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Generalized Dicke model and gauge-invariant master equations for two atoms in
ultrastrongly-coupled cavity quantum electrodynamics
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We study a generalization of the well-known Dicke model, using two dissimilar atoms in the regime of
ultrastrongly-coupled cavity quantum electrodynamics. Our theory uses gauge-invariant master equations, which
yields consistent results in either of the standard multipolar and Coulomb gauges, including system-bath
interactions for open cavity systems. We first show how a second atom can be treated as a sensor atom to
measure the output spectrum from a single atom in the ultrastrong-coupling regime, and compare results with
the quantum regression theorem, explaining when they can be different. We then focus on the case where
the second atom is also ultrastrongly coupled to the cavity, but with different parameters from those of the
first atom, which introduces complex coupling effects and additional resonances and spectral features. In
particular, we show multiple resonances in the cavity spectra that are visible off-resonance. We also observe
clear anticrossing features, which are particularly pronounced when the second atom is tuned through its
resonance.
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I. INTRODUCTION

Recent progress in the strong and ultrastrong (USC)
regimes of light-matter interaction has opened up significant
advances in theoretical and experimental research in quantum
optical systems [1–9]. These strong-coupling regimes allow
one to coherently exchange excitations between matter and
light, enabling breakthroughs in fundamental quantum exper-
iments and technologies [1,4,5,10,11].

In particular, USC exploits the nature of counter-rotating
wave physics and ponderomotive forces [4,5], and pushes
one toward a nonperturbative regime where the light and
matter excitations must be treated on an equal footing, i.e.,
as joint/dressed states [12], where even the ground state can
contain virtual photons. These features make the USC regime
responsible for many intriguing phenomena including the for-
mation of quasiparticle collective modes with finite lifetimes,
as well as hybrid and entangled states with higher degrees of
controllability [8,9,13–19].

The intricate interactions between quantized cavity modes
and quantum emitters can be modeled in the framework of
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cavity quantum electrodynamics (cavity-QED), where atoms
and atom-like structures (e.g., quantum dots, molecules, su-
perconducting circuits) interact with a (dominant) single
quantized cavity mode [20–22]. Traditionally, strong coupling
occurs when the cavity-emitter rate g exceeds the dissipation
rate κ (of the cavity) or γ (decay of the emitter) [23–29],
while the USC regime is characterized not only by the lower
rates of decoherence, but also when the atom-cavity coupling
strength g becomes a significant fraction of the bare ener-
gies ω0 of the system, commonly quantified as g > 0.1ω0

[4,5]. Additionally, the hybridization of quantum states with
different numbers of excitations in the USC regime results
in a population of virtual photons in the collective system’s
ground state, even with significant dissipation (and thus not
even requiring the strong-coupling regime) [30].

The usual models of cavity-QED are derived from trun-
cating the full emitter problem to a two-level system (TLS),
typically coupled to a single quantized cavity mode. However,
the truncation of the Hilbert space, in either the material
and/or photonic part, causes problems for gauge invariance
when working in the USC regime [12,31–33]. Recently,
many of these issues have been partly fixed for the standard
quantum Rabi model (QRM) Hamiltonian [31,34,35], and
extended recently to ensure that dissipation and input/output
is also included in a gauge-invariant way [34]. In this pa-
per we will consider models for natural atoms (including
molecules and quantum dots) in cavities, but the general
ideas also extend to other cavity-QED systems including
circuit QED, e.g., see Ref. [36]. A more general quan-
tization scheme for arbitrary media (dealing with matter
and field truncation in the USC regime), is discussed in
Ref. [33].
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A. Gauge invariance

In the dipole gauge (specifically, the dipole approximation
in the multipolar gauge), the QRM describes the TLS-cavity
system via the Hamiltonian [12,31] (in units of h̄ = 1),

ĤD
QR = ωca†a + ωa

2
σz + igD(a† − a)σx, (1)

up to a constant (1ωcη
2), where ωc is the cavity transition

frequency, a (a†) is the cavity photon annihilation (creation)
operator, ωa is the TLS transition frequency, σz = σ+σ− −
σ−σ+ and σx = σ+ + σ−, with σ+ = |e〉〈g| (σ− = |g〉〈e|)
the atomic raising (lowering) operator; gD is the atom-cavity
coupling in the dipole gauge (gD ∝ √

ωc), and η = gD/ωc is
the normalized coupling parameter. Note that we can neglect
terms proportional to the identity operator as these do not
affect the system dynamics; they simply introduce an offset in
the ground-state energy, which we can normalize to any value.
Equation (1) reduces to the Jaynes-Cummings model (JCM)
in the rotating wave approximation (RWA), yielding [37,38]

ĤD
JC = ωca†a + ωa

2
σz + igD(a†σ− − aσ+). (2)

When the system is subjected to matter truncation, ĤD
QR

produces the correct eigenenergies [39], but the electric
field operator [34,36] Ê ∝ −i(a′† − a′), where a′ = a + iησx,
which can be derived from several different viewpoints
[31,34,36]. For example, in the restricted TLS subspace,
one can transform the Coulomb gauge operators to the
dipole gauge operators, through the projected unitary trans-
form [31] U = exp[−iη(a + a†)σx], so that a′ → UaU† =
a + iησx [36]. These transformed operators must be used
when computing cavity field observables and for deriving
master equations. We note that in the Coulomb gauge, the
electric field operator can be directly written in terms of the
cavity photon operators. However, this is not the case for the
electric field operator in the multipolar gauge, where it takes
on a matter component from the TLS [33,34].

In the Coulomb gauge, the standard system Hamiltonian
for the QRM is [12,31,40]

ĤC,naive
QR = ωca†a + (ωa/2)σz + gC(a + a†)σy + D(a + a†)2,

(3)
where σy = i(σ− − σ+), gC = gDωa/ωc, and D = (gC)2/ωa is
the ponderomotive coupling strength [41]. Unfortunately, this
“naive” system Hamiltonian is wrong as it does not produce
the correct eigenenergies in the USC regime [12], and breaks
gauge invariance. The breakdown of gauge invariance can
be seen as a formation of a potential nonlocality due to the
truncation of the matter Hilbert space [31,42]. By applying an
appropriate unitary gauge transformation to the dipole gauge-
independent QRM model, the correct gauge-fixed Coulomb
QRM Hamiltonian is [31]

ĤC
QR = ωca†a + ωa

2
(σz cos[2(a + a†)η]

+ σy sin[2(a + a†)η]), (4)

which produces identical eigenenergies to ĤD
QR.

B. Gauge-invariant generalized master equation

For realistic cavities, one must also account for
dissipation/losses and photon input-output channels. Gen-
erally, open-system cavity-QED problems are modelled by
considering the atom and the cavity are interacting with
general baths, namely as an open quantum system. In such
situations, a master equation description is widely used, al-
lowing one to easily compute cavity spectra and other desired
observables [43–46].

Commonly, the bare-state master equation formalism,
where the joint basis states are constructed from the bare
light states and the bare matter states before light-matter
interaction, is often used in open system cavity-QED, yield-
ing the standard Lindblad master equation. However, the
bare-state master equation formalism uses the wrong states
in the USC regime (including the ground state, which can
now be an entangled state of photons and matter) and it
has been shown that one needs a dressed-state approach to
avoid unphysical transitions [47]. Moreover, one also needs
a “generalized” master equation (GME) approach to account
for frequency-dependent baths and nonsecular effects [45].
A secular approximation, which relies on, e.g., |ω − ω′| � κ

for ω 	= ω′ in the GME (described later), is not able to de-
scribe dissipation or decoherence in open quantum systems
with mixed harmonic-anharmonic or quasiharmonic spectra
[7,45]. This is especially important in the USC-regime, where
g dominates the eigenenergies. Specific examples include
cavity-QED in the dispersive regime [47], cavity optome-
chanics [48], resonant Raman interactions in cavities [49],
electron-phonon interactions [50,51], as well as frequency-
dependent pure dephasing bath [52] and/or radiative decay
[53]. Thus, our model below with an Ohmic bath [κ (ω) ∝ ω]
is also an example application of the GME approach, since
a secular approximation leads to the same assumption as a
spectrally flat bath [i.e., κ (ω) = κ], and we show explicitly
how these differ.

