Unveiling and veiling an entangled light-matter quantum state from the vacuum

Roberto Stassi, Mauro Cirio, Ken Funo, Jorge Puebla, Neill Lambert, and Franco Nori

1Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
2Theoretical Quantum Physics Laboratory, RIKEN, Wako, Saitama 351-0198, Japan
3Graduate School of China Academy of Engineering Physics, Haidian District, Beijing 100193, China
4CEMS, RIKEN, Saitama 351-0198, Japan
5Center for Quantum Computing, RIKEN, Wako, Saitama 351-0198, Japan
6Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA

(Received 26 November 2021; revised 11 October 2022; accepted 27 September 2023; published 27 October 2023)

The ground state of an atom interacting with the electromagnetic field in the ultrastrong coupling regime is composed of virtual photons entangled with the atom. We propose a method to promote to real the entire photonic state, while preserving the entanglement with the atom. The process can be reversed, and the entangled state can be restored in the vacuum. We consider a four-level atom, with two of these levels ultrastrongly coupled to a cavity mode. The process is obtained by making use of either an ideal ultrafast pulse or a more realistic multitone π pulse that drives only the atom. An experimental realization of this proposal will not only enable the investigation of the exotic phenomena of emission of particles from the vacuum, but will also prove that quantum superposition states can be extracted from the vacuum. Moreover, it will allow one to inspect the ground state in the ultrastrong coupling regime, and to generate on-demand entangled states for quantum information processing.

DOI: 10.1103/PhysRevResearch.5.043095

I. INTRODUCTION

One of the most fascinating features of quantum mechanics is that the quantum vacuum is filled with virtual particles [1]. In the presence of intense fields, the quantum vacuum can become a pure entangled state. For example, at the horizon of a black hole, where the gravitational field is very intense, the quantum vacuum is predicted to be a two-mode squeezed entangled state. Outside the event horizon, the virtual particles forming this entangled vacuum state are promoted to real at the expense of the gravitational field [2].

Using superconducting circuits [1,3–12], it is possible to generate extreme physical conditions that enable the manipulation of the quantum vacuum in a laboratory setting. In particular, it was shown [13–17] that the interaction energy of a superconducting flux qubit coupled to a cavity field can be larger than the cavity or qubit bare energies. Deep in this ultrastrong coupling regime, the ground state is a cat light-matter entangled state [18–31]. This state is not “visible” (measurable), because it is made of “virtual excitations.” However, these virtual excitations generate a pressure to the external environment [32–34] which could, in principle, be probed. The quantum information of this quantum vacuum state is not accessible directly and it is not useful for quantum information tasks.

Here we propose a protocol in which the entire entangled cat state forming the ground state in the ultrastrong coupling regime is converted from “virtual” to “real.” This is done by swapping the entanglement with the cavity field from the atomic states that ultrastrongly interacts with the cavity to other ones that do not. The swap is implemented by driving the atom with an ideal ultrafast monotone pulse or with a multitone π pulse [35–39]. Note that we never drive the cavity. After the pulse, the cat state remains in a noninteracting sector of the Hilbert space, thereby the quantum information of this quantum state now is accessible and can be directly measured. Using an identical pulse the process can be inverted, and the entangled cat state can be restored in the system ground state, becoming again nonmeasurable.

II. MODEL

Our system consists of a four-level atom, \(|g⟩, |e⟩, |g'⟩, |e'⟩\), and a cavity mode with frequency \(ω_c\). We call A the subsystem \(|g⟩, |e⟩\), that is ultrastrongly coupled to the cavity field B, and C is the subsystem \(|g'⟩, |e'⟩\) which does not interact [see Fig. 1(a)]. The general procedure, valid for both the ultrafast and the multitone pulse, is as follows [see Fig. 1(b)]: At \(t_0\), we prepare the system in its ground state. Now, because of the large energy coupling, the atomic subspace A is maximally entangled with the cavity field B, forming an entangled light-matter cat state. Because the system is in its dressed ground state, it is not possible to make a measurement in order to acquire information about
and \hat{H} is entangled again with A. subsystem $A-B$, and $B-C$ at different moments. At states. (b) The colored disks represent the entanglement between the subsystem A-B, and B-C at different moments. At t0 the subsystem A is entangled with B, but this entanglement is not directly accessible. After a pulse at t1, the cavity field B is entangled with C, and now this entanglement can be measured. After a pulse at t2, the cavity field B is entangled again with A.

