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Pseudofermion method for the exact description of fermionic environments:
From single-molecule electronics to the Kondo resonance
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We develop a discrete fermion approach for modeling the strong interaction of an arbitrary system inter-
acting with continuum electronic reservoirs. The approach is based on a pseudofermion decomposition of the
continuum bath correlation functions and is only limited by the accuracy of this decomposition. We show that
to obtain this decomposition, one can allow for imaginary pseudofermion parameters, and strong damping in
individual pseudofermions, without introducing unwanted approximations. For a noninteracting single-resonant
level, we benchmark our approach against an analytical solution and an exact hierarchical-equations-of-motion
approach. We also show that, for the interacting case, this simple method can capture the strongly correlated
low-temperature physics of Kondo resonance, even in the difficult scaling limit, by employing matrix product
state techniques.
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I. INTRODUCTION

The orthodox model of strongly correlated electron trans-
port in mesoscopic physics [1–3] considers one or more
electronic reservoirs, parametrized by their spectral density,
temperature, and chemical potential, coupled to an arbitrary
system (typically fermionic impurities interacting with each
other, or with additional, e.g., bosonic, environments). While
this model can often be well described by weak-coupling
theories, strong coupling between system and reservoirs plays
an important role in molecular electronics [4], mesoscopic
transport through quantum dots (artificial molecules) [5–8],
and quantum thermodynamics [9–12]. While some integrable
limits exist [13–15], generally speaking one must resort to
numerical approaches to capture the nontrivial correlations
that can build up between system and reservoirs.

Recently, several such approaches based on discrete
fermion methods have been proposed and studied to capture
this strong-coupling regime [16–18], partially inspired by
similar techniques developed for strong coupling to bosonic
environments [19–26]. The hierarchical equations of mo-
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tion (HEOMs) [27–33] (which nonperturbatively account for
system-bath entanglement by evolving a hierarchy of time-
local equations obtained by repeatedly differentiating the
system path-integral representation) have found great success
for fermionic systems [34–39] and will be used as a bench-
mark of our results in this paper (see also related stochastic
methods in Refs. [40–42]). More recently, the reaction-
coordinate method [43], which nonperturbatively models the
most relevant degrees of freedom of the environment, was
adapted to fermionic systems and is simple and transparent,
both conceptually and in terms of implementation. However,
it is arguably limited as the approximations needed to treat the
residual bath break down in the wide-band limit. Similarly,
a recent approach [12] based on fitting the power spectrum
with discrete Lorentzians shows promising results in terms of
convergence, but by relying on only physical modes, it inherits
limitations on the width and positivity of the Lorentzian fitting
functions. Finally, other methods [44–50] build up a contin-
uum reservoir from a finite set of discrete damped physical
modes and can be combined with tensor network techniques
(such as the process tensor [51–53]) for efficient construction
and time evolution of system properties.

Here, we develop a “pseudofermion method” (akin to
bosonic pseudomodes [20,23,24,26,54]) based on a discrete
set of effective fermions which reproduce the key features of
the correlation functions of the continuum bath. By employing
unphysical modes with complex couplings, we model the
reduced dynamics of the system by solving a Lindblad master
equation in the augmented system+pseudofermion space. The
use of a Lindblad form for the damping of the pseudofermions
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does not, by construction, introduce any approximation. The
only approximation arises from how well the total correlation
function of the pseudofermions matches that of the original
bath. In contrast to other methods [21,55–63], these unphys-
ical degrees of freedom do not have a direct connection to
the original physical environment allowing optimization of the
modeling over an enlarged domain.

In summary, we present a conceptually simple framework
to simulate nonperturbative effects in fermionic systems by
using a Lindblad master equation. To show that this simplicity
does not necessarily come at the expense of modeling power,
we benchmark the accuracy of the method by reproducing
nonequilibrium and Kondo-physics effects. We note that here
the term “pseudofermion” has a different meaning than in
non-Hermitian quantum mechanics [64–67].

II. FERMIONIC OPEN QUANTUM SYSTEMS

We consider a fermionic system S interacting with a
fermionic Gaussian environment E described by the Hamil-
tonian (h̄ = 1)

H = HS + HE + HI , (1)

where HS and

HE =
∑

k

ωkc†
kck (2)

are the Hamiltonians for the system and environment (so
that each environmental fermion ck is characterized by the
frequency ωk). The interaction Hamiltonian is defined as

HI =
∑

k

gk (sc†
k + cks†), (3)

where gk are the coupling strengths and s is an odd-fermion
parity operator with support on the system. We assume the
bath to be initially in a thermal equilibrium state

ρ
eq
E ∝ exp

[
−β

∑
k

(ωk − μ)c†
kck

]
, (4)

with inverse temperature β and chemical potential μ.
In this context, the reduced system dynamics depends,

in general, on the free-bath statistical properties encoded in
correlation functions involving the fields

B(t ) =
∑

k

gkcke−iωkt (5)

in the interaction picture. When the free statistics is Gaussian,
this dependence can be reduced down to two-point correla-
tions, invoking Wick’s theorem to write [68]

ρS (t ) = T exp [F (t, s,Cσ )]ρS (0), (6)

in terms of the fermionic time ordering operator T (see, for
example, Ref. [69], Eq. (5.84)) and the fermionic influence
superoperator F (t, s,Cσ ) [see Eq. (A1) in Appendix A]. This
operator exactly describes the effects of the bath on the system
through its dependence on the system-coupling operator s and
the translational-invariant two-point correlation functions

FIG. 1. Illustration of the pseudofermion model. In (a) a
fermionic system S interacts with a continuum of environmental
fermionic modes at different frequencies. The spectral density func-
tion in (b) describes the distribution of the system-environment
coupling. As shown in (c) the dynamics of S can be equivalently
computed by considering the interaction with a discrete set of pseud-
ofermions (red and blue circles) whose dissipative properties are
described by a Lindblad master equation (wiggly arrows). This
equivalence holds as the pseudofermions are designed to reproduce
the correlation functions of the original bath. Specifically, for the
spectral density in (b), the red (blue) pseudofermions in (c) reproduce
the resonant (Matsubara) contribution to the correlation function
plotted in (d); see Eq. (20).

Cσ (t ) = TrE
[
Bσ (t )Bσ̄ (0)ρeq

E

]
= 1

π

∫ ∞

−∞
dω J (ω)eiσωt

[
(1 − σ )/2 + σneq

E (ω)
]
. (7)

Here, we defined the spectral density

J (ω) = π
∑

k

g2
kδ(ω − ωk ), (8)

the Fermi distribution

neq
E (ω) = (1 + exp[β(ω − μ)])−1, (9)

and σ = ±1 to denote the presence or absence of Hermitian
conjugation, i.e., Bσ=1 = B† and Bσ=−1 = B (with σ̄ = −σ ).

This analysis implies that all memory effects present in
nonperturbative regimes can be encoded in the superoperator
F (t, s,Cσ ). Therefore Gaussian open systems with identical
environmental correlations Cσ (t ) (and same system-coupling
operators s) must have identical influence superoperators and,
consequently, an equivalent reduced system dynamics through
Eq. (6).

III. PSEUDOFERMION METHOD

We now proceed as schematically shown in Fig. 1(c),
i.e., instead of solving the original system+continuum-
environment Hamiltonian, we define a model consisting of
the original system (S) in contact with a set of discrete
pseudofermions (pf), themselves in contact with residual
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environments (re). The key point is that our new environment
(pf + re) is designed to produce the same correlation functions
of the original environment, and hence produce the same
system dynamics, as per Eq. (6).