Beyond these details, in the USC regime, the usual the-
ory approaches are typically gauge relative, and again one
must use a corrected a′ for cavity mode operators with the
dipole gauge or use the corrected Coulomb gauge Hamilto-
nian [34,35].

An advantage of using a GME approach is that realistic
observables can be computed, such as the cavity-emitted spec-
tra, typically using the quantum regression theorem [34,54].
However, in the USC regime, gauge-independent GMEs have
so far only been applied to the case of one atom/TLS, and
we can also expect a significant impact when applied to mul-
tiple atoms. In this regard, the Dicke model is a fundamental
model of quantum optics describing the light-matter interac-
tion where a cavity mode is coupled to a set of identical TLSs
[55,56]. This model is known to be an established description
for a class of intriguing phenomena in cavity-QED such as
superradiant phase transitions and quantum chaos [56–68].

C. Dicke model in the USC regime

The Dicke model has well studied in the USC regime
[69–76]. In the study of effective light-matter interactions
in a circuit QED system, coupled symmetrically to multi-
ple superconducting qubits, Ref. [70] studied a microscopic
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FIG. 1. Cavity-QED schemes with two atoms. Schematics of the cavity-QED model with a second atom, including (a) the sensor atom
approach and (b) the generalized Dicke model in the USC regime. In the sensor atom approach (a), the addition of a second TLS shown as a
sensor atom is weekly coupled to the cavity (hence shown outside of the cavity). In the generalized Dicke model (b), the second atom is also
considered to be ultrastrongly coupled to the cavity (similar to the first atom, but it can have different coupling parameters).

model Hamiltonian that not only describes the usual collective
qubit-photon coupling but also the effect of direct qubit-qubit
interactions. Various other studies in the USC regime have
been presented, including ones at the thermodynamic limit,
using simple system Hamiltonians [77,78]. In these extended
Dicke models, similar to the previous studies on the Dicke
model or even the Hopfield model in the USC regime [71–74],
the atoms are degenerate (i.e., they share the same coupling
coefficient and resonant frequency). Recent studies also in-
clude gauge-invariant system Hamiltonian models [74], or
discuss more exotic schemes of the Dicke model, such as the
anisotropic or nonequilibrium models in which the counter-
and corotating terms have different coupling strengths, but the
two atoms are still identical [75,76].

D. Generalized Dicke model

It is desirable to explore a more general multi-atom case
where the TLS parameters can be different, and a natural
extension to investigate is a system of dissimilar atoms, which
we term a generalized Dicke model (GDM), in the limit of
two atoms. Extensions to multiple dissimilar atoms will be the
subject of future work. From a practical viewpoint, one must
also include realistic dissipation and input-output channels
to the system. In this paper, we present such a study, using
gauge-independent master equations valid for exploring USC
dynamics. Ultimately, this GDM is a more realistic scenario
for studying how atoms interact, as it is practically impossible
to experimentally produce two identical TLSs for experimen-
tal systems [79–82]. Coupling with two different atoms also
leads to new coupling regimes that are not accessible with
identical atoms.

With the recent technological and experimental advances,
promising opportunities are emerging to study a GDM
[1,8,15,79,83–89]. While most of these examples are in the
strong-coupling regime, new designs and systems are emerg-
ing in the USC regime as well. References [4,5] give detailed
reviews of the various experiments systems, including molec-
ular as well as solid state systems. Moreover, it is now well
known that the efficiency of light-matter interaction in bound
systems can be enhanced in nanostructures, especially using
metallic nanostructures, where experiments have even demon-
strated the deep USC regime (g > 1) [6].

Specifically, we study the two-atom GDM by introduc-
ing a dissimilar second atom to a general one-atom-cavity
USC problem, using a gauge-invariant GME description. We
exploit our model in two different ways: (i) we first intro-
duce a second TLS as a weakly-coupled sensor atom for the
cavity-emitted spectrum [sensor atom approach, Fig. 1(a)],
and show that it produces qualitatively similar spectra to that
computed with the quantum regression theorem, though only
with certain types of bath coupling; we also confirm that these
sensing atom results are identical in both the dipole gauge
and Coulomb gauge, as they must be; (ii) we then focus
on the main topic where the second atom is also treated as
an ultrastrongly-coupled atom, distinct from the first atom
[GDM, Fig. 1(b)], and several spectral features would be de-
mostrated as we change the coupling parameters of the second
TLS.

The rest of our paper is organized as follows: In Sec. II,
we present the main theory, which includes a description of
the GME, our excitation scheme, as well the various system
Hamiltonians, bath interactions, and observables, including
the cavity-emitted spectra.

In Sec. III, we present calculations and results for the sens-
ing atom approach, and show how the sensing atom coupling
can be used to model the detection of light. We also show how
these results compare to calculations with the quantum regres-
sion theorem and explore the more general case of different
bath couplings (for the atoms as well as the cavity). Next, in
Sec. IV, we consider the case of two atoms in the USC regime,
where we change the parameters of the second atom, and
study the effect that this has on both the system eigenenergies
as well as the cavity observables. We first show explicitly how
our GME produces gauge-independent results when using
the correct gauge-fixed approaches as described in the theory
section. Subsequently, we present a series of investigations
using the dipole gauge. Finally, we conclude in Sec. V.

II. THEORY

In this section, we present the GME, as well as the different
bath models and system Hamiltonians that we will use. We
also show how these can be utilized to compute the cavity
spectra, using either the quantum regression theorem, or a
sensing atom approach.
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A. Generalized master equation

We first introduce the main GME that we use to compute
the key observables of interest,

∂

∂t
ρ = −i[Ĥ, ρ] +

∑
	

L	ρ + Lpumpρ, (5)

where ρ is the composite system (composed of the cavity
and the atom, or atoms) density matrix, and Ĥ ≡ ĤD/C is the
system Hamiltonian in either gauge (dipole, “D”, or Coulomb,
“C”).

The Lindbladian for each dissipation channel is of the same
form, and we write it generally as [45]

L	ρ = 1

2

∑
ω,ω′>0


	(ω)[X +
	 (ω) ρ X −

	 (ω′) − X −
	 (ω′)X +

	 (ω) ρ]

+ 
	(ω′)[X +
	 (ω) ρ X −

	 (ω′) − ρ X −
	 (ω′)X +

	 (ω)].
(6)

Since we now have several possible dissipation channels for
the cavity, and the atoms, 	 indexes the cavity and the atom,
or atoms.

The dressed operators are defined from

X +
cav(ω) = 〈 j|�̂|k〉 | j〉 〈k| ,

X +
atom(ω) = 〈 j|σx|k〉 | j〉 〈k| , (7)

with ω = ωk − ω j > 0, X −
	 (ω) = [X +

	 (ω)]†, and we assume
that �̂C = i(a† − a) in the Coulomb gauge, and �̂D = i(a′† −
a′) in the dipole gauge [34]. We note that the dressed eigen-
states {| j〉} are required to construct the correct dressed
operators utilized in the GME; these are the eigenstates of the
full light-matter system Hamiltonian including the interaction
term [34,45,53].

Modeled by a (continuous) superposition of damped
bosonic harmonic oscillators, baths are generally described by
their correlation functions and, in turn, their spectral densities
of states, which contain information on the frequencies of the
baths’ modes and their coupling to the system [45]. For our
purpose, the frequency dependence of the baths is modeled as
either a flat bath,


cav(ω) = κ, 
atom(ω) = γ (8)

or an Ohmic bath,


cav(ω) = κω

ωc
, 
atom

a,b (ω) = γa,b ω

ωa,b
. (9)

However, in the case of a sensor atom, we use


sen(ω) = γsω

ωc
, (10)

since in reality the sensor will also have a center frequency at
the main detection frequency of interest, which we assume is
at the cavity resonance frequency.

If the open system also includes a sensing element, special
considerations for the sensing atom’s bath must be taken into
account. Essentially, we must add the dissipation channel for
this sensor atom in an analogous way to the primary atom.
However, in principle, we require that the inclusion of the
sensor should act as a noninvasive measurement. Therefore,
we must ensure that γs � κ in either the flat or Ohmic shape

of 
sen(ω), where γs is the sensor atom decay rate, or else the
sensor atom introduces additional broadening to the existing
peaks in the spectra. Careful attention is also needed as the
dissipation rate of the sensor puts a limit on the coupling
strength between itself and the cavity.