drilling regime. The subsystem C represents the noninteracting atomic states. After a pulse at

drung Hamiltonian H of the total system is $H = H_R + H' + \hat{D}$, where the Rabi Hamiltonian

\[\hat{H}_R = \omega_q |e\rangle\langle e| + \omega_c \hat{a}^\dagger \hat{a} + \lambda \sigma_x (\hat{a} + \hat{a}^\dagger), \]

and H' describe the dynamics of the interacting and noninteracting states, respectively ($\hbar = 1$). The energy difference between the latter states is defined by $\Delta = \omega_q (|e\rangle\langle e| + |g\rangle\langle g|)$. σ_x is a Pauli operator, \hat{a} is the annihilation operator for the cavity mode, and $\omega_m = \omega_m - \omega_q$. We set $\omega_c = \omega_q$ and $\lambda = 1.34 \omega_q$. Figure 2(b) shows the eigenstates of the total Hamiltonian H. For $\lambda > 0.5 \omega_c$, the atomic states $|g\rangle$, $|e\rangle$ hybridize with the photonic states, and the ground state becomes an entangled cat state. $|\psi\rangle \approx 1/\sqrt{2}(|+\rangle - |\alpha\rangle - |\alpha\rangle + |+\rangle)$ (red solid line). Here, $|+\rangle = 1/\sqrt{2}(|e\rangle \pm |g\rangle)$ are the eigenstates of σ_x, and $|\pm\rangle = D(\pm \alpha)|0\rangle$ are photonic coherent states of light with positive and negative displacement α [41]. The colored lines in Fig. 2(b) are Fock states associated with the noninteracting subspace for when the atomic system is in the states $|g\rangle$ and $|e\rangle$. For clarity, other dressed eigenstates of the total Hamiltonian are not shown in Fig. 2(b).

III. ENTANGLEMENT SWAPPING

A. Swapping using an ultrafast pulse

We now present the swapping procedure in which the entanglement in the dressed light-matter ground state is mapped into entanglement in the noninteracting sector, i.e., for large this entangled state. At t1, a proper π pulse, sent to the atom, swaps the atomic states from the ones that interact, A, to the ones that do not interact, and that forms the subsystem C. With this process we have a swap of the entanglement from the subsystem A to the subsystem C. The entire cat state, that previously was not accessible, can now be measured. At t2, a second pulse, equal to the first, restores the cat state to the ground state.

The Hamiltonian describing the total system is $H = H_R + H' + \hat{D}$, where the Rabi Hamiltonian

\[\hat{H}_R = \omega_q |e\rangle\langle e| + \omega_c \hat{a}^\dagger \hat{a} + \lambda \sigma_x (\hat{a} + \hat{a}^\dagger), \]

and H' describe the dynamics of the interacting and noninteracting states, respectively ($\hbar = 1$). The energy difference between the latter states is defined by $\Delta = \omega_q (|e\rangle\langle e| + |g\rangle\langle g|)$. σ_x is a Pauli operator, \hat{a} is the annihilation operator for the cavity mode, and $\omega_m = \omega_m - \omega_q$. We set $\omega_c = \omega_q$ and $\lambda = 1.34 \omega_q$. Figure 2(b) shows the eigenstates of the total Hamiltonian H. For $\lambda > 0.5 \omega_c$, the atomic states $|g\rangle$, $|e\rangle$ hybridize with the photonic states, and the ground state becomes an entangled cat state. $|\psi\rangle \approx 1/\sqrt{2}(|+\rangle - |\alpha\rangle - |\alpha\rangle + |+\rangle)$ (red solid line). Here, $|+\rangle = 1/\sqrt{2}(|e\rangle \pm |g\rangle)$ are the eigenstates of σ_x, and $|\pm\rangle = D(\pm \alpha)|0\rangle$ are photonic coherent states of light with positive and negative displacement α [41]. The colored lines in Fig. 2(b) are Fock states associated with the noninteracting subspace for when the atomic system is in the states $|g\rangle$ and $|e\rangle$. For clarity, other dressed eigenstates of the total Hamiltonian are not shown in Fig. 2(b).