To satisfactorily mimic the original correlation functions
with only a finite discrete set of artificial systems, we al-
low certain parameters defining these pseudofermions to be
unphysical. Importantly, each residual environment is an ide-
alized quantum white noise (defined by constant spectral
densities and frequency-independent equilibrium distribu-
tions), thereby allowing the dynamics in the pseudofermion
space to be exactly described by a simple Lindblad equa-
tion [wiggly arrows in Fig. 1(c)].

Surprisingly, the use of Lindblad equations does not limit
the accuracy of the result as the derivation does not rely on
approximations as long as the correlation functions produced
by said Lindblad equations closely match the original bath
ones.

Explicitly, we consider Npf pseudofermions c̃ j , j =
1, . . . , Npf, interacting with the system as described by the
Hamiltonian

HS+pf = HS + Hpf +
Npf∑
j=1

λ j (sc̃†
j + c̃ js

†), (10)

where

Hpf =
Npf∑
j=1

	 j c̃
†
j c̃ j (11)

is the free pseudofermion Hamiltonian which depends on the
(formal) energies 	 j ∈ C and the fields

B̃σ
j = λ j c̃

σ
j , (12)

in terms of the interaction strengths λ j ∈ C. We further as-
sume the pseudofermions and residual environments to be
initially in their equilibrium state ρ

eq
pf+re. As mentioned, the

residual environment associated with each pseudofermion j
is modeled as quantum white noise characterized by a formal
decay rate 
 j ∈ C and a formal Fermi distribution n j ∈ C.
As shown in Appendix B, the free correlations in the pseud-
ofermion and residual-environment space, i.e.,

Cσ
pf(t ) ≡

Npf∑
j=1

Cσ
pf, j (t ) ≡

Npf∑
j=1

λ2
jTrpf+re

[
c̃σ

j (t )c̃σ̄
j (0)ρeq

pf+re

]
,

(13)

are defined using operators in the interaction picture, and they
can be obtained by directly solving the Heisenberg equation of
motion leading to

Cσ
pf, j (t ) = λ2

j [(1 − σ )/2 + σn j] exp [iσ	 jt − 
 j |t |]. (14)

This result shows a main feature of the pseudofermion
method: Unphysical properties (for example, the fields B̃†

j
not depending on the conjugate of the parameters λ j) allow
us to model a more general set of correlation functions [for
example, Cσ

pf, j (0) < 0 requires λ j to be imaginary].
Thanks to the Gaussianity hypothesis, the reduced dy-

namics of a system embedded in the environment made of
pseudofermions and their residual environments is equivalent

to the reduced dynamics of the original model with Hamilto-
nian H as long as

Cσ (t ) = Cσ
pf(t ). (15)

The practical advantage provided by this result is that, by
choosing the residual environments to be idealized white
noise, their effects on the system+pseudofermions space can
be modeled (without approximations; see Ref. [68] and Ap-
pendix B) by the following Lindblad master equation:

ρ̇S+pf = − i[HS+pf, ρS+pf]

+
∑
r, j


 j
{
(1 − n j )D

r
c̃ j

[
ρr

S+pf

] + n jD
r
c̃†

j

[
ρr

S+pf

]}
,

(16)

where r = ±1 and j = 1 · · · Npf. Here, ρr=±
S+pf are the projec-

tions of the density matrix into the space with even or odd
fermionic parity, and the dissipators Dr

O[·] are defined (see
also Ref. [70]) as

Dr
O[·] = 2rO[·]O† − O†O[·] − [·]O†O. (17)

This is the main result of this paper: When the fermionic
environment of a Gaussian open quantum system has free
correlations which are equivalent to (or can be approximated
by) Eq. (15), the reduced system dynamics can be equivalently
(approximately) computed by solving the master equation in
Eq. (16).

IV. CASE STUDY: LORENTZIAN SPECTRAL DENSITY

We now provide an explicit pseudofermion model to ap-
proximate a fermionic environment initially in an equilibrium
state ρ

eq
E with inverse temperature β and chemical potential μ,

and where the interaction with the system is characterized by
a Lorentzian spectral density

JL(ω) = 
W 2/[(ω − μ)2 + W 2], (18)

where the frequency parameters W and 
 specify the width
and the overall interaction strength, respectively. By inserting
this expression into Eq. (7), it is possible (see Appendix B) to
write the decomposition:

Cσ
L (t ) = Cσ

res +
∑
k>0

Mσ
k (t ). (19)

Here, the “resonant” and “Matsubara” contributions are de-
fined through

Cσ
res(t ) = 
W

2
exp [iσμt − W |t |],

Mσ
k (t ) = Mke−(W +xk )|t |/2

∑
r=±

re[iσμ+r(W −xk )/2]t , (20)

where

Mk = 2i
W 2/β
(
x2

k − W 2
)
, (21)

with xk = (2k − 1)π/β. Our goal is to implement these con-
tributions using a set of pseudoenvironments characterized
by the free correlations in Eq. (14). To describe this cor-
respondence, we define one resonant and two Matsubara
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pseudoenvironments (for each Matsubara frequency) by iden-
tifying j �→ res and j �→ (k, r = ±) in Eq. (14). This leads to
the following equivalences among correlations:

Cσ
pf,res(t ) = Cσ

res(t ),
∑
r=±

Cσ
pf,(k,r)(t ) = Mσ

k (t ), (22)

which hold (see Appendix B) when the parameters for the
pseudoenvironments are defined as

nres = 1/2, nk,± = �,

λres =
√


W , λk,± =
√

±Mk/�,

	res = μ, 	k,± = μ ∓ i(xk − W )/2,


res = W, 
k,± = (W + xk )/2, (23)

where � ∈ C with |�| → ∞. We note that the limit |�| →
∞ might introduce numerical instabilities which can be reg-
ularized using intermediate values, such that � 
 1. The
parameter � allows us to match the σ dependence between the
correlations in Eqs. (20) and (14). In fact, we can note that, for
μ = 0, each of the Matsubara contributions in Eq. (20) does
not depend on σ . On the contrary, a “particle-hole” asymmetry
is present in the pseudomode correlation in Eq. (14) be-
cause of the multiplicative factor λ2

j [(1 − σ )/2 + σn j]. Using
Eq. (23), we can see that this factor takes the σ -independent
form ±Mk/�[(1 − σ )/2 + σ�] → ±Mk in the limit � →
∞, to correctly model the “particle-hole” symmetry present in
the Matsubara contribution described in Eq. (20) for μ = 0.

It is important to mention that the flexibility of the method
also allows for an alternative model which does not require
any asymptotic limit, but uses four pseudofermions for each
Matsubara contribution Mσ

k (t ). By introducing the symbols
r, σ ′ = ±1, these fermionic degrees of freedom can be de-
scribed by the parameters

nk,r,σ ′ = (1 + σ ′)/2,

λk,r,σ ′ = √
rMk,

	k,r,σ ′ = μ − irσ ′(xk − W )/2,


k,r,σ ′ = (W + xk )/2; (24)

see Appendix B.
These mappings to effective fermionic degrees of freedom

are possible because of the enlarged parameter domain of the
model, which allows for complex (i.e., unphysical) values. We
can appreciate this by noting the following.

(i) Mk has a nontrivial overall complex phase requiring
complex couplings λk,± between the pseudomodes and the
system.