For a cavity-QED system in the USC regime, the γ � κ

process is usually negligible; however, γ plays an important
role in the sensing atom approach (for the light detection), so
we keep the bath functions general for such a study. However,
in the case of two atoms in the USC regime, we will use
Ohmic baths throughout, where only 
cav(ω) is generally
important.

For the field excitation process, we also include the inco-
herent driving through the pump Lindbladian,

Lpump = 1
2 Pinc D[X −

cav] ρ, (11)

where D[Ô]ρ = 1
2 (2ÔρÔ† − ρÔ†Ô − Ô†Ôρ), and Pinc is the

incoherent driving strength.

B. Observables

Now that our main master equation model is established,
we next present the key observables with which to explore the
dynamics of the system. These can also be used to check we
have properly enforced gauge invariance. We will focus on the
cavity-emitted spectrum.

The cavity spectrum is typically computed from the Fourier
transform of the two-time cavity correlation function, which
exploits the quantum regression theorem. In such an approach,
the cavity spectrum is defined from [90]

Scav(ω) ∝ Re

[∫ ∞

0
dτeiωτ

∫ ∞

0
〈X −

cav(t ) X +
cav(t + τ )〉dt

]
,

(12)

where ω is the emission frequency. With incoherent steady-
state driving, this simplifies to a single-time integration,

Scav(ω) ∝ Re

[∫ ∞

0
dτeiωτ 〈X −

cav(0) X +
cav(τ )〉

]
, (13)

carried out after the system dynamics has reached steady state.
An alternative method for computing the spectra is to

include a sensing atom, and compute its excitation flux. Ref-
erence [91] showed how normal-order correlation functions,
used to compute the spectrum and other observables, can be
computed from a frequency-tunable sensing atom in the limit
of small coupling with the field. In the USC regime, such
methods have been discussed at the system Hamiltonian level
[36], and here we test how well such an approach recovers
the same sort of spectra as the quantum regression theorem.
If such a model is correct and is gauge invariant, it naturally
extends to allow us to explore two atoms in the USC regime.
In the latter case, we will use the quantum regression theorem
again, primarily for convenience. However, we remark that
the sensing atom approach has several potential advantages:
(i) it does not require a Born-Markov approximation to be
valid, and (ii) it can easily be used to model pulsed excitations,
without the need for a double-time integral.
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C. Spectrum detected from the sensing atom approach

The detected spectrum from the sensing atom approach
(SAA) is defined through

SSAA
cav (ωs) =

∫ ∞

0
dt 〈X −

sen(t ) X +
sen(t )〉 , (14)

where ωs is the sensing atom frequency and, according to
Eq. (7), X +

sen = 〈 j|σx,s|k〉 | j〉 〈k|, with σx,s being the Pauli x
matrix for the sensor. In contrast to the quantum regression
theorem, such an approach does not require any two-time
correlation functions. Moreover, since we are exciting the
system with a steady-state drive, then

SSAA
cav (ωs) = 〈X −

sen(0) X +
sen(0)〉 , (15)

which is (again) computed when the system reaches a steady
state. This method has a simple physical interpretation; the
sensing atom excitation number is proportional to the photon
flux of the cavity-QED system, which contains another atom
in the USC regime. The sensing atom then “detects” the cavity
output flux.

For the SAA to be valid, the sensing parameters should
generally be noninvasive to avoid affecting the detected spec-
trum. Specifically, the sensor atom should have a vanishing
coupling strength, gs � g. In order to determine acceptable
parameters for the “sensor atom” (nonperturbative coupling),
we use parameters that provide constant results over a range
of frequencies, with acceptable run times, which are guided
by the criteria gs � √

γsR/2, where R corresponds to any rate
in the system [91].

D. Photodetection rate of cavity photons

Another useful quantity to calculate is the photodetection
rate of cavity photons, emitted from the | j〉 → |k〉 transition
[53], which is proportional to the P (�̂/

√
2) quadrature ma-

trix elements squared, namely,

|P jk|2 = 1
2 | 〈 j|�̂|k〉 |2. (16)

This is the main system-level quantity that affects the spectral
transition rates; however, the transition rates Ti j also must be
multiplied by a factor D2(ω jk ), where D(ω) is the density of
states of the relevant bath [41], so that, in the case of cavity
emission, Tjk = 2πD2

cav(ω jk )|P jk|2; this can be derived from
Fermi’s golden rule. Moreover, in the presence of a sensing
atom, there is additional filtering through the sensing atom’s
density of states, as will show below.

For all our numerical calculations, we will use Python and
we also exploit the QuTiP module for quantum objects and
operations [92,93].

E. System Hamiltonians and gauge-fixing
for the sensor atom approach

We next introduce a second atom (TLS) as a sensor for
the cavity-emitted spectrum. While the sensor atom approach
does not introduce any further observables to probe or any
vastly new physics, it provides a check for gauge invariance
and verifies that the second atom is included correctly in the
model, before elevating it to a second atom also in the USC
regime. It also demonstrates the influence of an additional

bath coupling, which is relevant for other types of detection,
including cavity detection. As mentioned earlier, this method
for simulating spectra also holds some potential advantages
over the quantum regression theorem, which requires the cal-
culation of the two-time correlation function. In particular,
the sensing atom approach is potentially more powerful when
used to compute various multi-time correlation functions [91]
and to model short-pulse excitation. The sensor atom ap-
proach is also a valid physical model for the detection of
photons emitted from the cavity, and a similar approach could
be used to describe a sensing cavity as well.

In order to not affect the spectrum, this sensor atom should
have a vanishing coupling strength, gs � g. In practice, how-
ever, it may have a minor influence on the computed spectrum,
and a qualitatively different one if it also has a nontrivial bath
function.

The system Hamiltonian with a sensing atom may be
naively constructed by the addition of two terms: (ωs/2)σz,s

and igD
s (a† − a)σx,s, namely the bare Hamiltonian of the sen-

sor, and the interaction Hamiltonian between the sensor and
the cavity, respectively [91], to Eq. (1); this is analogous to
the terms of the primary atom, in the dipole gauge. Perhaps
counterintuitively, after our discussions on the dipole gauge
Hamiltonian, here the gauge correction, including only the
main atom, also needs to be applied at the Hamiltonian level
for the sensor interaction [36]. This is because the sensor atom
couples to the electric field of the cavity with its coupling to
the primary atom already included, which explicitly contains
the corrected â′ operators (similar to the cavity bath operators
terms in the GME). Therefore, the naive choice is incor-
rect, and gauge fixing must be applied so that the interaction
Hamiltonian between the sensor atom and the cavity becomes

igD
s (a† − a)σx,s → gD

s [i(a† − a) + 2ησx + 2ηsσx,s]σx,s

≈ gD
s [i(a† − a) + 2ησx]σx,s, (17)

since ηs � η and also σ 2
x,s = 1 (which only gives an energy

offset).
Thus, in the dipole gauge, the gauge-corrected full system

Hamiltonian reads [36,53,94]

ĤD
SAA = ĤD

QR + ωs

2
σz,s + gD

s [i(a† − a) + 2ησx]σx,s. (18)

Applying a RWA, then we have

ĤD
SAA|RWA = ĤD

JC + ωs

2
σz,s

+ gD
s [i(a†σ−

s − aσ+
s ) + 2η(σ+σ−

s + σ−σ+
s )],
(19)

where η is the normalized coupling for the primary atom.
Clearly, in the sensor atom approach, the sensor atom does not
need to modify the principal atom-cavity coupling and related
observable operators, although its bath interactions can play a
qualitatively important role. In the USC regime, of course, the
RWA does not work, but it is useful to highlight the effects of
counter-RWA terms, at least at the level of how these affect
the system eigenfrequencies.

