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The “hierarchical equations of motion” (HEOM) method is a powerful exact numerical approach to solve
the dynamics and find the steady-state of a quantum system coupled to a non-Markovian and nonperturbative
environment. Originally developed in the context of physical chemistry, it has also been extended and applied
to problems in solid-state physics, optics, single-molecule electronics, and biological physics. Here we present
a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for
both bosonic and fermionic environments. We demonstrate its utility with a series of examples consisting of
benchmarks against important known results and examples demonstrating insights gained with this library for
this article. For the bosonic case, our results include demonstrations of how to fit arbitrary spectral densities with
different approaches, and a study of the dynamics of energy transfer in the Fenna-Matthews-Olson photosyn-
thetic complex. For the latter, we both clarify how a suitable non-Markovian environment can protect against
pure dephasing, and model recent experimental results demonstrating the suppression of electronic coherence.
Importantly, we show that by combining the HEOM method with the reaction coordinate method we can observe
nontrivial system-environment entanglement on timescales substantially longer than electronic coherence alone.
We also demonstrate results showing how the HEOM can be used to benchmark different strategies for
dynamical decoupling of a system from its environment, and show that the Uhrig pulse-spacing scheme is less
optimal than equally spaced pulses when the environment’s spectral density is very broad. For the fermionic case,
we present an integrable single-impurity example, used as a benchmark of the code, and a more complex example
of an impurity strongly coupled to a single vibronic mode, with applications to single-molecule electronics.
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I. INTRODUCTION

In the context of open quantum systems [1] many ap-
proaches exist to modeling the influence of an environment
on a system. For example, when the interaction between sys-
tem and environment is weak and Markovian (memory-less),
a range of perturbative methods are available, primarily in
the form of generalized Lindblad master equations [2,3], or
nonsecular master equations [1,4]. However, beyond these
perturbative limits one must start to treat the dynamics of the
environment on the same level as the system, which in many
cases is a challenging task.
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Discretization of a continuum environment is one pow-
erful approach to this nonperturbative limit [5–10], wherein
the predominant collective degrees of freedom are identified
and included in the full simulation in a numerically efficient
way. The “hierarchical equations of motion” (HEOM) method
does precisely this, albeit indirectly [11–15]. It is based on
the construction of a hierarchy of coupled equations result-
ing from taking repeated time-derivatives of an influence
functional, under the assumption that the bath correlation
functions take an exponential form. Such an exponential form
can be acquired analytically for certain spectral densities (with
Matsubara or Padé decompositions [16,17]) or numerically
with fitting [18]. Once the set of equations is obtained, they
can be numerically solved to give the system dynamics, the
system steady-state, and certain bath properties. The limi-
tations of the HEOM arise in the truncation of the set of
equations (which in the case of a bosonic environment is in-
finite) and the truncation of the exponential decomposition of
the bath correlation functions. The latter limits the accuracy to
represent the real problem and can lead to unphysical results
if poor decompositions are made.
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In this paper we introduce an open-source library for
modeling these equations of motion for both bosonic and
fermionic baths as an integrated part of our larger toolbox for
modeling open quantum systems in Python, QuTiP [19–22].
We describe the bosonic (Sec. II) and fermionic (Sec. III)
forms separately. For both we start with basic definitions, and
then provide a range of examples, some of which reproduce
important known results, and three of which give insights
gained with this tool for this article:

(i) In Sec. II C we apply the HEOM to the ubiquitous
spin-boson model. We show results for the Drude-Lorentz
spectral density, and the underdamped Brownian motion spec-
tral density, and show convergence trends for the Matsubara,
Padé, and fitting approaches to decomposing the bath corre-
lation function. We also compare the results to a standard
Markovian method in the form of the Bloch-Redfield solver
in QuTiP.

(ii) In Sec. II D we demonstrate how to model mul-
tiple baths by reproducing the seminal results of [13]
for the dynamics of energy transport through the Fenna-
Matthews-Olson pigment protein complex, and showing that
the non-Markovian nature of the environment preserves elec-
tronic coherence as compared to a standard Bloch-Redfield
approach. We also take the recent experimental results of
[23] and, using a combination of the HEOM and the
reaction-coordinate method, show that system-environment
entanglement oscillations persist on longer timescales than
electronic coherence in a strongly-damped regime.

(iii) In Sec. II E we illustrate how the auxiliary density op-
erators in the HEOM can be used to obtain information about
the environment by reproducing results from [24] regarding
nonequilibrium heat flow into an environment.