III. ENTANGLEMENT SWAPPING

A. Swapping using an ultrafast pulse

We now present the swapping procedure in which the entanglement in the dressed light-matter ground state is mapped into entanglement in the noninteracting sector, i.e., for large coupling $\lambda/\omega_q > 1$,

$$|\psi\rangle \approx 1/\sqrt{2}(|+\rangle - |\alpha\rangle - |\alpha\rangle + |+\rangle),$$ (2)

$$|\phi\rangle \approx 1/\sqrt{2}(|+\rangle - |\alpha\rangle + |\alpha\rangle - |+\rangle),$$ (3)

where $|\pm\rangle = 1/\sqrt{2}(|g\rangle \pm |e\rangle)$. The swap is realized by inducing atomic transitions $|g\rangle \rightarrow |e\rangle$, $|e\rangle \rightarrow |g\rangle$, using an ultrafast ideal pulse sent to the atom [Fig. 3(a)]. For the experimental realization, we show that also a multitone π pulse can efficiently lead to the same result [Fig. 3(b)]. Figure 3 displays the dynamical evolution of the Fock state populations for the states $|g\rangle$, $|n\rangle$, and $|e\rangle$, $|n\rangle$ (solid lines), which can be compared with the Fock states associated with $|g\rangle$, $|n\rangle$ and $|e\rangle$, $|n\rangle$ (dotted lines) representing the bare populations of the state $|\psi\rangle$.

The ultrafast pulse is given by

$$\hat{H}_p = \varepsilon_p (\delta g\cdot g + H.c.),$$ (4)

with

$$\varepsilon_p = \pi \varepsilon \exp [-t_i(t_i - \tau) / 2A_p^2 / A_p \sqrt{2 \pi}],$$ (5)

$\dagger n_{m} n_{s} = |m\rangle |n\rangle, \tau = 1/2, A_p = 6 \times 10^{-3}/\omega_q$, and t_i (with $i = 1, 2$) is the center of the Gaussian pulse. In this simulation no dissipation is taken into account.

At $t = 0$, we prepare the system in the dressed state $|\psi\rangle$. In Fig. 3(a), at $t = 1$ (up red arrow), with $f = \omega_q / 2\pi$, an ultrafast pulse populates state $|\psi\rangle$ and populates the Fock states associated with $|g\rangle$ and $|e\rangle$ (solid lines). The latter states match exactly the ones associated with $|g\rangle$ and $|e\rangle$ (dotted lines) before the pulse was sent. This proves that the cat state now is an entangled state within the subspace $|g\rangle, |e\rangle$. The photonic contribution before and after the pulse remains almost unchanged, as shown in Eqs. (2) and (3). The cat state
is now visible to an external observer, because the photons are real and can be detected. After the first pulse is sent at \(\tilde{t}_1 \), superpositions within the state experience a phase shift \([41,42]\) [see inset Fig. 3(a)]. At \(\tilde{t}_2 = \tilde{t}_1 + \Delta \tilde{t} \) (down red arrow), with \(\Delta \tilde{t} = \omega_q/|\omega_{e'g} - \omega_q| \), the state returns in phase with the corresponding light-matter ground state \(|\text{C}_-\rangle \) and a second pulse equal to the first brings the cat state back to its original “virtual form” encoded in the ground state of the Rabi Hamiltonian \(|\text{C}_-\rangle \).

