσ (t )] + b(t )Vs(t ).

(A13)

In this frame, the system density operator (ρ) rotates (denoted
by the tilde) as ρ̃s = U †

s (t )ρs(t )Us(t ), where Us(t ) = eiHst . In
order to derive the HEOM of the system, we begin with using
the Liouville–von Neumann equation in the interaction frame,

∂ρ̃s(t )

∂t
= −i[Hs,env(t ), ρ̃s(t )], (A14)

which can be integrated to obtain the formal solution

ρ̃s(t ) = ρ̃s(0) − i
∫ t

0
[Hs,env(t1), ρ̃s(t1)]dt1. (A15)

By iteratively replacing ρ̃s(t1) with ρ̃s(t ) in Eq. (A15), one
obtains the Dyson series of the von Neumann equation in
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terms of the time-ordering superoperator ˆ̂T :

ρ̃s(t ) =
∞∑

nD=0

(−i)nD

nD!
ˆ̂T
∫ t

0

[
nD∏
i=1

dti
ˆ̂H×

s,env(ti)

]
ρs(0), (A16)

where ˆ̂H×
s,env(t ) = [Hs,env(t ), ·]− and [·, ·]− denotes the com-

mutator. Here, the double hat (ˆ̂·) refers to superoperator. For
the reduced Dyson series to be solvable, we apply the canon-
ical approach in Ref. [83] which does not require any path
integral. The formal expression of Eq. (A16) can be written as

ρ̃s(t ) = ˆ̂G(t )
[
ρ p

s (0)
]
, (A17)

where ˆ̂G(t )[·] is a superoperator which propagates the even-
(p = +) or odd-parity (p = −) density operator and can be
used to calculate the DOS. Its explicit form [83] is given by

ˆ̂G(t )[·] = ˆ̂Ts exp

{
−
∫ t

0
dt1

∫ t1

0
dt2

× [ ˆ̂Wf(t1, t2)[·] + ˆ̂Wb(t1, t2)[·]]
}
, (A18)

in terms of the following fermionic superoperator,

ˆ̂Wf(t1, t2)[·] =
∑
p=±

∑
αnn′σ

∑
ν=±1

{
Cν

α (t1, t2)
[
d ν̄

n′σ (t2), dν
nσ (t1) · ]−p

+ Cν
α (t2, t1)

[ · d ν̄
n′σ (t2), dν

nσ (t1)
]
−p

}
, (A19)

and the following bosonic superoperator [39,54],

ˆ̂Wb(t1, t2)[·] = [Vs(t1), ·]− × {CR
b (t1, t2)[a(t2), ·]−

+ iCI
b (t1, t2)[a(t2), ·]+

}
, (A20)

where p = ∓ represents the projection on the even or odd
sector. Here, [·, ·]− and [·, ·]+ denote the commutator and
anticommutator, respectively. For simplicity, we define ν

to denote the presence (ν = 1) or absence (ν = −1) of a
Hermitian conjugation. Moreover, we define ν̄ = −ν. As
it can be seen from the previous expressions, the effects
of the fermionic and bosonic environments on the sys-
tem are completely encoded in the correlation functions
which, in the fermionic case, depend on the spectral density
Jfα (ω) = π

∑
k �2

α,kδ(ω − ωk ) and the Fermi–Dirac distribu-
tion neq

fα
(ω) = {exp[(ω − μα )/kBTfα ] + 1}−1 as

Cν
α (t1, t2) = Trf

[∑
k

�2
α,kcν

α,kcν̄
α,kρf(0)

]
eνiω(t1−t2 )

= 1

2π

∫ ∞

−∞
dωJfα (ω)

[
1 − ν

2
+ νneq

f (ω)

]
eνiω(t1−t2 ).

(A21)

Analogously, in the bosonic case, they depend on the spectral
density Jb(ω) = 2π

∑
j g2

sb, jδ(ω − ω j ) and the Bose–Einstein
distribution neq

b (ω) = {exp[ω/kBTb] − 1}−1 as

Cb(t1, t2) = Trb

⎡
⎣∑

j

g2
cb, j

(
b†

jb je
iω(t1−t2 ) + b jb

†
je

−iω(t1−t2 ))ρb(0)

⎤
⎦

= 1

2π

∫ ∞

−∞
dωJb(ω)

[
neq

b (ω)eiω(t1−t2 ) + (neq
b (ω) + 1

)
e−iω(t1−t2 )

]
, (A22)

where kB is the Boltzmann constant and Tfα (Tb) represents the absolute temperature of the α-fermionic (bosonic) bath. Nonzero
chemical potential (μα = 0) in the α-fermionic bath can account for nonequilibrium physics.