(iv) In Sec. II F we demonstrate how capturing the non-
Markovian nature of the environment can be important for
quantum control of quantum systems by examining the
interplay between dynamical decoupling schemes and envi-
ronment properties. Importantly, we both demonstrate how
the HEOM can be used in regimes where standard analyti-
cal results fail (finite control pulse length), and benchmark
two pulse-spacing schemes against each other (equally spaced
versus Uhrig’s optimal strategy).

(v) In Sec. II G we show how to go beyond the standard
choices of spectral density with the HEOM using different
fitting techniques. We explicitly demonstrate how to capture
an Ohmic spectral density with exponential cut-off using
either spectral-density fitting or correlation function fitting
techniques, and benchmark them against each other using the
pure-dephasing model.

(vi) In Sec. III D we benchmark the fermionic solver
against an analytical result for the current through
a single resonant level coupled to two fermionic
baths.

(vii) In Sec. III E, for the fermionic solver, we reproduce
the results in [25] showing the steady state current through a
resonant level coupled both to two fermionic baths and to a
single vibronic mode.

Each example is associated with a Jupyter notebook
provided on GitHub [26], which throughout this paper
are referred to via the numbered index in their name,
1a, 1b, etc.

A. Comparison to existing packages

Other open-source implementations of the HEOM exist, a
summary of which, including the one presented in this paper,
is given in Table I. It is difficult to be exhaustive on the ca-
pabilities and what constitutes useful levels of documentation
or testing for all these packages. Hence, for documentation,
a “yes” was given if the available documentation seemed
sufficient for a third party to install and run the software on
their own problems, without having to read the source code.
A “yes” was given for tests if the software included a suite of
tests that cover the main features of the implementation and
checks the resulting outputs. QuTiP’s implementation is the
only one that meets this standard.

In summary, Tanimura provided an early Fortran imple-
mentation on his website [27]. PHI [28,29] was a later
implementation that provided multithreaded CPU support.
The Nanohub GPU HEOM [30] (unrelated to the Tsuchi-
moto GPU-HEOM [31]) provided GPU support but is closed
source. The Tsuchimoto GPU-HEOM [31] (also from the
Tanimura group) implements a custom matrix exponential
solver to reduce memory overhead. HEOM-QUICK [32] is
the only other implementation to support fermionic baths, and
provides much flexibility via editing functions in the Fortran
code. DM-HEOM [33–35] supports distribution across mul-
tiple nodes, allowing the simulation of systems where the
memory requirements of the hierarchy exceed that available
on a single node. PyHEOM [36] provides explicit support for
a new decomposition method for capturing poles in the bath
spectral densities.

Our implementation is complementary to the above pack-
ages, in the sense that it provides flexible implementations
of both bosonic and fermionic cases, and allows for both
predefined commonly used spectral densities and arbitrary
user-based input (that can be combined with custom fitting of
bath correlation functions or spectra, as required). In addition,
integration with the QuTiP library will ensure its continuous
maintenance and improvement by an established team of de-
velopers [37].

II. BOSONIC ENVIRONMENTS

A. Basic definitions

When considering the influence of an environment on a
quantum system, a typical starting point is to consider the
environment as a bath of linear harmonic oscillators. In some
physical situations this is justified by the actual dominant de-
grees of freedom being harmonic in nature. However, it is also
a very pragmatic and often phenomenological assumption, as,
when combined with the assumption that the bath is initially
in a Gaussian (e.g., thermal) state, evaluating the influence of
the bath on the system is much easier. In this paper we do
not consider nonlinear baths (e.g., spin-baths), though it has
been shown that such environments can be captured with the
HEOM to some degree [38,39].

In the standard second-quantized Hamiltonian formalism,
we can write the interaction of a single bosonic environment
with an arbitrary system in the following way:

H = HS(t ) +
∑

k

ωka†
kak + Q

∑
k

gk (ak + a†
k ), (1)
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TABLE I. A table comparing available HEOM implementations. The terminology used is as follows. Name: Abbreviated name of the
implementation. Docs: “Yes” if there seemed to be sufficient documentation for a third-party to install and run the software on their own
problems, without having to read the source code. Tests: “Yes” if the software included a suite of tests that cover the main features of the
implementation and checks the resulting outputs. Time-dependent Hamiltonians: “Yes” if time-dependent Hamiltonians are supported. Baths:
A description of which types of baths are supported. DL refers to Drude-Lorentz, UD refers to Under-damped Brownian motion, “Lor” refers
to Lorentzian (for fermionic baths), and “fit” refers to fitting via generic decomposition of correlation functions. Compute: A description
of what computational paradigms are supported. We distinguish between GPU, CPU, multithread, and single-versus-multiple computational
nodes. Note while not explicitly including fitting, PyHeom supports general exponential and polynomial-exponential correlation functions.