(ii) Mσ
k contains terms proportional to eαt (α ∈ R) which

represent neither a pure physical oscillation (α is not imagi-
nary) nor a pure physical decay (t does not appear in absolute
value) ultimately requiring the pseudomodes frequencies 	k,±
to acquire an imaginary part.

(iii) The average fermion number nk,± is, in principle,
allowed to be unbounded, which implies unphysical density
matrices.

The relations in Eq. (22) lead to an equivalence between
the full pseudoenvironment and the original model, i.e.,

Cσ
L (t ) = Cσ

pf(t ). (25)

FIG. 2. Current into the right reservoir from a single impurity
(coupled to two reservoirs) as a function of chemical potential dif-
ference �μ = μL − μR. For both reservoirs we choose ε = 
, W =
2.5
, and β = 1/(0.2
). The truncation parameter for the HEOM
results is nmax = 2.

This shows that a fermionic environment characterized by the
Lorentzian spectral density JL(ω) can be approximated using
Npf = 1 + 2Kpf pseudofermions. Here, Kpf represents a cutoff
in the evaluation of the Matsubara series, i.e.,

∑
k>0

→
Kpf∑
k=1

, (26)

in Eq. (19). However, when several Matsubara frequencies
effectively contribute to the original correlation Cσ

L (t ) (i.e.,
Kpf 
 1), it might be more efficient to alternatively find a
best-fit approximation of the full Matsubara series

Mσ (t ) ≡
∑
k>0

Mσ
k (t ), (27)

following the ansatz

Mσ �
Kfit∑
j=1

Mσ
j,fit(t ), (28)

where Kfit ∈ N and

Mσ
j,fit(t ) � Mj,fite

−(W j
fit+x j

fit )|t |/2
∑
r=±

re[iσμ+r(W j
fit−x j

fit )/2]t , (29)

and only then proceeding with the pseudofermion mapping,
thereby optimizing the number Nfit

pf = 1 + 2Kfit of pseud-
ofermions.

V. APPLICATIONS

A. Nonequilibrium single-impurity model

Our first application is a single spinless fermion coupled
to two environments with Hamiltonian H = HS + HE + HI ,
where

HS = εs†s,

HE + HI =
∑
α,k

ωα,kc†
α,kcα,k +

∑
α

(sB†
α + Bαs†), (30)
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FIG. 3. Spectral density A(ω) for a single impurity containing two interacting fermions coupled to a spin-labeled reservoir. Here, μ = 0,
U = 3π
, ε = −U/2, and β = 1/(0.2
). (a) shows the results for width W = 2.5
, while (b) is for W = 10
. In (a) we see that the HEOM
result with Nk = 2 has not converged, while all other results are (pseudofermion and HEOM, Nk = 4 results overlap). In (b), which uses the
Matsubara series in Eq. (B49), the HEOM results converge for Nk = 5, while the standard pseudofermion results, relying on Kfit = 1 terms in
the series in Eq. (29) to fit the Matsubara contribution (shown in the inset), have not converged. To efficiently include more exponents, and
hence more pseudofermions, we employ matrix product states, allowing us to include Kfit = 3 terms in the Matsubara series (yellow curve in
inset) and achieve convergence (solid purple curve).

with

Bα =
∑

k

gα,kcα,k, (31)

for α ∈ {L, R}, indexing the left and right leads. We choose
both environments to be identical apart from their chemical
potential, so that JL(ω) is generalized to have an α-dependent
μα , and we define �μ = μL − μR. We then apply the fitting
procedure described in Eq. (29), so that each environment
is described by Nfit

pf = 1 + 2 pseudofermions. As a bench-
mark we use the standard analytical result (see Ref. [14])
for the current and the HEOM method using the BOFIN-
HEOM package [38] with a Padé decomposition of the bath
exponents.

For the pseudofermions, we can evaluate the current fol-
lowing the logic in Refs. [36,37,71], defining the occupation
of bath α as

Nα =
∑

k

c†
α,kcα,k (32)

and the current into the bath α as

Iα (t ) = eTr[Nαρ̇(t )]

= −ieTr[{s(t )B†
α (t ) + s†(t )Bα (t )}ρ(t )], (33)

in terms of the unit of charge e. In the pseudofermion for-
malism we equate Bα with a sum over all pseudofermions
describing environment α. The equivalence of the results
[72,73] for the analytical current, the HEOM method, and the
pseudofermions method is demonstrated in Fig. 2.

B. Kondo resonance

To demonstrate that the pseudofermions can indeed capture
nontrivial correlations between system and environment, we
turn to the example of Kondo resonance [74–78]. Previously,
this was used to demonstrate the power of the HEOM method
in dealing with fermionic systems [35], and here we do the
same for the pseudofermion method. We start with a system
containing two interacting fermions labeled by their spin cou-
pled to a spin-labeled reservoir,

HS = ε(s†
↑s↑ + s†

↓s↓) + Us†
↑s↑s†

↓s↓,

HE + HI =
∑
k,ν

c†
k,ν

ck,ν +
∑

ν

sνB†
ν + Bνs†

ν, (34)

where ν ∈ {↑,↓}. The spectral density of the impurity with
spin ν (an experimentally observable quantity [79,80] which
can exhibit signatures of Kondo resonance) is defined as

Aν (ω) = 1

2π

∫
dteiωt 〈{sν (t ), s†

ν (0)}〉. (35)

This can be evaluated using the pseudofermion equation of
motion. Figure 3 demonstrates the spectrum for a symmetric
example where U = −2ε. The pseudofermion method fits the
predicted HEOM result (using a converged Padé decompo-
sition of the bath correlation functions) remarkably well for
narrow electronic bandwidths. In this case [see Fig. 3(a)] the
two side peaks appear around the system energies, while the
Kondo resonance appears at zero frequency, as expected.

For broader bandwidths, approaching the scaling limit,
the pseudofermion model is still able to describe the main
qualitative features of the Kondo peak. However, as shown in
Fig. 3(b) the model does not accurately converge to the exact
quantitative result with just Kfit = 1. This is due to the fact
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that, in order to correctly probe the low-frequency properties
of the system characterizing the Kondo regime, long-time
features of the correlation function become important. At very
low temperatures, these features are characterized by a poly-
nomial tail in the correlation which requires the use of more
pseudofermions to capture accurately; see inset in Fig. 3(b).
Since the Hilbert space of the model increases exponentially
in the number of pseudofermions, standard Jordan-Wigner
mappings become numerically challenging when more than
a few degrees of freedom are needed, limiting the precision of
the result; see the red curve in Fig. 3(b).

Fortunately, by employing matrix product state (MPS)
techniques, akin to those used in Refs. [12,81], we have
found that we can access this regime (see Appendix D for
details on the implementation). In fact, by restricting the ef-
fective Hilbert space dimension using such a matrix product
state ansatz, it is possible to improve the fitting of the slow-
decaying bath correlation function and provide an accurate
resolution of the zero-frequency properties of the system; see
Fig. 3(b), green dotted curve.

It is interesting to note that the modeling of even broader
bandwidths does not necessarily imply a further increment of
the needed numerical resources. In fact, by considering the
full Matsubara series Mσ (t ), we show in Appendix C that
the terms associated with large (compared with the inverse
timescales of the system) Matsubara frequencies do not effec-
tively contribute to the reduced system dynamics (while for
bosonic environments such terms introduce additional Marko-
vian decay [28]). This implies that a finite truncation of the
series is possible, and hence a finite number of pseudomodes
can be employed even in the scaling limit.