In the Coulomb gauge, the Hamiltonian can be also
obtained from the dipole-gauge one, by conducting the uni-
tary transform ĤC

SAA = U†
1,sĤD

SAAU1,s, with U1,s = exp[i(a +
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a†)(ησx + ηsσx,s)], yielding [74]

ĤC
SAA = ĤC

QR + ωs

2
{σz,s cos [2ηs(a + a†)]

+ σy,s sin [2ηs(a + a†)]}, (20)

where gC
s = gD

s ωs/ωc, ηs = gC
s /ωs = gD

s /ωc, and again we
have neglected terms proportional to the identity operator.
Note here that, as in the Coulomb Hamiltonian without the
sensor, there is no separable bare sensor Hamiltonian when
including the gauge correction. However, without the gauge
correction, we have (ωs/2)σz,s + gD

s (a + a†)σy,s for the bare
sensor and cavity-sensor interaction Hamiltonian.

Naturally, we can apply this transformation in reverse, i.e.,
to the cavity operators in the Coulomb gauge, to find the two-
atom version of the gauge correction in the dipole gauge. As
expected, this results in the corrected operators in the dipole
gauge, and yields

a → a′ = a − i(ησx + ηsσx,s). (21)

As discussed before, for computing field observables in the
dipole gauge, this must be done with these corrected electric-
field operators. The GME for the sensor atom approach has the
same format as Eq. (5). However, one must use the correct def-
inition of Hamiltonian Ĥ ≡ ĤD/C

SAA, to ensure gauge-invariant
results, and also one has additional bath coupling terms, which
need not have the same spectral function (i.e., the density
of states seen by the sensing atom could be different to the
density of states seen by the cavity).

F. System Hamiltonians and gauge-fixing
for the generalized Dicke model

The Dicke model in the USC regime takes the QRM
and adds a second identical atom to the system, also in the
USC regime. In the USC regime, this must be done with the
gauge corrections, to ensure the results are gauge invariant.
The difference between the regular (or previously extended)
Dicke model [71–74] and the GDM is that we allow the two
ultrastrongly-coupled atoms to vary in their frequency and
coupling strength. We have already described how to include
a second atom into our system in both the dipole gauge and
the Coulomb gauge, using the sensor atom approach, where
gauge invariance is also ensured. The only difference here is
that we use Eq. (12) to compute the spectrum since the second
atom is now participating in energy exchange with the cavity
and its population cannot be relied on to obtain the spectrum,
as it is no longer acting as a weak sensor. Of course, one could
bring in a third atom as a sensor, but in general, the quantum
regression theorem is efficient and accurate for the problems
we study below, especially with time-independent incoherent
driving.

Conveniently, the required Hamiltonians for two atoms in
the USC regime are similar to the above, except that for the
operators and quantities associated with the original atom we
assign a subscript “a” and for those of the sensor atom we
assign a subscript “b”, and we no longer assume ηb � ηa.

Thus we have

ĤD
GDM = ωca†a + ωa

2
σz,a + igD

a (a† − a)σx,a

+ ωb

2
σz,b + igD

b (a† − a)σx,b + 2ωcηaηbσx,aσx,b,

(22)

and for reference, with the application of the RWA, one has

ĤD
GDM|RWA = ωca†a + ωa

2
σz,a + igD

a (a†σ−
a − aσ+

a )

+ ωb

2
σz,b + igD

b (a†σ−
b − aσ+

b )

+ 2ωcηaηb(σ−
a σ+

b + σ+
a σ−

b ). (23)

As before, from the transformation ĤC
GDM =

U†
1,2ĤD

GDMU1,2, with U1,2 = exp[i(a + a†)(ηaσx,a + ηbσx,b)],
the correct Coulomb-gauge Hamiltonian is

ĤC
GDM = ωca†a + ωa

2
{σz,a cos [2ηa(a + a†)]

+ σy,a sin [2ηa(a + a†)]}
+ ωb

2
{σz,b cos [2ηb(a + a†)]

+ σy,b sin [2ηb(a + a†)]}. (24)

Simulations can then proceed as before, e.g., if using the
dipole gauge, then one must use the corrected cavity operator

a → a′ = a − i(ηaσx,a + ηbσx,b), (25)

to compute cavity observables in the dipole gauge, and these
are also used for deriving the dissipation terms in the GME.
The GME [Eq. (5)] then uses the appropriate Hamiltonians,
Ĥ ≡ ĤD/C

GDM, which are the total gauge-corrected Hamiltoni-
ans of the system in their respective gauge for the GDM. In
the Coulomb gauge, no modification is needed for the field
operators.

III. RESULTS AND DISCUSSIONS
OF THE SENSOR ATOM APPROACH

Thus far, we have presented a gauge-corrected model
for the system Hamiltonian for the sensing atom approach;
namely, one that yields the same eigenfrequencies for either
the dipole gauge or the Coulomb gauge. This leads to the
correct understanding of the eigenenergies and eigenstates of
the closed system, which is basically an extension of the orig-
inal QRM. We must also consider dissipation for this sensor
atom, including it in an analogous way to the primary atom,
under the condition γs � κ . The chosen dissipation rate of the
sensor also puts a limit on the coupling strength between itself
and the cavity. In general, we require that the coupling must
be small enough to ensure that losses from the cavity into the
sensor and the sensor back-action into the main system are
negligible [91], and is discussed in more details below.

For computing spectra in either considered gauge (dipole
and Coulomb), we then allow the system to evolve to steady
state, also including an incoherent pump term. Once the steady
state has been reached, we take the expectation value of the
sensor excitation. We do this for a range of frequencies of
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interest to form the sensor atom spectra, performing a calcu-
lation for each scanned ωs.

For this sensor atom study, we will focus our attention on
the sensing atom interacting with the primary atom in the USC
regime, using a fixed coupling parameter of η = 0.5 to the
primary atom. This USC regime has been studied recently us-
ing gauge-independent master equations, and shown to yield
identical results in the dipole and Coulomb gauges, and is
thus an excellent test bed to also compare with a sensing atom
simulation [34].

We must first ensure an approximately vanishing coupling
rate compared to the coupling between the cavity and the
main atom. We take gs = 0.001g to satisfy this condition.
Then, to obtain a lower limit on γs, we find the smallest
transition rate in our system at η = 0.5 to be R ≈ 0.3g, and
we chose a slightly smaller value than this, to satisfy the
previously-mentioned criterion gs � √

γsR/2 [91]. If we then
use γs = 0.0025g, we obtain

√
γsR/2 ≈ 0.02 � 0.001g = gs.

Therefore, we use κ � γs � 0.0025g, as an acceptable range
of values to choose from.

A. Dressed eigenenergies/eigenstates and example transitions

In Fig. 2(a), we plot the eigenenergies of the single-atom
cavity-QED without (blue solid curves) and with (red dashed
curves) the RWA. This helps to highlight the role of the
counter-rotating wave terms for increasing η. The computed
energies are gauge independent (namely, the Coulomb and
dipole gauge results yield identical results), as they should
be. In the sensor atom approach, one expects no difference
between the main eigenenergies with a single TLS-cavity
system, which we have confirmed to be the case; however,
additional states naturally appear because of the sensing atom
states, which depend on ωs.

The three significant optical transitions are identified with
the downward arrows and the letters “A” (ω10/ωc ≈ 0.5),
“B” (ω31/ωc ≈ 8.2), and “C” (ω20/ωc ≈ 1.45), for η = 0.5
(primary atom). These transitions are responsible for the sig-
nificant peaks that will appear in the incoherent spectra shown
in Fig. 3, discussed below.

When the primary atom and sensor atom are both on reso-
nance with the cavity, as expected, the eigenenergy lines start
together, at low η, and then split from the same initial points at
multiples of the cavity transition energy, as shown in Fig. 2(b).
When the primary atom is on resonance but ωb = 0.5ωc in
Fig. 2(c), the addition of extra eigenenergy lines starts at
half-multiples of the cavity transition energy. In all three pan-
els of Fig. 2, the deviation of the JCM eigenenergies from
the full QRM Hamiltonian eigenenergies is apparent as the
normalized coupling parameter increases, a failure that is of
course fully expected [4,5].

B. Cavity-emitted spectra via incoherent driving

We next study the cavity-emitted spectra via incoherent
driving, and consider weak drives so as not to perturb the
system eigenstates too much. We will compare our sensor re-
sults to those obtained using the quantum regression theorem
[34]. Additionally, we investigate the effects of changing the
various spectral bath functions.