To proceed in the derivation of the HEOM, the bath correlation functions will be expressed as a sum of exponential terms,
which allows to define an iterative procedure. Specifically, based on some spectral decomposition schemes, such as the Matsubara
spectral decomposition [102] or the Padé spectral decomposition [103], the correlation functions of both fermionic and bosonic
environments can be written as a sum of exponentials as

Cν
α (τ ) =

lmax∑
l=0

ην
l exp(−γα,ν,lτ ), (A23)

and

Cb(τ ) =
mmax∑
m=0

εm exp(−χmτ ), (A24)

where τ = t1 − t2. However, in order to obtain a closed form for the HEOM, the bosonic correlation function has to be further
decomposed into its real part,

CR
b (τ ) =

NR∑
m=0

εRm exp
(−χR

m τ
)
, (A25)

and imaginary part,

CI
b (τ ) =

NI∑
m=0

εIm exp
(−χI

mτ
)
, (A26)

043177-11



PO-CHEN KUO et al. PHYSICAL REVIEW RESEARCH 5, 043177 (2023)

unless χm = χ∗
m. Here, NR refers to the number of exponentials used to obtain CR

b (τ ), and similarly, for CI
b (τ ). By plugging the

fermionic [Eq. (A23)] and bosonic correlation functions [Eqs. (A25) and (A26)] into Eq. (A18) and taking the time derivative,

one can obtain the explicit form of the superoperators ˆ̂Aν
nσ (t ), ˆ̂Bν

αlnσ (t ), ˆ̂Pm(t ), and ˆ̂K (t ), which leads to

∂t
ˆ̂G(t )[·] = − i

⎧⎨
⎩
∑
αlnσ

∑
ν=±1

(
d ν̄

nσ (t )[·] − ˆ̂Ps
[
[·]d ν̄

nσ (t )
])× (−i)

∫ t

0
dt1e−γανl (t−t1 )(ην

l dν
nσ (t )[·] + η∗ν̄

l
ˆ̂Ps
[
[·]dν

nσ (t )
])

+ [Vs(t ), ·]− ×
∫ t

0
dt1

⎛
⎝−i

NR∑
m=0

εRm e−χR
m (t−t1 )[Vs(t1), ·]− +

NI∑
m=0

εIme−χI
m (t−t1 )[Vs(t1), ·]+

⎞
⎠
⎫⎬
⎭ ˆ̂G(t )[·]

= − i

⎧⎨
⎩
∑
αlnσ

∑
ν=±1

ˆ̂Aν̄
nσ (t ) ˆ̂Bν

αlnσ (t ) + ˆ̂K (t )
∑

u=R,I

Nu∑
m=0

ˆ̂Pu
m(t )

⎫⎬
⎭ ˆ̂G(t )[·]

= − i

⎧⎨
⎩
∑

j

ˆ̂A j (t ) ˆ̂B j (t ) + ˆ̂K (t )
∑

q

ˆ̂Pq(t )

⎫⎬
⎭ ˆ̂G(t )[·]

= − i
∑

j

ˆ̂A j̄ (t ) ˆ̂G (1,0)
j| (t )[·] − i ˆ̂K (t )

∑
q

ˆ̂G (0,1)
|q (t )[·], (A27)

where ˆ̂Ps[·] = Ps[·]Ps represents the parity superoperator of the system with

Ps =
∏
nσ

exp[iπd†
nσ dnσ ]. (A28)

Here the symbols j and q involve the multi-index {α, l, n, σ, ν} and {u, m}, respectively. Therefore, we can sequentially define
the fermionic and bosonic part of the first-tier auxiliary superoperator propagator as

ˆ̂G (1,0)
j| (t )[·] = ˆ̂B j (t ) ˆ̂G(t )[·] (A29)

and
ˆ̂G (0,1)
|q (t )[·] = ˆ̂Pq(t ) ˆ̂G(t )[·]. (A30)

To obtain the higher-tier auxiliary superoperator propagators, we must repeatedly take the time derivative of the different-tier
auxiliary superoperator propagators. First, the derivative of the first-fermionic-tier and first-bosonic-tier auxiliary superoperator
propagators can be expressed, respectively, as