Finally, it is important to iterate that, compared with
the powerful HEOM method, the pseudofermion method
produces identical results, with the advantage of a more
transparent interpretation (discrete effective bath of fermions),
which, as we have demonstrated, are then more intuitively
amenable to MPS techniques [82,83].

VI. DISCUSSION AND SUMMARY

In this paper we presented a methodology to generate
the reduced dynamics of a quantum system interacting with
fermionic environments for arbitrary system-bath coupling
strengths and for arbitrary bath memory times. We showed
that this method allows one to accurately simulate challenging
non-Markovian regimes by just solving a simple Lindblad
master equation which describes the dynamics of the system
coupled to ancillary “pseudofermionic” degrees of freedom.
In contrast to other approaches, the presence of a Lind-
blad equation here does not correspond to a perturbative
approximation. In fact, the method is exact as long as the
correlation functions closely match the ones of the origi-
nal bath. We demonstrated this balance between conceptual
simplicity and numerical accuracy by reproducing the exact
results of both nonequilibrium transport and Kondo reso-
nance, benchmarked against the HEOM method. The latter
is known [35] to perform as well as renormalization-group
methods at finite temperatures and outperform continuous-
time quantum Monte Carlo, Green’s function equations of
motion, and slave-boson mean-field theory. It is important

to iterate that, compared with the powerful HEOM method,
the pseudofermion method produces identical results, with
the advantage of a more transparent interpretation (discrete
effective bath fermions), which, as we have demonstrated, are
then more intuitively amenable to MPS techniques [82,83].

One important feature of our approach is that the number
of pseudofermion ancillas needed can be reduced by breaking
certain physical constraints, resulting in an enlarged parame-
ter space for mimicking the original environment correlation
functions. To further increase the accuracy, it is possible to
limit the dimension of the resulting effective Hilbert space
using a matrix product state ansatz. The value of this ansatz
can be seen by noting that the number of fermions needed
in the model scales as Nfermion = Nsys + (1 + 2Kfit ) × Nenv,
where Nsys is the number of fermions needed to represent the
system and Nenv is the number of environments. In order to
accurately reproduce the Kondo peak in Fig.Fig. 3, Nsys = 2,
Nenv = 2, and at least Kfit = 3 is needed. This corresponds
to a Hilbert space of dimension 216, which can grow up to
228 using the alternative decomposition in (24). Using the
tensor network technique, we showed that the method can
still be applied, as the matrix product state ansatz substantially
reduces the number of states needed to describe the problem.

In summary, the method we have developed here can be
applied to simulate the influence of non-Markovian fermionic
environments strongly interacting with a quantum system with
just a Lindblad master equation and an appropriate num-
ber of pseudofermion ancillas, thereby allowing challenging
regimes, which traditionally require more complex numerical
methods to study, to become accessible with simple open-
quantum-system techniques. This method could allow one
to design control or environmental-engineering protocols and
to study superconducting or Majorana leads or hybrid en-
vironments (involving both fermions and bosons). Another
interesting future direction is a generalization to compute bath
observables and correlations to study nonequilibrium physics
within the environment itself, possibly leading to the opti-
mization of transport properties.
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APPENDIX A: FERMIONIC OPEN QUANTUM SYSTEM

In this Appendix, we present technical details about the
fermionic open quantum systems described by the original
system-environment Hamiltonian H = HS + HE + HI used in
the main text. Under the hypothesis described in the main text,
the reduced system dynamics depends solely on the influence
superoperator presented in Eq. (6), which can be written as

F (t ) =
∑
σ=±

∫ t

0
dt2

∫ t2

0
dt1Aσ (t2)Bσ (t2, t1), (A1)

where

Aσ (t )[·] = sσ̄ (t )[·] − P[·sσ̄ (t )],

Bσ (t2, t1)[·] = −Cσ
21sσ (t1)[·] − C̄σ̄

21P[·sσ (t1)]. (A2)

Here, we defined sσ=−1 ≡ s and sσ=1 ≡ s†. The parity opera-
tor is defined as

P[·] = PS[·]PS,

where

PS =
∏
kS

exp
{
iπd†

kS
dkS

}
,

in terms of the fermions dkS which can populate the sys-
tem. The expression of the influence superoperator explicitly
shows us that the effects of the environment are fully encoded
in the correlation functions Cσ

21 ≡ Cσ (t2, t1), where

Cσ=1(t2, t1) = TrE
[
B†(t2)B(t1)ρeq

E

]
= 1

π

∫ ∞

−∞
dωJ (ω)neq

E (ω)eiω(t2−t1 ),

Cσ=−1(t2, t1) = TrE
[
B(t2)B†(t1)ρeq

E

]
= 1

π

∫ ∞

−∞
dωJ (ω)

[
1 − neq

E (ω)
]
e−iω(t2−t1 ),

(A3)

in terms of the interaction picture operators B(t ) =∑
k gkcke−iωkt , the spectral density J (ω) = π

∑
k g2

kδ(ω −
ωk ), and the Fermi distribution neq

E (ω) = (1 + exp{β(ω −
μ)})−1 (in which μ represents the chemical potential). These
definitions are the explicit version of the ones in Eq. (7) upon
noticing that the invariance of ρ

eq
E under the free evolution of

the bath implies time-translational invariance for the correla-
tions.

APPENDIX B: PSEUDOFERMION MODEL

In this Appendix we present details about the pseud-
ofermion model presented in the main text. The model is
an approximation scheme which operates in an augmented
Hilbert space involving ancillary pseudofermions. The prefix
pseudo highlights the absence of physicality constraints other
than the requirement to generate the correct reduced system
dynamics.

Explicitly, we consider Npf pseudofermions c̃ j , j =
1, . . . , Npf, each interacting with its own residual bath of
fermions c̃ jk defining a formal open quantum system with

Hamiltonian

H tot
S+pf = HS+pf + HRE. (B1)

Here,

HS+pf = HS + Hpf + HI
S+pf (B2)

is the free Hamiltonian in the augmented
system+pseudofermions space, where

Hpf =
Npf∑
j=1

	 j c̃
†
j c̃ j (B3)

is the free pseudofermion Hamiltonian which depends on the
(formal) energies 	 j ∈ C and where

HI
S+pf =

Npf∑
j=1

λ j (sc̃†
j + c̃ js

†) ≡
Npf∑
j=1

(sB̃†
j + B̃ js

†),

HRE =
Npf∑
j,k

[	 jk c̃†
jk c̃ jk + λ jk (c̃†

j c̃ jk + c̃†
jk c̃ j )] (B4)

are the system + pseudofermions and pseudofermions +
residual-environment interaction Hamiltonians written in
terms of the fields

B̃σ
j (t ) = λ j c̃

σ
j (t ), (B5)

the energies 	 jk ∈ R, and the interaction strengths λ j ∈ C,
λ jk ∈ R.

We further assume each auxiliary environment to act as an
idealized white noise defined by constant spectral densities

Jj (ω) = π
∑

k

λ2
jkδ(ω − 	 jk ) = 
 j, (B6)

written in terms of the rates 
 j ∈ C, and by constant (fre-
quency independent) equilibrium distributions

neq
jk = n j, (B7)

where n j ∈ C; see Eq. (B26). Following the ideas introduced
in Ref. [25] for the bosonic case, while some of the parameters
in this formal model are allowed to take complex values,
the dynamics is still defined using the same Schrödinger
equation as if all parameters were physical, i.e., without intro-
ducing any extra complex conjugation, hence taking the name
pseudo-Schrödinger equation [85]. This allows us to use an
unphysical model to simulate a wider range of free correla-
tion functions without adding extra complexity. To conclude
its characterization, we assume the pseudoenvironment to be
initially in its equilibrium state ρpf+re; see Eq. (B21).