Name Docs Tests T-D Hamiltonian Baths Compute

PHI [28,29] Yes No No Bosonic DL Single node, multithreaded CPU
Nano GPU HEOM [30] Yes No No Bosonic DL Single node, multithreaded-CPU or GPU
GPU-HEOM [31] No No No Bosonic DL Single node GPU
HEOM-QUICK [32] Yes No Yes Fermionic Lor Single node, multithreaded-CPU
DM-HEOM [33–35] No No No Bosonic DL Multiple node, multithreaded-CPU and GPU
PyHEOM [36] No No No Bosonic, DL, UD Single node, multithreaded-CPU or GPU
QuTiP-BoFiN Yes Yes Yes Bosonic DL, UD, fit, and Single node, multithreaded-CPU
(this paper) Fermionic Lor, fit

where HS (t ) is the free Hamiltonian of the system, which can
be time dependent, HB = ∑

k ωka†
kak is the free Hamiltonian

of the bath, Q is the system operator, which couples to the
bath, and gk is the coupling strength between the system and
mode k in the bath. Note that this, and the following, is easily
generalized to multiple baths with different system coupling
operators. For convenience, we define

X =
∑

k

gk (ak + a†
k ). (2)

Note that in the above, and throughout most of this paper, we
set h̄ = kB = 1 (some later examples are presented in different
units).

The state of the system at time t has an exact solution in
the form of a time-ordered influence functional, which only
depends on the free bath correlation functions [1,11,12,40],

ρ̄S(t ) = T exp

{
−

∫ t

0
dt2

∫ t2

0
dt1Q̄(t2)×[CR(t2 − t1)Q̄(t1)×

+ iCI (t2 − t1)Q̄(t1)◦]

}
ρ̄S(0). (3)

Here ρ̄S (t ) is the density matrix of the system in the inter-
action picture with respect to HS (t ) + HB (indicated by the
bar) at time t , and there is an implicit assumption that at
t = 0 the system and the environment are in a product state
ρ(t = 0) = ρS (t = 0) ⊗ ρB (the subindex B refers to the bath
or environment). The environment is an initially thermal equi-
librium state

ρB = e−βHB

Z
(4)

with temperature T = 1/β and Z = Tr[e−βHB ]. Importantly,
the system operators Q that couple to the environment act to
the right as superoperators in Eq. (3), with

Q̄(t )× = [Q̄(t ), �], and Q̄(t )◦ = {
Q̄(t ), �

}
. (5)

The derivation of this exact result, Eq. (3), relies cru-
cially on the Gaussian nature of the free environment, which
allows the properties of the system to only depend on the

second-order correlation functions of the environment. These
correlation functions can be expressed as

C(τ ) = 〈X̄ (t + τ )X̄ (t )〉

= Tr

[∑
k

gk (ake−iωkτ + a†
keiωkτ )

∑
k′

gk′ (ak′ + a†
k′ )ρB

]

=
∑

k

g2
k[n(ωk, β )eiωkτ + {1 + n(ωk, β )}e−iωkτ ]

=
∫ ∞

0
dω

J (ω)

π
[n(ω, β )eiωτ + {1 + n(ω, β )}e−iωτ ]

=
∫ ∞

0
dω

J (ω)

π
[coth(βω/2) cos(ωτ ) − i sin(ωτ )] (6)

where n(ω, β ) = 1/[exp(βω) − 1], and in moving from the
discrete to continuum limit one defines

J (ω) = π
∑

k

|gk|2 δ(ω − ωk ). (7)

Returning to Eq. (3), which is formally exact but still a time-
ordered exponential that is difficult to directly solve, if we
assume that an appropriate choice of J (ω) gives correlation
functions

C(t ) = CR(t ) + iCI (t ) (8)

with real and imaginary parts that can be decomposed as

CR(t ) =
NR∑

k=1

cR
k e−γ R

k t , (9)