FIG. 2. Cavity-QED eigenenergies with and without a sensor
atom. Computed first ten eigenenergies of the QRM (blue solid lines)
and the JCM (red dashed lines) for the cavity-QED system with
(a) a single atom that is in resonance with the cavity, i.e., ωa = ωc,
obtained from Eqs. (1) and (2), respectively, and (b) the sensor
atom approach Hamiltonian, where both the primary and the sen-
sor atoms are in resonance with the cavity, ωa = ωs = ωc, and the
sensor atom has the coupling of gD

s = 0.001gD; and (c) the sensor
atom approach Hamiltonian, where the primary atom is in resonance
with the cavity, ωa = ωc, and the sensor atom has ωs = ωc/2 and
gD

s = 0.001gD, obtained from Eqs. (18) and (19), respectively. In
(a), the three significant transitions are identified with the down-
ward arrows and the letters “A” (ω10/ωc ≈ 0.5), “B” (ω31/ωc ≈ 8.2),
and “C” (ω20/ωc ≈ 1.45), for η = 0.5. These resonances are high-
lighted for reference when explaining the key features of the cavity
spectrum.

In the top two rows of Fig. 3(a)–3(d), we consider a flat
bath for the cavity [i.e., 
cav(ω) = κ] and show the effect
of changing the atomic baths from flat to Ohmic. Using the
quantum regression theorem, changing the atomic bath has
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FIG. 3. Cavity-QED incoherent spectra for one atom in the
ultrastrong-coupling regime. Cavity emitted spectra were computed
using the sensor atom approach (left column) and the full quantum
regression theorem (right column). On the right, we list the type of
bath used for the cavity and the two atoms (which use the same bath
type). Gauge-corrected (not corrected) results are shown with solid
blue (dashed orange) curves. We use incoherent driving with Pinc =
0.01g. Other system parameters are κ = 0.25g, γ = γs = 0.005g,
gs = 0.001g, ωc = ωa, η = 0.5. The three significant peaks A, B, and
C represent the major transitions shown in Fig. 2.

almost no visible effect on the spectrum when the cavity bath
is flat. However, the spectrum detected by the sensor atom
is drastically modified if the atomic bath of the sensor atom
has a nontrivial frequency dependence. This can be viewed as
an additional filtering process, e.g., in the case of an Ohmic
sensor bath [i.e., 
sen(ω) = γsω/ωc], there is increasing dissi-
pation at higher frequencies, thus reducing the strength of the
peak on the right and increasing the relative strength of the
peak on the left.

Next, as shown in the bottom half of Fig. 3(e)–3(h), we
consider again an Ohmic cavity bath and look at the effect
of changing the atomic baths. The first result to note is that
the Ohmic cavity bath produces the largest change of any of
the models explored here. This is not too surprising, as the
cavity dissipation is the largest by far to begin with (κ = 0.25g
vs γ = γs = 0.005g), and we are modeling cavity emission.
Thus, the dissipation is overwhelmingly dominated by κ ,
and any frequency dependence included with it will have a
larger effect. Also, since the two models (quantum regression
theorem and sensor atom) here have the same dependence
on the single cavity, we see the change in the cavity bath
having a similar effect on both spectra (specifically, reversing

the asymmetry and modifying the relative peak heights to a
similar extent). When we now also change the atomic baths to
be Ohmic, we see similar effects to those above. The quantum
regression theorem results are now slightly affected, and we
again see a large effect on the sensor approach model.

Obviously, the gauge-uncorrected results are not expected
to produce the correct physical results in the USC regime, and
thus one obtains different results when computed by different
approaches. Beyond this, as shown and discussed above, the
gauge-fixed results, with the two different detection models,
may produce different results depending on the model for the
bath function of the detection. Consequently, the various bath
functions are generally important in the USC regime (e.g.,
the cavity bath may alter the transition rates by its spectral
density). Depending on the context, one may argue that in
certain detection models, the results from the SAA would
be more experimentally relevant. In terms of highlighting the
main physics for our two-atom USC below, either model is
adequate. Below, we will use the quantum regression theorem
approach as it is simpler and more computationally efficient.

IV. RESULTS AND DISCUSSIONS
OF THE GENERALIZED DICKE MODEL

In the description of the GDM, we extended our sensor
atom approach to be a primarily part of the coupled system
(i.e., no longer weakly coupled but also in the USC regime).
Using this approach, we now allow the second atom’s prop-
erties to vary relative to the first atom, but now consider
the second atom is also in the USC regime. Our two-atom
Hamiltonian in the dipole gauge [Eq. (22)] is equivalent to the
extended Dicke model in Ref. [70] in the case that the two
atoms are degenerate (i.e., ga = gb and ωa = ωb). However,
our main focus will be on analyzing spectra obtained with
dissimilar atoms, where the coupling parameters and resonant
frequencies need not be the same.

Similar to the sensor atom approach, one has to first iden-
tify the dressed operators of the hybrid system, which are
now found using the eigenstates of the full gauge-corrected
GDM Hamiltonians, including the second atom. We can also
consider dissipation for this second atom, including it in the
same way as for the primary atom, but these rates are basically
negligible, as cavity decay is the main source of loss. In either
the Coulomb gauge or the dipole gauge, we then allow the
system to evolve to a steady state, again including an incoher-
ent pump term. From now on, we use the quantum regression
theorem to compute the spectra. Our first calculations will
show explicitly the effect of gauge fixing and confirm gauge
invariance for the spectra, and then we just choose the dipole
gauge, since both gauge results yield identical results.

A. System characterization: Dressed eigenenergies/eigenstates
and transitions

In Fig. 4, we show the first seven eigenenergies of the GDM
without (blue solid curves) and with (red dashed curves) the
RWA. In Fig. 4(a), we display the eigenenergies with respect
to the variation of the equal normalized coupling parameter
of the two atoms, η ≡ ηa = ηb. In the GDM, one expects
a considerable difference between the resulting eigenener-
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FIG. 4. Selected eigenenergies using the generalized Dicke
model. We show the first seven eigenenergies of the GDM. (a) Full
quantum model without a RWA (blue solid lines) and with a RWA
(red dashed lines), displaying eigenenergies with ωa = 2ωb = ωc

versus η ≡ ηa = ηb are plotted. (b) Full model eigenenergies for
ωa = 2ωb = ωc and |gb| = ga = 0.5ωc (η = 0.5 = |ηa| = |ηb|, with
gb = ga exp[iπφ]) vs the variation of the relative phase between the
coupling parameters are represented; here we do not show RWA
results, as they are all clearly wrong and also gauge dependent.
The random color coding in (b) is to help distinguish the different
eigenenergies.

gies compared to the single TLS-cavity system (or with the
sensor atom approach) as compared to Fig. 2. In particu-
lar, one observes significant hybridization of the two TLSs
in the system leading to the production of the splitting of
the eigenstate curves. As expected from our previous ob-
servation in the sensor atom approach, when ωb = 0.5ωc in
Fig. 4(a), the extra eigenenergy lines start at half-multiples of
the cavity transition energy. As opposed to a regular Dicke
model with identical atoms, the different starting and splitting
point of eigenenergies results a different hybridization and
crossing/anticrossing. Therefore, the possibility of the exis-
tence of more exotic transitions and spectra, in comparison to
the one-atom spectra and regular Dicke model, appears.

In Fig. 4(b), the GDM eigenenergies are plotted when
the coupling parameters have a phase difference. Letting
gb = ga exp[iπφ], we equate their amplitude but vary their
phase via the sweep of φ from 0 to 1. The eigenenergies
in both models show symmetry and crossing at φ = 0.5, as

FIG. 5. Generalized Dicke model state parities, optical transi-
tions and (normalized) transition rates. (a) Parities of the first seven
states of the GDM vs the second atom’s normalized frequency.
(b) Eigenenergies of the first seven states of the GDM versus the
second atom’s normalized frequency with positive (blue) and neg-
ative (orange) parity. (c) P quadrature matrix element squared of
the selected transitions in panel (b) vs the second atom’s normalized
frequency obtained via Eq. (16). The position of the arrows in panel
(b) is irrelevant. The plots are for ηa = ηb = 0.5.

the sign of the real part of the coupling does not change the
physics.