1. A pseudoenvironment

The pseudoenvironment described by the Hamiltonian

HS+pf = HS + Hpf + HI
S+pf (B8)

is supposed to be, initially, in the following equilibrium state:

ρpf+re = Z−1
pf+reexp

Npf∑
j=1

[
β j	 j c̃

†
j c̃ j +

∑
k

β jk	 jk c̃†
jk c̃ jk

]
,

(B9)
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in which Zpf+re ensures that the trace is 1 and where each
β j, β jk ∈ R can be found by imposing

Trpf[c̃
†
j c̃ jρpf] = n j,

on top of the already stated white-noise assumption

neq
j = Trpf[c̃

†
jk c̃ jkρpf] = n j .

This leads to

β j	 j = β jk	 jk = log10(1/n j − 1), (B10)

which concludes the characterization of this “pseudoenviron-
ment.” We note that the condition in Eq. (B10) allows us to
write the exponent defining ρpf+re as a weighted sum over the
total number of fermions in the different pseudoenvironments,
which is a constant of motion under the free evolution induced
by Hpf+re = Hpf + HI

S+pf + Hre (as it only contains interaction
terms which are written in a “rotating wave” style, i.e., they
preserve the total number of bare excitations).

2. Computing the correlation functions through the Heisenberg
equation of motion

The most direct way to compute the correlations in Eq. (13)
is through the Heisenberg equation of motion. For clarity, in
this section we will be omitting the label j used throughout
the main text to describe independent pseudoenvironments. In
fact, we will be focusing on a single pseudofermion c̃ and its
residual environment made of fermions c̃k . With this notation,
the free Hamiltonian of the environment, i.e., the part of the
Hamiltonian in Eq. (B8) which has no support on the system,
reads

Hpf+re = Hpf + HI
S+pf + HRE

= 	c̃†c̃ +
∑

k

λk (c̃†c̃k + c̃†
k c̃) +

∑
k

	k c̃†
k c̃k, (B11)

with J (ω) = π
∑

k λ2
kδ(ω − 	k ) = 
. Using {c̃, c̃†} = 1, we

obtain

˙̃c = i
[
Hpf

E , d
] = −i	c̃ − i

∑
k

λk c̃k,

ċk = i
[
Hpf

E , c̃k
] = −i	k c̃k − iλk c̃, (B12)

which, in Laplace space, becomes

sc̃ = c̃(0) − i	c̃ − i
∑

k

λk c̃k,

sc̃k = c̃k (0) − i	k c̃k − iλk c̃. (B13)

Substituting

c̃k = (c̃k (0) − iλk c̃)/(s + i	k )

into the first equation, we get[
s + i	 +

∑
k

λ2
k

s + i	k

]
c̃ = c̃(0) −

∑
k

iλk

s + i	k
c̃k (0).

(B14)

This equation can be made more explicit by computing∑
k

λ2
k

s + i	k
= 1

π

∫ ∞

−∞
dω

J (ω)

s + iω

= 


π

∫ ∞

−∞

dω

s + iω

= −i



π

∫ ∞

−∞

dω

ω − is
. (B15)

To proceed, we consider∫ W

−W
dω

1

ω − is
= log10

( |W − is|
|−W − is|

)

+ arg(W − is) − arg(−W − is), (B16)

so that

lim
W →∞

∫ W

−W

dω

ω − is
= iπ for Re(s) > 0

= −iπ for Re(s) < 0. (B17)

Which of these two alternatives should we use in Eq. (B14)?
The choice depends on whether we are interested in evaluating
the dynamics of c̃(t ) for t > 0 or t < 0. For t > 0, we should
choose the condition Re(s) > 0 as it is always compatible
with the integration path needed to define the inverse Laplace
transform. For t < 0, the opposite choice must be made. This
means that

(s + i	 ± 
)c̃ = c̃(0) − i
∑

k

λk

s + i	k
c̃k (0), (B18)

where the ± depends on whether t > 0 or t < 0. A similar
result holds for the conjugate

(s − i	 ± 
)c̃ = c̃†(0) + i
∑

k

λk

s − i	k
c̃†

k (0). (B19)

Note that even if some of the original parameters 	 and 


might be complex, no complex conjugation is introduced on
them, as a pseudo-Schrödinger equation is used to generate
the dynamics.

Our goal is now to use Eqs. (B18) and (B19) to compute
the correlations in Eq. (13), which read

Cσ (t2, t1) = λ2Tr[c̃σ (t2)c̃σ̄ (t1)ρpf+re], (B20)

where c̃(t ) = exp{iHpf
E t}c̃ exp{−iHpf

E t} and where

ρpf+re = exp{−β	c̃†c̃}
∏

k

exp{−βk	k c̃†
k c̃k}/Zpf+re, (B21)

where

Zpf+re = (e−β	 + 1)
∏

k

(e−βk	k + 1),

together with the constraints in Eq. (B10), i.e.,

β	 = βk	k = log10(1/n − 1). (B22)

Note that these constraints are essential to ensure invariance
under time translation of the correlation. In fact, using them,
the equilibrium state takes the form

ρpf+re ∝ exp{−β	NE },
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as a function of the total number of fermions in the structured
environment

Npf+re = c̃†c̃ +
∑

k

c̃†
k c̃k .

This number is conserved by the free dynamics, i.e.,
[Hpf, Npf] = 0, which implies that

Cσ (t2, t1) = Cσ (t2 − t1, 0)

≡ Cσ (t2 − t1)

= λ2Tr[c̃σ (t )c̃σ̄ (0)ρpf+re], (B23)

where t = t2 − t1. Therefore, using Eqs. (B18) and (B19), we
can immediately compute

Cσ (t ) = λ2θ (t )L−1
t

Tr[c̃σ (0)c̃σ̄ (0)ρpf+re]

s − σ i	 + 


+ λ2θ (−t )L−1
t

Tr[c̃σ (0)c̃σ̄ (0)ρpf+re]

s − σ i	 − 

, (B24)

where L−1
t is the inverse Laplace transform which can be

computed to obtain

C(t ) = λ2[(1 − σ )/2 + σn] exp{σ i	t − 
|t |}, (B25)

which, reintroducing the indices j used in the main text to
label independent pseudoenvironments, leads to Eq. (14) by
linearity.

3. Markovian regime

In this section, we review the limit in which the envi-
ronment is Markovian. This regime is defined when all the
memory effects described by the fermionic influence super-
operator F (t, s,Cσ ) in Eq. (6) are negligible. The Markovian
limit can be recovered [17,68] in the quantum white-noise
limit characterized by a constant spectral density and a con-
stant equilibrium distribution, i.e.,

J (ω) �→ 
0, neq
E (ω) �→ n0. (B26)

In fact, these conditions, once inserted in Eq. (7), lead to

Cσ (t2, t1) = 
0[1 − σ + 2σn0]δ(t2 − t1),

which, arguably, more commonly defines the Markov ap-
proximation. As shown in Ref. [68], in the case of a
delta-correlated environment, the expression for the func-
tional superoperator in Eq. (6) can be drastically simplified,
leading to an effective generalized Lindblad equation of mo-
tion

ρS = −i[HS, ρS] + 
0

∑
r=±

(1 − n0)Dr
s

[
ρr

S

] + n0Dr
s†

[
ρr

S

]
,

(B27)

where ρr=±
S are the projections of the density matrix into the

space with even or odd fermionic parity. The dissipators Dr
O[·]

are defined as

Dr
O[·] = 2rO[·]O† − O†O[·] − [·]O†O.