∂t
ˆ̂G (1,0)

j| (t )[·] = ∂t
( ˆ̂B j (t ) ˆ̂G(t )[·])

= [−i
(
ην

l dν
nσ (t )[·] + η∗ν̄

l
ˆ̂Ps
[
[·]dν

nσ (t )
])− γανl

ˆ̂B j (t ) − i ˆ̂B j (t )

⎡
⎣∑

j′

ˆ̂A j̄′ (t ) ˆ̂B j′ (t ) + ˆ̂K (t )
∑

q

ˆ̂Pq(t ) ˆ̂B j (t )

⎤
⎦ ˆ̂G(t )[·]

= [−i ˆ̂Cν
lnσ (t ) − γανl

ˆ̂B j (t )
] ˆ̂G(t )[·] − i

⎡
⎣∑

j′

ˆ̂A j̄′ (t )(−1) ˆ̂B j (t ) ˆ̂B j′ (t ) + ˆ̂K (t )
∑

q

ˆ̂Pq(t ) ˆ̂B j (t )

⎤
⎦ ˆ̂G(t )[·]

= − i ˆ̂C j
ˆ̂G(t )[·] − γ j

ˆ̂G (1,0)
j| (t )[·] − i

∑
j′

(−1) ˆ̂A j̄′ (t ) ˆ̂G (2,0)
j′ j| (t )[·] − i ˆ̂K (t )

∑
q

ˆ̂G (1,1)
j|q (t )[·] (A31)

and

∂t
ˆ̂G (0,1)
|q (t )[·] = ∂t

( ˆ̂Pq(t ) ˆ̂G(t )[·])
= [−i

(
δuRcRm [Vs(t ), ·]− + iδuIcIm[Vs(t ), ·]+

)− χu
m

ˆ̂Pq(t ) − i ˆ̂Pq(t )

⎡
⎣∑

j′

ˆ̂A j̄′ (t ) ˆ̂B j′ (t ) + ˆ̂K (t )
∑

q′

ˆ̂Pq′ (t )

⎤
⎦ ˆ̂G(t )[·]

= (−i ˆ̂Mu
m − χu

m
ˆ̂Pq(t )

) ˆ̂G(t )[·] − i

⎡
⎣∑

j′

ˆ̂A j̄′ (t ) ˆ̂Pq(t ) ˆ̂B j′ (t ) + ˆ̂K (t )
∑

q′

ˆ̂Pq(t ) ˆ̂Pq′ (t )

⎤
⎦ ˆ̂G(t )[·]

= − i ˆ̂Mq
ˆ̂G(t )[·] − χq

ˆ̂G (0,1)
|q (t )[·] − i

∑
j′

ˆ̂A j̄′ (t ) ˆ̂G (1,1)
j′|q (t )[·] − i ˆ̂K (t )

∑
q′

ˆ̂G (0,2)
|q′q (t )[·]. (A32)
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The superoperator propagator can also be transformed back to the Schrödinger (S) picture by using the transformation ˆ̂GS(t )[·] =
Us(t ) ˆ̂G(t )[·]U †

s (t ). By recursively taking the derivative of the N-tier auxiliary superoperator propagator and defining the cutoff
parameters as N = Nf + Nb and Nb = NR + NI , one can finally obtain the following HEOM in the Schrödinger picture:

∂t
ˆ̂GS(Nf,Nb )

j1···|q1···(t )[·] = ∂t
( ˆ̂B jnf

· · · ˆ̂B j1
ˆ̂PqNb

· · · ˆ̂Pq1

ˆ̂G(t )[·])
= −

(
iLs +

Nf∑
r=1

γ jr +
Nb∑

w=1

χqw

)
ˆ̂GS(Nf,Nb )

j1···|q1···(t )[·] − i
Nf∑

r=1

(−1)Nf−r+1 ˆ̂C jr
ˆ̂GS(Nf−1,Nb )
··· jr−1 jr+1···|q1···(t )[·]

− i
Nb∑

w=1

ˆ̂Mqw

ˆ̂GS(Nf,Nb−1)
j1···|···qw−1qw+1···(t )[·] − i

∑
j′

(−1)Nf ˆ̂A j̄′
ˆ̂GS(Nf+1,Nb )

j′ j1···|q1··· (t )[·] − i ˆ̂K
∑

q′

ˆ̂GS(Nf,Nb+1)
j1···|q′q1··· (t )[·], (A33)

where jr and qw represent the rth and wth term of multi-index ensembles in terms of {α, l, n, σ, ν} and {u, m}, respectively.