In Fig. 5, we show further details about the eigenstate
properties and transitions. In particular, in Fig. 5(a) the parities
of the first seven eigenstates are shown for a range of interest
in the second atom’s normalized frequency, ωb/ωc. We define
the parity of a state | j〉 as 〈 j| P̂ | j〉 where P̂ = exp[iπ N̂] and
N̂ = σ+

a σ−
a + σ+

b σ−
b + a′†a′ is the total excitation number (in

the dipole gauge). We label the states in Fig. 5(a) as even
(odd) if their parity is positive (negative). We see that for the
considered range of frequencies, the first three excited states
have odd parity while the ground state and the fourth to sixth
excited states have even parity. Correspondingly, in Fig. 5(b),
we plot the energy eigenvalues of these lowest seven states,
where we distinguish their parity and label the main transi-
tions that will show up in the cavity spectra. Also, in Fig. 5(c),
|Pi j |2 for these transitions are shown which are related to the
transition rates (which also depend on the density of states of
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FIG. 6. Cavity spectra for the GDM, using two different atoms
that are both ultrastrongly coupled to the cavity. (a) Cavity spectra
computed using the quantum regression theorem with two USC
atoms in GDM, the first on resonance (ωa = ωc) and the second (ωb)
we sweep through resonance. (b) Selected cavity spectra as in the
lower left panel of (a) for ωb/ωc = {0.5, 1, 1.5}. The labeled peaks
in ωb/ωc = 0.5 plot in (b) reflect on the corresponding transitions
in Fig. 5(c). We also plot the spectra obtained in the absence of
the second TLS. All baths are Ohmic and here ηa = ηb = 0.5. We
use the following parameters throughout the section: κ = 0.25g,
γa = γb = 0.005g, and Pinc = 0.01g.

the cavity bath). All of these properties help to explain the
main spectral peaks that emerge in the computed spectrum.

As mentioned previously, and defined in Eq. (16), we relate
the rate of a transition from state | j〉 to state |k〉 [34,41], as
proportional to |P jk|2 = 1

2 | 〈 j|i(a′† − a′)|k〉 |2, in the dipole
gauge.

B. Cavity emitted spectra via incoherent driving

Our first set of GDM spectra to study is with ωa 	= ωb,
assuming that the two atoms have the same coupling strength.
We will first confirm that our current models do indeed ensure
gauge invariance.

In Fig. 6(a), we compare the spectra obtained in the dipole
gauge and Coulomb gauge and also show the naive non-
gauge-corrected counterparts. Throughout this section, we use
Ohmic baths for the cavity and atoms. We display the spectra
as a function of the second atom’s frequency, while the first

is held on resonance with the cavity mode, and both atoms
are in the USC regime. It can easily be seen that, while the
non-gauge-corrected spectra do pick up some of the correct
features, they clearly do not satisfy gauge invariance. The
corrected spectra are not only clearly gauge invariant but are
also much richer, with additional features including a visible
anticrossing around ωb/ωc ≈ 1 and the disappearance of a
main peak in this regime as well.

In all subsequent calculations, we will just choose the
dipole gauge, since the results produce observables that are
clearly gauge invariant.

In Fig. 6(b), we plot selected spectra at a few selected ωb

values of interest, along with the spectra in the absence of
the second TLS. The anticrossing behavior in Fig. 6(a) is at
its closest at ωb/ωc ≈ 1; examining the 2D spectra at this
frequency in Fig. 6(b), we can see that the splitting is about
0.063ωc = 0.126, or about g/8. The location of this minimal
splitting can be understood by looking at Fig. 5(b) and noting
that the eigenvalue of the third excited state is closest to twice
that of the first excited state at this point, thereby making the
frequencies of the B and A transitions closest.

The change in |Pi j |2 (which is proportional to the transition
rates) is shown in Fig. 5(c), which correlates with a change
in the associated peak’s height, e.g., peak C, which is absent
from the spectra (peak height is zero) on resonance; this can
be explained by the transition rate going to zero in this regime,
as shown in Fig. 5(c). This is a strong indication that there are
features of the GDM that can only be accessed when the atoms
are dissimilar (i.e., when the second atom is off-resonance).
However, one cannot solely rely on the P quadrature ma-
trix element squared to determine the relative heights of the
peaks. If this were the case, we would expect peak G to be
the largest by far, and peak A to be very small, whereas it
dominates above ωb/ωc = 0.5. This is primarily due to the
increased damping of higher states [95], and the fact that, as
mentioned before, one must take into account the effect of
the cavity Ohmic bath in the definition of the transition rate as
Tjk ∝ ω2

i j |P jk|2. Indeed, this clarifies that transitions involving
higher states (D, E, F, G) are significantly more broad than
those involving just the lower states A, B, C), which appear
very sharp on the spectra. Furthermore, transition C has a
lower |P jk|2 value than B, but since B involves higher states,
C dominates. Even peak A, with a far lower |P jk|2 value than
B, is larger due to the effect of damping. To sum up, this trend
largely depends on the spectral bath function so that one can
expect more broadening at higher energy levels, as well as the
proper definition of the transition rate for a general (though
Ohmic here) relevant bath.

From the eigenvalues in Fig. 5(b), we can identify the
peaks with their transitions. As labeled in Fig. 5(c), the visible
peaks when η = 0.5 are caused by transitions varying from
|1〉 → |0〉 to |6〉 → |0〉. Hence, it is clear that the incoherent
drive (even though weak) excites states up to at least |6〉.
Moreover, it appears that most of the peaks are due to relax-
ation to the ground state. This is partly because higher-order
photons are already part of the lower hybrid states in the USC
regime. The key transitions are summarized in Table I. Now
that these peaks have been identified with specific transitions,
below we next vary the coupling strength of the second atom
to determine how the spectra are affected.
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TABLE I. Identification of the key transitions causing some of
the peaks. Note that not all peaks are visible at all values of η. At
η = 1, there are other peaks present that we have not labeled

Peak Transition

A |1〉 → |0〉
B |3〉 → |1〉
C |2〉 → |0〉
D |4〉 → |3〉
E |5〉 → |2〉
F |4〉 → |0〉
G |6〉 → |0〉

Next, we vary η from near the threshold of the USC regime
(η = 0.1), to the verge of the deep strong-coupling regime
(η = 1), plotted in Fig. 7. At η = 0.1, we see a reasonable
level of symmetry around ω = ωc, yet we also see the appear-
ance of a new resonance, which anticrosses with the lower
polariton peak, near ω/ωc ≈ 0.9. As we increase η, this sym-
metry significantly reduces and the anticrossing peaks shift to
lower frequencies, while the general Rabi splittings increase
as expected, in addition to various Stark shifts. We also see
reduced broadening (sharper peaks) with increasing η for the
lower frequency peaks, as expected from the GME baths. At
η = 1, we discern some of the background peaks becoming
the main peaks, and the apparent anticrossing at lower η

appears to become a true crossing, i.e., near ω/ωc ≈ 1. One of
the peaks we can identify through the entire range is the one
that appears forbidden (or highly reduced) when the second
atom is near resonance. This peak can be identified as the
C (|2〉 → |0〉) transition. However, states |2〉 and |3〉 cross in
energy between η = 0.5 and η = 1, and are degenerate up to
about ωb/ωc = 0.5 at η = 1. For simplicity, we retain the label
|2〉 even after it crosses with |3〉, so that this feature is indeed
due to the same transition throughout.

C. Relative coupling strength variation

1. Influence of amplitude variation of gb

In the above investigations, we chose a few values of ωb to
study in detail. We now extend this study further, by examin-
ing the role of gb when it varies from zero to ga. First, in Fig. 8,
we show how the spectra change when increasing the second
atom’s coupling strength at a few interesting values of the

second atom’s frequency. The main feature we can identify is
a splitting of some peaks with increased gb and, interestingly,
the merging of some other peaks. Some peaks also shift in
frequency without any other behavior appearing (Stark shifts).