B. Swapping using a multitone pulse

Figure 3(b) shows the dynamical evolution of the system when a multitone \(\pi \) pulse is sent to the atom and the state of the system is initially \(|\text{C}_-\rangle \). Here, we consider more experimentally realistic conditions, taking into account also the transition \(|g\rangle \leftrightarrow |e\rangle \) and \(|g'\rangle \leftrightarrow |e'\rangle \) in the Hamiltonian of the pulse, and including environmental effects [27]. The pulse is described by

\[
\hat{H}_p = \epsilon_p \sum_{i=0}^N (\cos(\omega_{p_i}(t - t_i))(\delta_{eg} + \delta_{eg'} + \delta_{ge} + \delta_{ge'} + \text{H.c.}),
\]

where \(\epsilon = 1, A = 50/\omega_q, \omega_{p_i} = \omega_{C_\text{g}} - \omega_i, \omega_i \) are the frequencies of \(|g', 2i+1\rangle \) and \(|e', 2i\rangle \), and \(\omega_{C_\text{g}} \) is the ground state energy. We note that the transitions described in the pulse Hamiltonian satisfy the optical selection rules for a flux qubit in its optimal point (see Appendix A).

At \(\tilde{t}_1 = 150 \) (up red arrow), the first pulse is sent to the atom, gradually populating the interacting sector until the full entanglement is swapped. At \(\tilde{t}_2 = 500 \) (down red arrow), a second pulse equal to the first restores (not perfectly because of dissipation) the original \(|\text{C}_-\rangle \) state. We note that, because the state \(|\text{C}_-\rangle \) is the system ground state, dissipation would automatically restore the initial state within the relaxation time associated with the atom. The inset in Fig. 3(b) shows the population (red curve) of the \(|\text{C}_-\rangle \) state and the fidelity \(F' \) between the state of the system and the state \(|\text{C}_\text{ideal}\rangle = (\delta_{e'g} + \delta_{ge})|\text{C}_-\rangle \).

IV. PERFORMANCE OF THE PROTOCOL USING THE MULTITONE PULSE

To quantify the performance of this protocol, we now calculate the amount of entanglement that can be transferred from the initial state \(|\text{C}_-\rangle \) to the state \(|\text{C}_+\rangle \). In Figure 4(a), we show the von Neumann entropy [43] calculated after sending a multitone \(\pi \) pulse with seven (green dots) and nine (blue dots) frequencies, and after postselecting onto the \(|\{g', e'\}\rangle \) subspace. This approach is valid only when the populations in the \(|g\rangle \) and \(|e\rangle \) states are zero after the swapping procedure. However, when there is a small residual population, it is still a good indicator of the amount of entanglement transferred from virtual to real [see inset in Fig. 4(a)].

These results can be compared with the entropy calculated for the subsystem \(\{ |g\rangle, |e\rangle \} \), when the state of the system is \(|\text{C}_-\rangle \) (red dots). Note that for couplings in the range \(0.5 < \lambda/\omega_q < 0.8 \), going from seven to nine pulses does not lead to improvements. However, for \(\lambda/\omega_q > 0.8 \), the number of photons in the ground state increases, and using nine frequencies in the pulse outperforms the seven-frequencies case. Figure 4(b) displays the fidelity for the state of the system calculated with respect to a target entangled state with \(\alpha = \lambda/\omega_q \) [27], after sending the multitone \(\pi \) pulse with seven (green dots) and nine (blue dots) frequencies. This result can be compared with the fidelity for the state \(|\text{C}_-\rangle \) (red dots). As before, for large coupling, increasing the number of frequencies in the pulse corresponds to an increase in fidelity.

Our proposal can be realized using a flux qubit coupled to a waveguide or LC resonator (see Appendix A). When the reduced external flux that threads the flux qubit is \(f = 0.5 \) [44,45], the allowed transitions become \(|g\rangle \leftrightarrow |e\rangle, |g\rangle \leftrightarrow |e'\rangle \),
FIG. 4. (a) Entanglement entropy S between the field and the atomic subspace $|g\rangle, |e\rangle$ after a multitone π pulse with seven frequencies (green dots) and nine frequencies (blue dots) is sent to the atom. The atom is initially prepared in the $|C_–\rangle$ state. It is possible to compare this to the entropy relative to the subspace $|g\rangle, |e\rangle$, when the state of the system is $|C_–\rangle$ (red dots). The inset shows the trace of the density matrix $\hat{\rho}_{g,e'}$ for the subspace $|g\rangle, |e\rangle'$, after a multitone π pulse with seven (green dots) and nine (blue dots) frequencies is sent. (b) Fidelity F' (eliminating relative phases) between an ideal cat state entangled with the atom and the system state after a π pulse with seven (green dots) and nine frequencies (blue dots) is sent to the atom. The ideal cat state is generated choosing $\alpha = \lambda/\omega_c$. In (a) and (b) we consider the interacting states $|g\rangle, |e\rangle'$ at higher energy with respect to $|g\rangle, |e\rangle$. Here $\omega_q = 9 \omega_q, \omega_c = \omega_q/2$, and $\omega_{g,e} = \omega_q$.