Here, we further define the superoperator ˆ̂Ls[·] = [Hs, ·]. As we mentioned in the main text, we suppose the cavity field to be
in a high-quality cavity so that we can neglect the interaction with the external electromagnetic fields. In this case, Eq. (A33)
further simplifies to

∂t
[ ˆ̂GS(N )

j1···|q1···(t )[ôe/o]
] = −

(
i ˆ̂Ls +

Nf∑
r=1

γ jr

)
ˆ̂GS(N )

j1···|q1···(t )[ôe/o] − i
Nf∑

r=1

(−1)Nf−r+1 ˆ̂C jr
ˆ̂GS(N−1)
··· jr−1 jr+1···|q1···(t )[ôe/o]

− i
∑

j′
(−1)Nf ˆ̂A j̄′

ˆ̂GS(N+1)
j′ j1···|q1···(t )[ôe/o]. (A34)

Note that the index jr ≡ {α, ν, l, n, σ } represents an elec-
tron on the nth level of the ES having spin σ coming from
(ν = +) or entering into (ν = −) in the α noninteracting
fermionic bath. Its Padé bath correlation function is Cν

α (τ ) =∑lmax
l=0 ην

α,l exp(−γα,ν,lτ ). Here, the total fermionic cutoff N =
Nf is chosen to ensure the convergence of the HEOM.
In addition, Eq. (A34) also encodes information about the

system-bath interactions via the superoperators ˆ̂C jr and ˆ̂A j̄
which have arbitrary parity symmetry. By solving these cou-
pled differential equations involving the (N + 2) independent

variables, ˆ̂GS(N+1)
j′ j1··· [ôe/o], . . . , ˆ̂GS(1)

j1
[ôe/o], and ˆ̂GS(0)[ôe/o], one

can obtain the required propagator ˆ̂G(t )[ôe/o] = ˆ̂GS(0)[ôe/o] to
compute the system correlation functions in Eq. (A3), which
can then be plugged into Eq. (A1) to retrieve the DOS of the
system.

APPENDIX B: CHARACTERISTICS OF THE DENSITY
OF STATES DERIVED VIA HEOM

The zero-frequency resonance peak of the DOS serves as
a hallmark feature of the Kondo resonance. Here, we analyze
the properties of the DOS using the HEOM approach. The
DOS A(ω) quantifies the accessible electronic states as a
function of energy, and it is normalized by the spectral sum
rule

∫∞
−∞ dωA(ω) = 1 [104]. Furthermore, it also satisfies the

Luttinger theorem and the Friedel sum rule, which assert
that the Kondo peak magnitude remains invariant for a sym-
metric single-impurity Anderson model (SIAM) at T = 0,
irrespective of the repulsion energy U [104,105]. For nonzero
temperatures, typically, π�A(0) < 1 [106].

In our analysis, we focus on the symmetric SIAM, de-
fined by the system Hamiltonians (3) and (6) (note that n = g
only applies to the single-impurity case). As illustrated in

Fig. 8, for a temperature of T = 0.5� (which is the temper-
ature of interest throughout this work), we observe that as
U increases, the Kondo peak gradually decreases below the
value of π�A(0) = 1, as expected. The variation in Kondo
peak heights with different U is presented in Fig. 9. When
the temperature is increased to T = 2�, the deviation from
π�A(0) = 1 becomes even more pronounced. However, as
we lower the temperature to T = 0.05�, towards absolute
zero, π�A(0) approaches 1. Note, however, that the HEOM
approach is limited in its ability to produce this result for very
large U at T = 0. This is why in the main results we restrict
ourselves to finite temperatures.

FIG. 8. Density of states near the Kondo resonance: Variation
with U ranging from 0.5� to �. Parameters: εg = −U/2, Wf = 10�,
hierarchy tier N = 3, and lmax = 12 for Padé decomposition.
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FIG. 9. Zero-frequency DOS height variation with U : Parame-
ters include εg = −U/2 and Wf = 10�. For T = 0.5� and T = 2�,
computations were performed using N = 3 and lmax = 12 via Padé
decomposition. For T = 0.05� and T = 0, calculations were exe-
cuted using N = 5 and lmax = 12, employing Padé decomposition
and the fitting approach, respectively.