In the first example, at ωb/ωc = 0.5 [Fig. 8(a)], we see
one peak splitting into three at low frequency. Since we have
already identified the origin of these peaks and given them
labels at gb = ga, we can easily explain where this splitting
comes from by examining the change in energy eigenvalues
as we increase gb. In Fig. 9, we can see that states |1〉 and |2〉,
initially near degenerate at gb = 0, split in energy. Recalling
from Table I that peaks A, C, and B are due to transitions
|1〉 → |0〉, |2〉 → |0〉, and |3〉 → |1〉, respectively, we can see
why these peaks decrease, increase, or remain roughly un-
changed in energy respectively over the range of gb considered
here. Turning now to the peaks involving higher states, these
are more complex due to the anticrossing of states |4〉 and |6〉
(labeled according to the order at gb = ga, to be consistent
with the previous sections) around gb/ga = 0.8. Considering
gb = ga, the energy differences in Fig. 9 do explain the peaks
with the same transitions as in Table I. Below the anticrossing,
however, the peaks can only be explained by different transi-
tions, namely switching |4〉 with |6〉.

Next, we consider the case of the resonant second atom
[Fig. 8(b)]. Once again the bright left-most peak can be triv-
ially associated with the A transition. Similarly, the next peak,
which almost merges with the first, is identified as transition
B, as expected. Transition C is not visible in this regime, but
transition D is seen as a broad peak at high gb. Transition E
is also not visible, but transition F is visible throughout and
transition G is visible at high gb.

Finally, at ωb/ωc = 1.5 [panel (c) of Fig. 8], we again see a
significant dressing of the resonances as we change gb, and all
of the peaks can be identified as aligning with the transitions in
Table I throughout. The differences here are that transition C
is strongly visible throughout and merges with F at low gb and
that peaks D, E, and G are not visible, except D at higher gb.

2. Influence of phase variation of gb

The transition dipole of the two TLSs might not be nec-
essarily in the same direction, e.g., if the atomic dipoles
are anisotropic and/or the field-polarization is different at
the different atom locations. This will change the nature
of the couplings in our GDM from pure real to generally

FIG. 7. Influence of coupling strength on the GDM spectra. Cavity spectra as in Fig. 6 for various η values, with both atoms in the same
coupling regime (i.e., η = ηa = ηb). As before, we keep the first atom on resonance with the cavity and sweep the second atom resonance.
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FIG. 8. Influence of relative coupling amplitude variation on the GDM cavity spectra. Spectra at selected ωb, where we now sweep gb from
negligible coupling to the same level as the first atom, at ηb = ηa = 0.5.

complex quantities. Such effects have implications in emerg-
ing nanoengineered photonic systems, to manipulate the
quantum states and control quantum optical interference
effects [96].

To investigate the effects of a phase-dependent GDM, we
next allow gb to be complex, and vary its phase. We take gb =
ga exp[iπφ] and sweep φ from 0 to 1, similar to Fig. 4(c). In
Fig. 10, we show the spectra for gb ranging from ga to iga

to −ga. Apart from being gauge independent for all results,
we mention that all three of the 3D spectra (contours) in
Fig. 10 can be simulated in a matter of minutes on a standard
desktop computer, where we use typically 200 bare photon
states and 12 dressed states. Moreover, a single 2D spectra
can be calculated at arbitrary coupling strengths, including
complex coupling from the second atom, in typically a few
10s of seconds. Thus the dressed-state truncation is not only
necessary for the GME, but it considerably simplifies the
numerical Hilbert space from a bare state basis.

As observed above in Fig. 6(a), the gauge-fixed model pro-
duces peaks that are absent without the gauge correction, or
vice versa. Indeed, at ωb/ωc = 1.5, we can identify peak C as
persisting throughout the change in φ. Conversely, at ωb/ωc =
0.5, peak C is completely absent at φ = 0.5 (but, persists
throughout the range without the gauge correction [53], not
shown here). Extending the second atom’s coupling strength
to a complex quantity increases the separation between the
first three peaks The broadening is quite low (comparatively)

throughout, but the phase change does act to increase the
strength of the A transition at ωb/ωc = 0.5, and increases the
broadening of peak C at ωb/ωc = 1.5. We finally note that
the spectra are symmetric about φ = 0.5, meaning that the
spectra are invariant to changes in the sign of the real part
of the coupling strength. All these features are in accordance
with the eigenenergy lines in Fig. 4(c).

V. CONCLUSIONS

We have presented a gauge-invariant GME approach to
model two atoms in ultrastrong-coupling regimes of open sys-
tem cavity-QED, where the atoms are modelled as Fermionic
TLSs. We first analyzed the applicability of a sensor atom
approach for computing the detected spectra from the cavity-
QED system. This is an alternative approach to using the
quantum regression theorem, allowing for the computation
of spectra even when driving with extremely short pulses or
with multiple time-dependent fields, when the spectra solution
from the quantum regression theorem may break down. This
two-atom model also provides confirmation of the gauge inde-
pendence of the general theory for light-matter interaction in
the USC regime [34], when more than one atom is included in
the system, which is a nontrivial task, even without including
dissipation and optical excitations.

Using incoherent driving, we demonstrated the ability of
the sensor approach to produce spectra that match well with

FIG. 9. Relative coupling amplitude variation in GDM eigenenergies. Eigenvalues of the lowest seven states at selected ωb values, as a
function of gb. The parity of the states is again given by the line color: blue (dark) represents even parity and orange (light) represents odd
parity.
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FIG. 10. Influence of relative coupling phase variation in GDM cavity spectra. Spectra at selected ωb, where we now sweep the phase of
the second atom. Notably, when we lower the coupling strength below the USC regime ηa � 0.1, there is no dependence on the phase.

the quantum regression theorem results, when using spectrally
flat baths. We also showed the influence on the spectra when
changing the bath function for both the cavity and atomic
baths. We compared the Ohmic and flat baths for each case
and demonstrated that the spectra only agree well when the
atomic baths are flat.

For the main part of the article, we then presented results
obtained using a generalized Dicke model, in the limit of
two atoms. Previous studies on the Dicke model have used
identical atoms, only varying properties of both at the same.
However, it is practically impossible to produce this situation
in a physical laboratory environment. Motivated by this fact,
our studies presented results obtained with dissimilar atoms,
extending previous works. We first showed that our model
produces gauge-invariant results when including the gauge-
correction terms. We also showed that the gauge-corrected
spectra (correct spectra) are much richer than naive models
and with more striking features.

We then examined the effect of allowing the resonant fre-
quency of the second atom to vary, and showed that there
are significant peaks visible off-resonance that cannot be seen
when the second atom is on-resonance with the rest of the sys-
tem. We demonstrated that this effect holds for a large range
of normalized coupling strengths even down to the verge of
USC. This shows that this first extension, namely the ability
to model two atoms with dissimilar resonant frequencies, has
important implications not just in the usual USC regime. We
also identified the main transitions for these visible spectral
peaks.

Next, we chose a few values of the second atom’s fre-
quency, including resonant with the first atom, to explore
the second extension of our model, where we changed the
coupling strength of the second atom relative to the first.
We observed that some of the separate peaks can only be
identified as separate peaks due to the coupling of the sec-
ond atom. Indeed, a single peak without the second atom’s
coupling splits into three when the coupling is introduced in

one of the regimes considered. Finally, we allowed the second
atom’s coupling to have a phase difference relative to the first,
and showed how the relative phase can substantially tune the
spectral energy levels.

Qualitatively, the degree of tunability of the system to shift,
produce or nullify the resonances in the emission spectra is
much richer in a GDM. A clear observable to probe is the nul-
lification of the main cavity resonant radiation when one of the
dissimilar atoms is off-resonant with the cavity, as well as new
resonances unique to the USC regime. With the naturally en-
tangled states (even the ground state) in the USC regime, when
a second dissimilar atom is added to a single-atom cavity
system, the transitions between the states are highly modified
so that some of the natural cavity-QED radiation modes are
absent, and/or higher-order photons are already part of the
lower hybrid states in that regime. In addition, the effects of
the separate atomic baths may be intensified in a GDM where,
for example, they can massively broaden the higher-order
photons. This can relate to emerging experimental systems for
probing the USC regime in the near future [4,5].
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the presence of strong electron-phonon interactions, Phys. Rev.
B 65, 235311 (2002).

[51] K. Roy-Choudhury and S. Hughes, Quantum theory of the
emission spectrum from quantum dots coupled to structured
photonic reservoirs and acoustic phonons, Phys. Rev. B 92,
205406 (2015).