In non-Markovian regimes, the influence superoperator F
is able to model more complex physical scenarios. For exam-
ple, in the limit where the system is a single-level impurity,

one recovers the single-impurity Anderson model, which is
integrable in the noninteracting limit. Beyond this case, with,
e.g., interacting or nonlinear impurities, one must resort to
numerical methods.

This analysis can be easily adapted to the problem of trac-
ing out the residual environments of the pseudofermion model
defined in Eq. (B8). In fact, the residual environment of each
pseudofermion is modeled as idealized white noise, and as a
consequence, it can be traced out by simply considering the
composite system+pseudofermions in place of S in Eq. (B27)
leading to Eq. (16).

4. Correlations for a Lorentzian spectral density

We now consider the Lorentzian spectral density

JL(ω) = 
W 2

[(ω − ω0)2 + W 2]
= 
W 2

(ω − a)(ω − ā)
, (B28)

where a = ω0 + iW and ā = ω0 − iW . With this spectral den-
sity, the correlation functions in Eq. (7) take the form

Cσ=1(t ) =
∫ ∞

−∞

dω

π
JL(ω)eiωt nβμ(ω),

Cσ=−1(t ) =
∫ ∞

−∞

dω

π
JL(ω)e−iωt [1 − nβμ(ω)] (B29)

and can be evaluated by noticing that the poles of the inte-
grand are located at a, ā, and ωk = μ + ixk , where xk = (2k −
1)iπ/β, for k ∈ N. For positive (negative) time arguments, we
can close the contour in the upper (lower) complex plane to
derive, for t > 0,

Cσ=1(t ) = 2i
W 2

[
eiat

a − ā

1

eβ(a−μ) + 1

− 1

β

∑
k>0

eiωkt

(ωk − a)(ωk − ā)

]
,

Cσ=1(−t ) = 2i
W 2

[
e−iāt

a − ā

1

eβ(ā−μ) + 1

+ 1

β

∑
k>0

e−2iμt eiωkt

(2μ − ωk − a)(2μ − ωk − ā)

]
,

Cσ=−1(t ) = − 2i
W 2

[
e−iāt

ā − a

eβ(ā−μ)

eβ(ā−μ) + 1

+ 1

β

∑
k>0

e−2iμt eiωkt

(2μ − ωk − a)(2μ − ωk − ā)

]
,

Cσ=−1(−t ) = 2i
W 2

[
e−β(μ−a)eiat

a − ā

1

eβ(a−μ) + 1

+ 1

β

∑
k>0

eiωkt

(ωk − a)(ωk − ā)

]
. (B30)
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Noticing that ω̄k = 2μ − ωk , the above expressions are com-
patible with the general relation Cσ (−t ) = C̄σ (t ).

Cσ=−1(−t ) = 2i
W 2

[
eiat

a − ā

(
1 − 1

eβ(a−μ) + 1

)

+ 1

β

∑
k>0

eiωkt

(ωk − a)(ωk − ā)

]

= 2i
W 2 eiat

a − ā
− Cσ=1(t ). (B31)

Using the Matsubara expansion (see Ref. [1], Eq. (3.5),
p. 110)

1

eβx + 1
= 1

2
− 1

β

∑
k>0

(
1

x − ixk
+ 1

x + ixk

)
, (B32)

we can alternatively write, for t > 0,

Cσ=1(t ) = 2i
W 2

{
eiat

a − ā

[
1

2
− 1

β

∑
k>0

(
1

a − ωk

+ 1

a − 2μ + ωk

)]
− 1

β

∑
k>0

eiωkt

(ωk − a)(ωk − ā)

}

=
{

eiat

a − ā

[
1

2
− 1

β

∑
k>0

(
1

a − ωk
+ 1

ωk − ā

)]

− 1

β

∑
k>0

eiωkt

(ωk − a)(ωk − ā)

}
2i
W 2

= 2i
W 2

{
eiat

2(a − ā)
− 1

β

∑
k>0

eiωkt − eiat

(ωk − a)(ωk − ā)

}

= 
W

2
eiμt−W t + 2i
W 2

β

∑
k>0

eiμt−xkt − eiμt−W t

(xk − W )(xk + W )
,

(B33)

where we noticed that 1/(a − 2μ + ωk ) − 1/(ωk − ā) = 0,
∀k. Using Cσ (−t ) = C̄σ (t ), together with Eq. (B31), we can
write, for t > 0,

Cσ=−1(t ) = C̄σ=−1(−t )

= 
We−iμt−W t − C̄σ=1(t )

= 
W

2
e−iμt−W t + 2i
W 2

β

×
∑
k>0

e−iμt−xkt − e−iμt−W t

(xk − W )(xk + W )
. (B34)

Using Cσ (−t ) = C̄σ (t ) again, we can extend these results to
t < 0 to write, for any t ∈ R,

Cσ
L (t ) = Cσ

res +
∑
k>0

Mσ
k (t ), (B35)

where

Cσ
res = 
W

2
exp{σ iμt − W |t |},

Mσ
k (t ) = sgn(t )2i
W 2

β

eσ iμt−xk |t | − eσ iμt−W |t |

x2
k − W 2

, (B36)

where sgn(t ) = t/|t |, for t �= 0, is the sign function. One
interesting feature of this decomposition is that the pole at
xk = W is explicitly removed from the notation (because of
the presence of a corresponding zero in the numerator). The
first line of Eq. (B36) reproduces the first line of Eq. (20) in
the main text. In order to reproduce the second line of Eq. (20),
there is a little more work to do. To achieve this, we use the
identity in Eq. (B54) to write

sgn(t )(e−xk |t | − e−W |t |)

= eω(t+|t |) − eω(|t |−t )

e2ω|t | − 1
e−W |t |(e−(xk−W )|t | − 1), (B37)

for any ω ∈ C. For the specific choice ω = (W − xk )/2 we
obtain

sgn(t )(e−x|t | − e−W |t |) = e−(W +x)|t |/2[e(W −x)t/2 − e−(W −x)t/2],

(B38)

which, used in the second line of Eq. (B36), gives

Mσ
k (t ) =

∑
k>0

2i
W 2

β

e−(W +xk )|t |/2

(x2
k − W 2)

× [e[iσμ+(W −xk )/2]t − e[iσμ−(W −xk )/2]t ], (B39)

which is the second line in Eq. (20).
We finish by noting that, in the zero-temperature limit

(β → ∞), the Matsubara frequencies xk approach a contin-
uum so that

Mσ (t )
β→∞= sgn(t )

i
W 2

π
eiσμt

∫ ∞

0
dx

e−x|t | − e−W |t |

(x2 − W 2)
. (B40)

5. Correspondence to pseudoenvironments

Here we provide details about modeling the correlations
Cσ

res(t ) and Mσ
k (t ) in Eq. (20) using fermionic pseudoenviron-

ments. We start from the resonant contribution Cσ
res(t ). We

want to find the parameters of a pseudoenvironment such
that its free correlation function Cσ

pf,res(t ), obtained using the
identification j �→ res in Eq. (14), fulfills

Cσ
res(t ) = Cσ

pf,res(t ). (B41)

Using Eqs. (20) and (14), the equation above translates to


W

2
eiσμt−W |t | = λ2

res[(1 − σ )/2 + σnres]e
iσ	rest−
res|t |.