|e⟩ ↔ |g⟩', and |g⟩ ↔ |e⟩'. These optical selection rules are the ones that we consider when we define the multitone pulse.

V. CONCLUSIONS

In this work, we proposed a protocol to unveil the virtual entangled ground state of a two-level system ultrastrongly coupled to a cavity mode. To unveil and make the state visible and measurable, the entangled partner is swapped using an ultrafast pulse or a multitone π pulse. With this proposal, not only is it possible to explore the ground state of the Rabi Hamiltonian in the ultrastrong coupling regime, but it can also lead to an efficient way to generate photonic cat states on demand, which can be an important resource for quantum computation and other quantum technologies [46,47]. In the case of a black-hole horizon, after the promotion from virtual to real of particles, the quantum information of the vacuum state is apparently lost, giving rise to the quantum information paradox [48]. Understanding and solving this paradox is crucial to have a theory of quantum mechanics consistent with Einstein general relativity. Our proposal could potentially enable experiments using superconducting qubits which mimic the vacuum state in the proximity of a black hole and the particle emission from its horizon, giving the chance to investigate, in laboratory conditions, the black-hole information paradox [49–51].

ACKNOWLEDGMENTS

F.N. is supported in part by Nippon Telegraph and Telephone Corporation (NTT) Research, the Japan Science and Technology Agency (JST) [via the Quantum Leap Flagship Program (Q-LEAP)], and the Moonshot R&D Grant No. JP-MJMS2061], the Asian Office of Aerospace Research and Development (AOARD) (via Grant No. FA2386-20-1-4069), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06. M.C. acknowledges support from NSFC (Grant No. 11935012). R.S. acknowledges the Army Research Office (ARO) (Grant No. W911NF1910065).

APPENDIX A: FLUX QUBIT CONFIGURATION

The protocol analyzed in the main text can be realized using a flux qubit coupled to either a waveguide or to an LC resonator. An LC resonator is preferred because it operates in a single mode, preventing unwanted transitions to higher modes. Figure 5(a) represents the lowest seven
energy interacting sector for two reasons: (i) their allowed atomic energy levels are also allowed with transition energies $E_{|g\rangle \leftrightarrow |e\rangle} = 0$, and $E_{|g\rangle \leftrightarrow |e\rangle} = 1$. Optical selection rules allow the transitions $|g\rangle \leftrightarrow |e\rangle$, $|g\rangle \leftrightarrow |e\rangle$, $|e\rangle \leftrightarrow |g\rangle$, and $|g\rangle \leftrightarrow |e\rangle$. These transitions are determined by the matrix elements $M_{ij} = (|i\rangle \langle j| \sin(2\pi f + 2\varphi_-) |j\rangle)$, where φ_- is the difference between the fluxes crossing the Josephson junctions. The calculated matrix elements have values $M_{gg} = 0.83$, $M_{ge} = 0.5$, $M_{eg} = 0.14$, and $M_{ee} = 0.12$. The transitions $|e\rangle \leftrightarrow |l\rangle$ and $|e\rangle \leftrightarrow |l\rangle$ are also allowed with transition energy $\omega_{el} \approx 13 \omega_0$, and matrix transition elements $M_{el} = 0.22$ and $M_{le} = 0.3$.

If the cavity frequency is tuned to the frequency transition $|g\rangle \leftrightarrow |e\rangle$, this transition can achieve the ultrastrong coupling regime. The states $|g\rangle$ and $|e\rangle$ can represent the atomic non-interacting sector for two reasons: (i) their allowed atomic transitions are much detuned with respect to the cavity; and (ii) the corresponding matrix elements M_{ij} are smaller than M_{ee}.