To further analyze the scaling behavior near the Kondo
resonance in the DOS, we compare our HEOM-derived re-
sults against the analytical curve of the scaling spectrum
proposed in Ref. [107] (see Fig. 10). This analytical scal-
ing holds true specifically for conditions where |ω|/ωK � 1.
Here, ωK is directly proportional to exp(−πU/8�). The
HEOM-derived DOS used by Padé approximant within
the wideband limit correctly captures the logarithmic tail
around the Kondo resonances at different temperatures (see
Fig. 3(b) in Refs. [49,109]). Furthermore, we employ the

FIG. 10. Comparative analysis of scaling behavior near the
Kondo resonance in DOS: Contrasting Padé decomposition and
fitting approach across varying temperatures. The HEOM numeri-
cal data via Padé decomposition reproduce Fig. 3(b) in Ref. [49]
for finite temperatures. In addition, the fitting methodology (see
Ref. [108] for details) manages to also match well with the analytical
result for zero temperature, specifically Eq. (4.2) in Ref. [107]. Here
W = 100�, U = 6π = −2εg, lmax = 12, and N = 3.

fitting methodology for the bath correlation function de-
scribed in Ref. [108]. For both methods, we use lmax = 12.

Notably, the Padé approximation is more efficient at finite
temperatures than the fitting approach as it more correctly
models the bath correlation function over a larger range of
times, which is important for determining the DOS in the
vicinity of the Kondo resonance.

Nonetheless, at zero temperature the Padé approximation
demands a near-infinite series of exponential terms to repro-
duce the bath correlation function, making it infeasible for
HEOM numerical computations. On the other hand, our fitting
procedure can accurately model the scaling spectrum even
at absolute zero temperature, compatibly with the analytical
result in Eq. (4.2) from Ref. [107].

In summary, our analysis confirms that the DOS deter-
mined by the HEOM method is compatible with the Luttinger
theorem and/or Friedel sum rule and accurately follows the
expected scaling behavior near the Kondo resonance.

APPENDIX C: THE CONVERGENCE
OF THE DENSITY OF STATES

To examine the degree of convergence, we compare the dif-
ferences of DOS between a certain tier and its neighboring tier
of the HEOM. We take gct = 0.6ωc for example, as depicted
in Fig. 11. The difference of DOS between the second-tier
hierarchy and first-tier hierarchy (�N2,1) is shown by the
solid blue curve. The solid red curve represents the difference
of the DOS between the third-tier hierarchy and second-tier
hierarchy (�N3,2). The smaller �N3,2 shows that the results
are more convergent by applying the third-tier hierarchy of
the HEOM.

In addition to the truncation tier, the convergence of Padé
approximants to HEOM is shown in Fig. 12. By taking two
Padé terms (lmax = 2) and three Padé terms (lmax = 3) into
account for DOS calculations, the light blue curve, labeled
as �l3,2, stands for the difference between the results of
lmax = 2 and lmax = 3. And the �l4,3 and �l5,4 are represented
by blue solid and red solid curves, respectively. The rela-
tively small deviation of �l5,4 indicates that it converges well
when lmax = 5.

Furthermore, a sufficient cavity photon number should
be taken into account when the electron-photon interaction
reaches the USC limit. This is crucial especially for the cavity
power spectrum. However, the DOS is not so sensitive to
the cavity photon numbers. We thus examine how the cavity
photon number affects the fermionic DOS as shown in Fig. 13.
Recall that the subscript ph refers to photons. It shows that a
higher cavity photon number is required for achieving accu-
rate peak height in splitting the Hubbard bands.

The influence of different cavity photon numbers on the
Kondo effect is subtle. In our simulations we found that a
truncation in the Fock space at Nph = 3 photons achieves a
good convergence accuracy at the price of a reasonable com-
putational cost.

In the bosonic continuum scenario, we also evaluate the
convergence of the DOS using the same approach. We ex-
amine the difference �Nb(i,i+1) between the DOS of the
ith tier and its neighboring (i + 1)th tier in the bosonic
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FIG. 11. (a) The deviations �N of the DOS computed in N = 1 from N = 2 (�N21, dotted curve) and N = 2 from N = 3 (�N32, solid
curve) when gct = 0.6ωc (red), gct = 0.8ωc (blue), and gct = 1.0ωc (green). The black dash-dotted curve represents the case with gct = 0.
(b) Magnified plot in the vicinity of zero-frequency DOS.