(B42)

The equivalence in Eq. (B42) can be imposed by defining

nres = 1/2,

λres =
√


W/(2nres),

	res = μ,


res = W, (B43)

which fully characterize the resonant pseudoenvironment.
Similarly, for each k, the Matsubara contribution Mσ

k (t ) in
Eq. (20) can be reproduced using two pseudoenvironments.
Explicitly, identifying j → (k, r), r = ± in Eq. (14), we want
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to impose

Mσ
k (t ) =

∑
r=±

Cσ
pf,(k,r)(t ), (B44)

which, using Eqs. (20) and (14), is equivalent to

Mke−(W +xk )|t |/2
∑
r=±

r exp{[iσμ + r(W − xk )/2]t}

=
∑
r=±

λ2
k,r[(1 − σ )/2 + σnk,r] exp{iσ	k,rt − 
k,r |t |}.

(B45)

Imposing the equation above requires a bit of attention as the
frequency r(W − xk )/2 appearing in the expression of Mσ

k (t )
is not multiplied by the parameter σ as in the correlation
for the pseudoenvironment. On the contrary, the coefficients
multiplying the exponential in the correlation for the pseu-
doenvironment do depend on σ while Mk does not. Luckily,
the Matsubara contributions Mσ

k (t ) are written in terms of
a difference between exponentials with opposite frequencies
which offers the opportunity to define the parameters charac-
terizing the Matsubara pseudoenvironments as

nk,± = �,

λk,± =
√

±Mk/�,

	k,± = μ ∓ i(xk − W )/2,


k,± = (W + xk )/2, (B46)

where � ∈ C in the limit |�| → ∞ so that

Cσ
pf,(k,r)(t ) = rMk

�
e−(W +xk )|t |/2[(1 − σ )/2 + σ�]

× exp{iσ [μ − ir(xk − W )/2]t}, (B47)

which, inserted in Eq. (B44), leads to

Mσ
k (t ) = Mk

�
e−(W +xk )|t |/2[(1 − σ )/2 + σ�]

× (eiσ [μ−i(xk−W )/2]t − eiσ [μ+i(xk−W )/2]t )

= Mk

�
e−(W +xk )|t |/2[(1 − σ )/2 + σ�]

× eiσμt (eσ [(xk−W )/2]t − e−σ [(xk−W )/2]t )

= Mk

�
e−(W +xk )|t |/2[(1 − σ )/2 + σ�]

× σeiσμt (e[(xk−W )/2]t − e−[(xk−W )/2]t )

→ Mke−(W +xk )|t |/2

× eiσμt (e[(xk−W )/2]t − e−[(xk−W )/2]t ), (B48)

where, in the last step, the limit |�| → ∞ was taken. The
above equation is equivalent to the expression for Mσ

k (t ) given
in Eq. (20), thereby completing the proof. In numerical appli-
cations, the limit � → ∞ might introduce some numerical
instabilities which can be regularized using intermediate val-
ues such that � 
 1.

Alternative formulation

Interestingly, it is also possible to build a pseudoenvi-
ronment which does not resort to any asymptotic parameter

(� above). To achieve this, we need to introduce four
pseudoenvironments to model each Mσ

k (t ) to impose

Mσ
k (t ) =

∑
r,σ ′=±

Cσ
pf,(k,r,σ ′ )(t ), (B49)

through the identification j → (k, r, σ ′), r, σ ′ = ±, in
Eq. (14). In order to fulfill Eq. (B49), we can choose the
parameters

nk,r,σ ′ = (1 + σ ′)/2,

λk,r,σ ′ = √
rMk,

	k,r,σ ′ = μ − irσ ′(xk − W )/2,


k,r,σ ′ = (W + xk )/2, (B50)

which correspond to a β → σ ′ × ∞ limit, so that [see
Eq. (14)]

Cσ
pf,(k,r,σ ′ )(t ) = rMke−(W +xk )|t |/2

[
1 − σ

2
+ σ

1 + σ ′

2

]

× eiσ [μ−irσ ′(xk−W )/2]t , (B51)

which, inserted in Eq. (B49), leads to

Mσ
k (t ) =

∑
σ ′

Mke−(W +xk )|t |/2

[
1 − σ

2
+ σ

1 + σ ′

2

]

× (eiσ [μ−iσ ′(xk−W )/2]t − eiσ [μ+iσ ′(xk−W )/2]t )

=
∑
σ ′

Mke−(W +xk )|t |/2δσσ ′

× eiσμt (eσσ ′(xk−W )t/2 − e−σσ ′(xk−W )t/2)

= Mke−(W +xk )|t |/2

× eiσμt (e(xk−W )t/2 − e−(xk−W )t/2), (B52)

which, similarly to the previous analysis, is equivalent to the
expression for Mσ

k (t ) given in Eq. (20), thereby completing
the proof.

6. Proof of an identity for the sign function

Let us define sgn(x) = x/|x| for x �= 0. We have

eω(t+|t |) − eω(|t |−t ) t>0= e2ωt − 1

= e2ω|t | − 1

t<0= 1 − e−2ωt

= 1 − e2ω|t |, (B53)

for any ω ∈ C. In a more compact notation, the previous
equation can be written as

eω(t+|t |) − eω(|t |−t ) = sgn(t )(e2ω|t | − 1). (B54)

APPENDIX C: EFFECTIVE MODEL FOR FAST DECAYING
TERMS IN THE MATSUBARA CORRELATION

For bosonic environments, when a term in the Matsubara
series has a decay rate which is larger than the highest fre-
quency 	S which can be associated with the system, it is
possible to approximate its effect on the system by adding an
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extra dissipator to the master equation [28]. In this Appendix,
we analyze the same limit in the case of a fermionic envi-
ronment interacting with the system through the Lorentzian
spectral density JL(ω). In this case, the Matsubara series takes
the form described in Eq. (20), i.e.,

Mσ (t ) = sgn(t )
2i
W 2

β
eiσμt

∑
k>0

e−xk |t | − e−W |t |(
x2

k − W 2
) , (C1)

where xk = (2k − 1)π/β. As in the bosonic case, our starting
point is the following limit representation of the Dirac delta
[28]:

δ(t ) = lim
ε→0

e−|t |/ε

2ε
. (C2)

Among the exponentials present in the Matsubara series
above, the ones which can be modeled with a delta con-
tribution are those for which either xk 
 	S or W 
 	S .
We note that the former possibility corresponds to a “high-
temperature” limit [as it corresponds to β	S � (2k − 1)π ],
while the latter corresponds to a “broad spectral density” limit.
Whenever we are in one of these regimes, the corresponding
contribution in the Matsubara series can be approximated as

Mσ
eff(t ) = sgn(t )Aeffδ(t ), (C3)

where Aeff = i
eff in terms of an effective decay rate 
eff.
We can now compute the corresponding contribution to the
influence superoperator; that is, we can compute Eq. (6) with
the replacement Cσ (t2, t1) �→ Meff(t2 − t1). We find

F (t ) =
∫ t

0
dt2

∫ t2

0
dt1 W (t2, t1), (C4)

where W (t2, t1) = ∑
σ=± Aσ (t2)Bσ

eff(t2, t1) with

Aσ (t )[·] = ŝσ̄ (t )[·] − PS[[·]ŝσ̄ (t )],

Bσ
eff(t2, t1)[·] = −Mσ

eff(t )ŝσ (t1) · −M̄ σ̄
eff(t )PS[[·]ŝσ (t1)]

= −Aeffδ(t )ŝσ (t1) · −Āeffδ(t )PS[[·]ŝσ (t1)],

where t = t2 − t1 � 0, which justifies the last step. We then
obtain

W (t2, t1) = − δ(t )(s · −PS[·s])(Aeffs
† · +ĀeffPS[·s†])/2

− δ(t )(s† · −PS[·s†])(Aeffs · +ĀeffPS[·s])/2.