Using this configuration for a flux qubit, in Fig. 6 is shown the numerically calculated fidelity between the dressed Rabi ground state and the state generated using a multimode pulse for different frequencies. The procedure is the same as in the main text. Notice that in these numerical results we take into account all the possible interactions among the states $|g\rangle$, $|e\rangle$, $|g\rangle$, $|l\rangle$, and $|l\rangle$. Here the system Hamiltonian is

$$\hat{H} = \sum_{i,j=0,g,e,d} \omega_{ij} |i\rangle \langle j| + \lambda_{ij} |i\rangle \langle j| (|\hat{a} + \hat{a}|)$$

(A1)

with coupling $\lambda_{ij} = \lambda M_{ij}/M_{ee}$, such that $\lambda_{ee} = \lambda$. Frequencies and transition matrix elements correspond to the one calculated above for a flux qubit. Using these parameters, the Hilbert space becomes too large to numerically compute the system dynamics. For this reason we reduced the dimension of the photonics sub-space, now taking into account eight photons (instead of the 25 considered in the main text).

The drive Hamiltonian is

$$\hat{H}_p = \epsilon_p \sum_{i=0}^N \cos(\omega_p (t - \tau_i)|\hat{\sigma}_g + \hat{\sigma}_e + \hat{\sigma}_g| + \epsilon_{p}\hat{\sigma}_e + \hat{\sigma}_d + \epsilon_{d} + \hat{\sigma}_d + H.c.$$ (A2)

with $\delta_{mn} = |m\rangle\langle n|$, $\epsilon_p = \pi \epsilon \exp[-(t - \tau_i)^2/2A_p^2]/\sqrt{2\pi}$, where $\epsilon = 1$, $A_p = 50/\omega_0$, $\omega_0 = \omega_{el} - \omega_0$, ω_0 are the frequencies of $|g\rangle$, $|e\rangle$, $|l\rangle$, and $|l\rangle$, ω_{el} is the ground state energy, and τ_i is the center of the Gaussian pulse.

APPENDIX B: ENVIRONMENTAL EFFECTS

The dissipation in the numerical simulations in the main text was modeled using the master equation [27],

$$\dot{\hat{\rho}} = -i[\hat{H}_s, \hat{\rho}] + \sum_k \sum_{m,n} \Gamma^{(k)}_{mn} D]\langle |m\rangle\langle n| \rangle \hat{\rho}$$

(B1)

$$+ \sum_k \sum_{m} \Gamma^{(k)}_{m} D\left[\sum_{m} (\hat{S}^{(k)}_{m}) |m\rangle \langle m| \right] \hat{\rho},$$

where $\hat{H}_s = \hat{H} + \hat{H}_p$, $D(\hat{O})\hat{\rho} = (2\hat{O}\hat{\rho}^{\dagger} - \hat{O}^{\dagger}\hat{O}\hat{\rho} - \hat{\rho}\hat{O}^{\dagger}\hat{O})/2$ is the Lindblad superoperator, $|m\rangle$ are eigenstates of \hat{H}, and $\hat{\rho}$ is the density matrix of the system,

$$\Gamma^{(k)}_{mn} = \gamma^{(k)}_{m} |m\rangle\langle n| |m\rangle|n\rangle$$

$$\hat{S}^{(k)}_{m} \in \{\hat{\sigma}_g, \hat{\sigma}_e, \hat{\sigma}_d, \hat{\sigma}_d, \hat{\sigma}_e + \hat{\sigma}_d \}$$

$$\hat{\sigma}_z^{(k)} \in \{\hat{\sigma}_g - \hat{\sigma}_e, \hat{\sigma}_d, \hat{\sigma}_d, \hat{\sigma}_e + \hat{\sigma}_d \}$$

(B2)

where $\gamma^{(k)}_{m}$ and $\gamma^{(k)}_{e}$ are the relaxation and pure dephasing rates with $\gamma^{(k)}_{m} = 10^{-5} \omega_0$.