[52] T. Neuman and J. Aizpurua, Origin of the asymmetric light
emission from molecular exciton–polaritons, Optica 5, 1247
(2018).

[53] W. Salmon, Master equations for computing gauge-invariant
observables in the ultrastrong coupling regime of cavity-QED,
M.Sc. Thesis, Queen’s University, Canada, 2021.

[54] M. Lax, Formal theory of quantum fluctuations from a driven
state, Phys. Rev. 129, 2342 (1963).

[55] R. H. Dicke, Coherence in spontaneous radiation processes,
Phys. Rev. 93, 99 (1954).

[56] K. Hepp and E. H. Lieb, On the superradiant phase transition
for molecules in a quantized radiation field: The Dicke maser
model, Ann. Phys. 76, 360 (1973).

[57] Y. K. Wang and F. T. Hioe, Phase transition in the Dicke model
of superradiance, Phys. Rev. A 7, 831 (1973).

[58] C. Emary and T. Brandes, Quantum Chaos Triggered by Precur-
sors of a Quantum Phase Transition: The Dicke Model, Phys.
Rev. Lett. 90, 044101 (2003).

[59] K. Baumann, C. Guerlin, F. Brennecke, and T. Esslinger, Dicke
quantum phase transition with a superfluid gas in an optical
cavity, Nature (London) 464, 1301 (2010).

[60] B. M. Garraway, The Dicke model in quantum optics: Dicke
model revisited, Philos. Trans. R. Soc. A 369, 1137 (2011).

[61] M. P. Baden, K. J. Arnold, A. L. Grimsmo, S. Parkins, and M. D.
Barrett, Realization of the Dicke Model Using Cavity-Assisted
Raman Transitions, Phys. Rev. Lett. 113, 020408 (2014).

[62] M. A. Bastarrachea-Magnani, B. López-del Carpio, S. Lerma-
Hernández, and J. G. Hirsch, Chaos in the Dicke model:
Quantum and semiclassical analysis, Phys. Scr. 90, 068015
(2015).

[63] J. Klinder, H. Keßler, M. Wolke, L. Mathey, and A. Hemmerich,
Dynamical phase transition in the open Dicke model, Proc.
Natl. Acad. Sci. USA 112, 3290 (2015).

[64] J. Larson and E. K. Irish, Some remarks on ’superradiant’ phase
transitions in light-matter systems, J. Phys. A: Math. Theor. 50,
174002 (2017).

[65] P. Kirton, M. M. Roses, J. Keeling, and E. G. Dalla Torre,
Introduction to the Dicke model: From equilibrium to nonequi-
librium, and vice versa, Adv. Quantum Technol. 2, 1800043
(2019).

[66] N. Lambert, Y. Matsuzaki, K. Kakuyanagi, N. Ishida, S. Saito,
and F. Nori, Superradiance with an ensemble of superconduct-
ing flux qubits, Phys. Rev. B 94, 224510 (2016).

[67] N. Shammah, N. Lambert, F. Nori, and S. De Liberato, Super-
radiance with local phase-breaking effects, Phys. Rev. A 96,
023863 (2017).

[68] N. Shammah, S. Ahmed, N. Lambert, S. De Liberato, and
F. Nori, Open quantum systems with local and collective
incoherent processes: Efficient numerical simulations using per-
mutational invariance, Phys. Rev. A 98, 063815 (2018).

[69] J. Lolli, A. Baksic, D. Nagy, V. E. Manucharyan, and C. Ciuti,
Ancillary Qubit Spectroscopy of Vacua in Cavity and Cir-
cuit Quantum Electrodynamics, Phys. Rev. Lett. 114, 183601
(2015).

[70] T. Jaako, Z.-L. Xiang, J. J. Garcia-Ripoll, and P. Rabl,
Ultrastrong-coupling phenomena beyond the Dicke model,
Phys. Rev. A 94, 033850 (2016).

[71] F. Dimer, B. Estienne, A. S. Parkins, and H. J. Carmichael,
Proposed realization of the Dicke-model quantum phase
transition in an optical cavity QED system, Phys. Rev. A 75,
013804 (2007).

[72] L. Garbe, I. L. Egusquiza, E. Solano, C. Ciuti, T. Coudreau, P.
Milman, and S. Felicetti, Superradiant phase transition in the
ultrastrong-coupling regime of the two-photon Dicke model,
Phys. Rev. A 95, 053854 (2017).

[73] X.-Y. Chen and Y.-Y. Zhang, Finite-size scaling analysis in the
two-photon Dicke model, Phys. Rev. A 97, 053821 (2018).

[74] L. Garziano, A. Settineri, O. Di Stefano, S. Savasta, and F. Nori,
Gauge invariance of the Dicke and Hopfield models, Phys. Rev.
A 102, 023718 (2020).

[75] M. J. Bhaseen, J. Mayoh, B. D. Simons, and J. Keeling, Dynam-
ics of nonequilibrium Dicke models, Phys. Rev. A 85, 013817
(2012).

033002-15

https://doi.org/10.1088/0953-4075/46/22/220202
https://doi.org/10.1103/PhysRevLett.107.100401
https://doi.org/10.1038/s41467-018-08101-0
https://doi.org/10.1515/nanoph-2020-0433
https://doi.org/10.1103/PhysRevA.3.1242
https://doi.org/10.1103/PhysRevA.98.053834
https://doi.org/10.1103/PhysRevA.74.033811
https://doi.org/10.1103/PhysRevA.84.043832
https://doi.org/10.1103/PhysRevA.91.013812
https://doi.org/10.1103/PhysRevB.104.045431
https://doi.org/10.1103/PhysRevB.65.235311
https://doi.org/10.1103/PhysRevB.92.205406
https://doi.org/10.1364/OPTICA.5.001247
https://doi.org/10.1103/PhysRev.129.2342
https://doi.org/10.1103/PhysRev.93.99
https://doi.org/10.1016/0003-4916(73)90039-0
https://doi.org/10.1103/PhysRevA.7.831
https://doi.org/10.1103/PhysRevLett.90.044101
https://doi.org/10.1038/nature09009
https://doi.org/10.1098/rsta.2010.0333
https://doi.org/10.1103/PhysRevLett.113.020408
https://doi.org/10.1088/0031-8949/90/6/068015
https://doi.org/10.1073/pnas.1417132112
https://doi.org/10.1088/1751-8121/aa65dc
https://doi.org/10.1002/qute.201800043
https://doi.org/10.1103/PhysRevB.94.224510
https://doi.org/10.1103/PhysRevA.96.023863
https://doi.org/10.1103/PhysRevA.98.063815
https://doi.org/10.1103/PhysRevLett.114.183601
https://doi.org/10.1103/PhysRevA.94.033850
https://doi.org/10.1103/PhysRevA.75.013804
https://doi.org/10.1103/PhysRevA.95.053854
https://doi.org/10.1103/PhysRevA.97.053821
https://doi.org/10.1103/PhysRevA.102.023718
https://doi.org/10.1103/PhysRevA.85.013817


AKBARI, SALMON, NORI, AND HUGHES PHYSICAL REVIEW RESEARCH 5, 033002 (2023)

[76] I. Aedo and L. Lamata, Analog quantum simulation of gener-
alized Dicke models in trapped ions, Phys. Rev. A 97, 042317
(2018).

[77] D. De Bernardis, T. Jaako, and P. Rabl, Cavity quantum elec-
trodynamics in the nonperturbative regime, Phys. Rev. A 97,
043820 (2018).

[78] A. Stokes and A. Nazir, Uniqueness of the Phase Transition
in Many-Dipole Cavity Quantum Electrodynamical Systems,
Phys. Rev. Lett. 125, 143603 (2020).

[79] S. Reitzenstein, C. Böckler, A. Löffler, S. Höfling, L.
Worschech, A. Forchel, P. Yao, and S. Hughes, Polarization-
dependent strong coupling in elliptical high-q micropillar
cavities, Phys. Rev. B 82, 235313 (2010).

[80] H. Kim, D. Sridharan, T. C. Shen, G. S. Solomon, and E. Waks,
Strong coupling between two quantum dots and a photonic
crystal cavity using magnetic field tuning, Opt. Express 19,
2589 (2011).

[81] A. Majumdar, M. Bajcsy, A. Rundquist, E. Kim, and J.
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