HEOM, and the difference �mj, j+1 between the jth and its
neighboring ( j + 1)th Padé approximants of the bosonic
continuum correlation function in the bosonic HEOM. The

extremely small deviation values of �Nb(4,3) and �m(10,9)

indicate a high level of convergence when Nb = 4 and mmax =
10 as shown in Fig. 14.

FIG. 12. The deviations �l of DOS computed in lmax = 2 from lmax = 3, lmax = 3 from lmax = 4, and lmax = 4 from lmax = 5. The
differences between five terms and four terms �l(5,4), four terms and three terms �l(4,3), three terms and two terms �l(3,2) of the Padé expansion
for the DOS results are presented in red solid, blue dashed, and cyan dot-dashed curves, respectively. It also shows that the results are convergent
with lmax = 5. Panels (a) and (c) and panels (b) and (d) correspond to gct = 0.6ωc and ωc, respectively. Meanwhile, panels (c) and (d) display
magnified plots near the zero-frequency DOS.
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FIG. 13. The differences �Nph between Nph = 3 and Nph = 2 (�Nph(3,2)) as well as Nph = 2 and Nph = 1 (�Nph(2,1)) for the DOS are
presented in red solid and blue dashed curves, respectively. It shows that the result is convergent around ω/ωc = 0 with Nph = 3. Panels (a) and
(c) and panels (b) and (d) correspond to gct = 0.6ωc and gct = ωc, respectively. Furthermore, panels (c) and (d) showcase the magnified plots
in the vicinity of the zero-frequency DOS.

APPENDIX D: MODIFIED MASTER EQUATIONS
FOR DEGENERATE SYSTEMS

To model a degenerate system in the USC regime, we here
use the fermionic influence superoperator to derive a modified
master equation, which takes the degenerate energy levels
into account in its form for the Lindblad dissipators. We first
decompose all operators into the eigenbasis |ϕk〉 and |ϕl〉 of
the system Hilbert space in the interaction picture and define

the operator Aν
σ,kl (ω) as∑

εk−εl =ω

∑
k,l

Aν
σ,kl (ω)eiωt =

∑
ω

∑
k,l

∑
n

〈ϕk|dν
nσ |ϕl〉|ϕk〉〈ϕl |,

(D1)

where εk and εl are the eigenenergies corresponding to the
states |ϕk〉 and |ϕl〉, respectively. With the definition of τ =
t1 − t2, the expression in Eq. (A17) for the related density

FIG. 14. (a) The deviations �Nb of DOS computed at Nb = 4 from Nb = 3 (�Nb(4,3)), Nb = 3 from Nb = 2 (�Nb(3,2)), and Nb = 2 from
Nb = 1 (�Nb(2,1)) are presented in red solid, blue dashed, and green dotted curves, respectively. This demonstrates that the result converges
around ω/ωc = 0 with Nb = 4. (b) The differences of the DOS, from between mmax = 10 and Nph = 9 (�m10,9) to between mmax = 6 and
mmax = 5 (�m6,5), are shown for the analysis of possible convergence.
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operator ρ̃s(t ) can be rewritten as

ρ̃s(t ) = ˆ̂Ts exp

⎧⎨
⎩−

∫ t

0
dt1

∫ ∞

0
dτ
∑
p=±

ˆ̂Wfp (t1, τ )[·]
⎫⎬
⎭ρ̃s(t ), (D2)

where the fermionic influence superoperator is given by

ˆ̂Wf± (t1, τ )[·] =
∑
ασ

∑
νωω̄

∑
klk′l ′

{
eν̄i�ωt1

[
Cν

α (τ )eνiωτ Aν̄
σ,k′l ′ (ω̄)Aν

σ,kl (ω)[·] + Cν
α (−τ )eν̄iω̄τ [·]Aν̄

σ,k′l ′ (ω̄)Aν
σ,kl (ω)

]
∓ eνi�ωt1

[
Cν

α (τ )eνiω̄τ Aν
σ,k′l ′ (ω̄)[·]Aν̄

σ,kl (ω) + Cν
α (−τ )eν̄iωτ Aν

σ,k′l ′ (ω̄)[·]Aν̄
σ,kl (ω)

]}
. (D3)