This means that, in the even or odd sector, in the Schrödinger
picture, we have

F (t ) = − tAeff(ss† · − · s†s ± s · s† ∓ s† · s)/2

− tAeff(s
†s · − · ss† ± s† · s ∓ s · s†)/2

= − Aeff/2([ss† + s†s, ·])t,
which, if s is such that it satisfies the fermionic anticommuta-
tion rules, is zero.

In conclusion, when a term in the Matsubara correlation
function in Eq. (20) can be modeled as a delta function, it does
not bring any effect on the system dynamics. For example,
this implies that the Matsubara correlation function can be
neglected when both the following conditions are satisfied: the
high-temperature limit (i.e., 1/β much bigger than the highest
frequency associated with the system) and a wide Lorentzian

FIG. 4. Schematics of the superfermion representation. Blue cir-
cles correspond to physical fermions, and orange circles correspond
to auxiliary ones. They are combined in pairs to give one MPS site,
shown as dashed ellipses. The pair on the left represents the system,
while remaining sites represent the bath. Solid curves between sites
indicate the long-ranged hopping terms induced by the Hamiltonian.

spectral density (i.e., with a width W much bigger than the
highest frequency associated with the system).

APPENDIX D: TENSOR NETWORK SIMULATION
OF THE PSEUDOFERMION LINDBLAD MASTER

EQUATION

Here we describe how to simulate the dynamics of the
pseudofermion model [see Eq. (16)] using tensor networks.
To do this, we are going to closely follow Ref. [12] and
introduce a superfermion representation of the master equa-
tion and a SWAP-gate technique to treat long-ranged hopping
which arises due to the use of an energy eigenbasis for the
environments.

The superfermion representation is a way to map the
fermionic master equation onto a non-Hermitian Schrödinger
equation, similarly to purification techniques to simulate mas-
ter equations [84]. In the superfermion representation, an extra
auxiliary fermion is introduced for each physical fermion,
thereby doubling the dimension of the Hilbert space. The
arrangement of physical and auxiliary fermions is in principle

FIG. 5. Tensor network simulation of the pseudofermion master
equation (16) using the superfermion representation and the SWAP-
gate technique. (a) The density matrix of the composite system is
represented as a MPS (red square for the system and blue squares
for the pseudofermions). The Trotterized propagator acts on the
MPS sequentially in the form of two-site gates which can be long
ranged. (b) Each long-ranged gate can be decomposed into a series of
two-site, nearest-neighbor gates which combine the SWAP gate S and
the Trotterized propagator. Neighboring SWAP gates (in the dashed
green box) can be combined to the identity operator, leading to the
simplified version of the algorithm in (c).
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arbitrary, but for the purpose of the tensor network simulation,
it is beneficial to arrange them in an intertwined order; see
Fig. 4.

A key object in this construction is the so-called left-
vacuum state defined by

|I〉 = |00, 00, . . . , 00〉, (D1)

where 0 (1) stands for an empty (filled) fermionic site and we
have combined the physical fermion and the corresponding
auxiliary one (marked by underlines) into pairs. One impor-
tant formal tool needed to continue consists of the following
conjugation rules:

d†|I〉 = −d|I〉, d|I〉 = d†|I〉, (D2)

where d and c̃ indicate system fermions and pseudofermions,
respectively, while the auxiliary degrees of freedom are de-
noted by an additional underline (d and c̃).

By applying the density matrix and master equation to |I〉
from the left and by using the conjugation rules above, one
can write the following non-Hermitian Schrödinger equation:

d|ρ〉/dt = L|ρ〉, (D3)

with |ρ〉 = ρ|I〉 and

L = − i
(
H (0)

S+pf − H (0)
S+pf

)
+

∑
j

{

 jn j

[
c̃†

j c̃
†
j − 1

2
(c̃ j c̃

†
j + c̃ j c̃

†
j )

]

−
 j (1 − n j )

[
c̃ j c̃ j − 1

2
(c̃†

j c̃ j + c̃†
j c̃ j )

]}
,

where H (0)
S+pf is given in Eq. (10) and H (0)

S+pf is obtained by
replacing all operators in Eq. (10) by their underlined coun-
terparts. The minus sign in front of H (0)

S+pf originates from the
first commutator in the master equation in Eq. (16). Note that
Eq. (D3) has no explicit dependence on the fermion parity,
which is one of the main advantages of the superfermion
representation.

To set a more efficient tensor network simulation, we com-
bine a physical fermion and its partner into one single matrix
product state (MPS) site, corresponding to a physical index of
dimension four. The advantage of this representation is that all
Lindblad terms in L are local, i.e., they act on a single MPS
site.

On the contrary, the Hamiltonian characterizes hopping
terms between the pseudofermions and the system in a so-
called star geometry. To take this hopping into account, we
use the SWAP gate

S = (I2 ⊗ S ⊗ I2)(S ⊗ S)(I2 ⊗ S ⊗ I2), (D4)

which exchanges the local states of nearest-neighbor MPS
sites. Here, I2 is the 2 × 2 identity matrix, while the matrix
S can be explicitly written as

S =

⎛
⎜⎜⎝

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 −1

⎞
⎟⎟⎠, (D5)

in the basis made by {|00〉, |01〉, |10〉, |11〉}. Intuitively, while
S interchanges the states of two adjacent fermionic sites, the
SWAP gate S swaps the states of two adjacent MPS sites (each
consisting of two fermionic sites). For example, by labeling
an MPS state as |n1n1, n2n2〉, the operator I2 ⊗ S ⊗ I2 swaps
n1 ↔ n2, the operator S ⊗ S swaps n1 ↔ n2 and n1 ↔ n2,
and the operator I2 ⊗ S ⊗ I2 swaps n1 ↔ n2, resulting in the
expression presented in Eq. (D4).

With these definitions, any long-ranged two-site gate can
be decomposed into a sequence of SWAP gates and nearest-
neighbor gates, which can then be implemented with tensor
networks efficiently. We have further used a second-order
Trotter decomposition of the propagator and optimized the
numerics by choosing the order of the gates to merge some
of the SWAP gates arising due to long-range hopping into the
identity operator. This algorithm is illustrated in Fig. 5.

The use of these MPS techniques results in the possibility
of higher pseudofermion numbers, increasing the precision in
modeling. For example, in the analysis of the Kondo regime
presented in Fig. 3, we could fit the polynomial tail in the
Matsubara contribution to the correlation function with good
precision using three pseudofermions; see inset in Fig. 3(b).
Using the MPS formalism described here, it was possible to
compute the dynamics of the corresponding pseudofermion
model, thereby improving the accuracy in the estimate of zero-
frequency features such as those presented in Fig. 3(b) (dotted
curve).
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