We now define �ω = ω − ω̄ as the difference between the eigenenergies ω and ω̄. The nonsecular terms in terms of exp(±i�ωt1)
can be neglected due to their fast oscillations when ω = ω̄. Hence, by applying this secular approximation on the influence
superoperator, one obtains

ˆ̂Wf± (τ )[·] =
∑
ασν

∑
ω

∑
klk′l ′

{
eνiωτCν

α (τ )
[
Aν̄

σ,k′l ′ (ω)Aν
σ,kl (ω)[·] ∓ Aν

σ,k′l ′ (ω)[·]Aν̄
σ,kl (ω)

]
+ eν̄iωτCν

α (−τ )
[
[·]Aν̄

σ,k′l ′ (ω)Aν
σ,kl (ω) ∓ Aν

σ,k′l ′ (ω)[·]Aν̄
σ,kl (ω)

]}
. (D4)

Using the expression above, we write the time derivative of Eq. (D2) in the Schrödinger frame as

∂tρs(t ) = − i[Hs, ρs(t )] −
∑
p=±

∫ ∞

0
dτ ˆ̂Wfp (τ )ρ p

s (t )

= − i[Hs, ρs(t )] +
∑
ασν

∑
ω,p=±

{
�ν

α (ω)
[−Aν̄

σ (ω), Aν
σ (ω)ρ p

s

]
−p

+ �̄ν
σ (ω)

[−ρ p
s Aν̄

σ (ω), Aν
σ (ω)

]
−p

}
, (D5)

where

�ν
α (ω) =

∫ ∞

0
dτ Cν

α (τ ) exp(νiωτ ), (D6)

and

�̄ν
α (ω) =

∫ ∞

0
dτ Cν

α (−τ ) exp(−νiωτ ). (D7)

Here, the information about degenerate transitions is encoded in the decomposed operator, Aν
σ (ω) =∑kl Aν

σ,kl (ω). By neglecting
the Lamb shift due to its small value in Eq. (D5), one can obtain the modified master equation in Lindblad form as

∂tρs(t ) = −i[Hs, ρs(t )] +
∑
ασν

∑
ω,p=±

{
γ ν

α (ω)

[
± Aν

σ (ω)ρ p
s Aν̄

σ (ω) − 1

2

[
Aν̄

σ (ω)Aν
σ (ω), ρ p

s

]
+

]}
, (D8)

where

γ ν
α = �ν

α (ω) + �̄ν
α (ω) = 2πJf(−ω)neq

f (−νω). (D9)

The superscript eq refers to equilibrium. In this section we
have derived the modified master equations for a degenerate
system via the canonical approach [83].

APPENDIX E: THE COMPOSITION
OF THE DRESSED STATES

To evaluate how the quantum system evolves, it is useful
to investigate the evolution of its eigenstates (with a coupled
cavity in dressed states). For the case analyzed in the main
text, there are 64 eigenstates in total since we truncate the
cavity Fock space to three states. However, here we only show
the eigenstates which contribute more to the quantum be-
havior. Each contains different bare components as presented
by the different expectation values shown in Table I (gct =
0.6ωc) and Table II (gct = ωc). Here, the number of occupied

electrons on states |i〉 (i = e, g), with spin configuration σ =
↑,↓ or double occupation σ = ↑↓, can be determined by
niσ = Tr(n̂iσ ρs ). The average photon number of each eigen-
state is given by Nph = Tr(a†aρs).

APPENDIX F: REABSORPTION
OF THE DIAMAGNETIC TERM

In this section, we show that the addition of a diamagnetic
term to the Hamiltonian describing the light-matter interac-
tion can be effectively modeled as a renormalization of the
light frequency, the light-matter interaction, and the zero-point
energy [26]. Note that this term commonly appears in the
standard formulation of the light-matter Hamiltonian in the
Coulomb gauge, but recent works have shown that a better
approximation to the full untruncated light-matter interaction
can be found using the dipole gauge [94,95,110,111]. Follow-
ing Ref. [94], the transformation to the dipole gauge leads to
a different renormalization of the parameters than the ones
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TABLE I. The composition of the dressed states when gct = 0.6ωc.

given below, and alters the system-cavity interaction to be
proportional to a different cavity quadrature P = i(a† − a).
However, this does not change the physics of our model.
One might consider the influence of the transformation on the
system-lead coupling, but arguably this should only induce
a local renormalization of the matter potential where it is
interacting with the cavity, and not cause photonic dressing
of the coupling. To deal with the diamagnetic term in the
Coulomb gauge, we focus on the bosonic sector of an abstract
Hamiltonian describing the interaction between matter and a
bosonic mode a with the additional presence of a (a + a†)2

diamagnetic (D) energy, i.e.,

HD = ωa†a + D(a + a†)2 + g(a + a†)ŝ. (F1)

Here, ŝ is the matter coupling operator, while ω, D, and g
represent, respectively, the bosonic frequency, the strength
of the diamagnetic potential, and the strength of the light-
matter interaction. It is useful to start by rewriting this
Hamiltonian as

HD = (ω + 2D)a†a + D[a2 + (a†)2] + g(a + a†)ŝ + D. (F2)

TABLE II. The composition of the dressed states when gct = ωc.

To make progress, we consider a change of variables by
defining the mode ã through the following Bogoliubov trans-
formation,

ã = cosh(λ)a + sinh(λ)a†,

ã† = cosh(λ)a† + sinh(λ)a, (F3)

designed to satisfy the constraint [ã, ã†] = cosh2(λ) −
sinh2(λ) = 1. This transformation allows to write the Hamil-
tonian HD as

HD = ω̃ã†ã + g̃(ã + ã†)ŝ + Ẽ0, (F4)

in terms of the renormalized frequency ω̃, renormalized
coupling g̃, and renormalized zero-point energy Ẽ0. The
equivalence in Eq. (F4) can be shown explicitly by rewriting
it as

HD = ω̃[cosh2(λ) + sinh2(λ)]ã†ã

+ ω̃[cosh(λ) sinh(λ)][ã2 + (ã†)2]ŝ + g̃[cosh(λ)

+ sinh(λ)](ã + ã†) + sinh2(λ)ω̃ + Ẽ0, (F5)
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and then comparing it to Eq. (F2) term by term. This produces
the following constraints:

ω̃ cosh(2λ) = ω + 2D,

ω̃ sinh(2λ) = 2D,

g̃[cosh(λ) + sinh(λ)] = g,

Ẽ0 + sinh2(λ)ω̃ = D, (F6)

where we used the identities [cosh2(λ) + sinh2(λ)] =
cosh(2λ) and 2 cosh(λ) sinh(λ) = sinh(2λ). The ratio be-
tween the first two lines of Eq. (F6) implies that 2λ =
arctanh[2D/(ω + 2D)], which, inserted in the second row of
Eq. (F6), gives

ω̃ sinh

{
arctanh

[
2D

ω + 2D

]}
= 2D. (F7)

Using the identity sinh[arctanh(x)] = x/
√

1 − x2, we finally
obtain the expression for the renormalized frequency as

ω̃ =
√

ω2 + 4ωD. (F8)

We can now take the first and second lines in Eq. (F6) and
write them as

ω̃[cosh2(λ) + sinh2(λ)] = ω + 2D,

2ω̃ cosh(λ) sinh(λ) = 2D, (F9)

and then sum them to find the relation

1

[cosh(λ) + sinh(λ)]2
= ω̃

ω + 4D
. (F10)

This expression can be used in the third of Eqs. (F6) which,
divided by ω̃, results in

g̃

ω̃
= g

ω̃

1

cosh(λ) + sinh(λ)
= g√

ω̃
√

ω + 4D
. (F11)

Using Eq. (F8) for the renormalized frequency, we finally ob-
tain the expression for the normalized light-matter coupling:

g̃

ω̃
= g

ω

(
1 + 4D

ω

)−3/4

. (F12)

We can finish by deriving the expression for the renormalized
zero-point energy. This can be done by considering the iden-
tities sinh(λ) = [cosh(2λ) − 1]/2 and cosh[arctanh(x)] =
1/

√
1 − x2 which, inserted in Eqs. (F6), lead to

Ẽ0 = D − ω̃

2

(
ω + 2D√
ω2 + 4ωD

− 1

)
= ω̃ − ω

2
, (F13)

where we used the expression for the renormalized frequency
in Eq. (F8).

In summary, the renormalized parameters needed to reab-
sorb the diamagnetic potential are given by

ω̃ =
√

ω2 + 4ωD,

g̃

ω̃
= g

ω

(
1 + 4D

ω

)−3/4

,

Ẽ0 = (ω̃ − ω)/2. (F14)

It has been shown that the diamagnetic term can cause a shift
in the energy levels of the system, as well as changes in the
coupling strengths between the light and the matter.
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