CI (t ) =
NI∑

k=1

cI
ke−γ I

k t , (10)

where c j
k and γ

j
k themselves can be real or complex, one can

formally take repeated time derivatives of Eq. (3) to arrive
at an infinite set of coupled first-order differential equations.
A concise description of this procedure can be found in the
Appendix of [40] for a particular case (see also [41] for
an alternative approach, and [11] for the original derivation
using path integrals), but for the most general decomposition
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one ultimately finds the following set of coupled differential
equations [42]:

ρ̇n(t ) =
⎛
⎝L −

∑
j=R,I

Nj∑
k=1

n jkγ
j

k

⎞
⎠ρn(t )

− i
NR∑

k=1

cR
k nRkQ×ρn−

Rk (t ) +
NI∑

k=1

cI
knIkQ◦ρn−

Ik (t )

− i
∑
j=R,I

Nj∑
k=1

Q×ρn+
jk (t ), (11)

where n = (nR1, nR2, ..nRNR , nI1, nI2, ..., nINI ) is a multi-index
of integers n jk ∈ {0..Nc}, and Nc is a cut-off parameter cho-
sen for convergence. The state labeled by (0,...,0) describes
the system density matrix. Operators with nonzero indices
are referred to as auxiliary density operators (ADOs), but
are not physical density operators in the normal sense. They
correspond to terms collected for different exponents of the
correlation functions that appear from the application of the
chain-rule to the time-derivatives of the time-ordered integral.
Terms like ρn±

jk in Eq. (11) refer to an ADO with the index
n jk raised or lowered by one. The benefit of Eq. (11) is that
we can truncate and solve the finite set of coupled differential
equations with a range of efficient numerical methods.

The Liouvillian describes the local (potentially time-
dependent) system Hamiltonian

L = −iH×
S , (12)

where we use the same notation for the commutator as in
Eq. (5). In some cases this can be augmented with additional
Lindblad terms, as described later.

If there are terms in the decomposition of the correlation
function with equal frequencies γ R

k = γ I
k they can be com-

bined into a single index, for a gain in numerical efficiency
[42]. This is done automatically by our code itself. Due to the
linearity of the interaction with the bath, additional environ-
ments can be included by simply extending the list of bath
correlation functions (i.e., adding a bath label K to Eq. (9)),
and different system coupling operators to different baths is
allowed for by labeling the indices and the coupling operator
QK appropriately.

B. Code functionality

Our Python-based library relies on, and is integrated with,
the popular Quantum Toolbox in Python (QuTiP) [19,20], and
hence uses the ubiquitous Qobj data types from that library
to represent states, operators and superoperators. Generally
speaking, one sets up the problem to be solved by defining
the system Hamiltonian (which can be time-dependent), the
bath properties using either pre-defined bath class objects, or
through lists defining the correlation function decomposition
given in Eq. (9) and a generic bath class, and a system cou-
pling operator for each bath.

The HEOMSolver class constructs the right-hand-side of
Eq. (11), taking as input one or more baths (which can be
defined in multiple ways), the system Hamiltonian, and the
truncation parameters. For example, for a bosonic bath using

the predefined Drude-Lorentz spectral density with Nk Mat-
subara terms,

Here Q is the system-bath coupling operator, and the other
parameters determine the properties of the Drude-Lorentz
spectral density Eq. (15). In addition, one can define a bosonic
bath using the same spectral density with a Pade decomposi-
tion [DrudeLorentzPadeBath()], the underdamped spectral
density of Eq. (16) [UnderDampedBath()], or a generic
one using the real and imaginary coefficients of Eq. (39)
[BosonicBath()].

This HEOMSolver object can then be used to solve the
coupled set of ordinary differential equations using standard
libraries, or calculate the steady-state. For the former purpose,
the class contains a run() function, which takes an initial
condition and a set of time-steps, and returns a results object
with both the system density matrix and the auxiliary-density-
operators (ADOs) for the bath at each time-step,

The state of the system is returned for each time step
in result_dlbath.states, while, if ado_return=True is
used, then the full state of the auxiliary density operators is
returned as a list as well, in result_dlbath.ado_states.
These can then be used to obtain certain bath properties. Tags
can be employed to delineate different baths, and levels can
be used to extract different tiers.

For example, for the example defined above,
ado_states.filter(level=1, tags=[‘‘bathDL’’])
returns a list of labels identifying the ADOs that are tagged
with ‘‘bathDL’’ and are at truncation tier 1 (i.e., only
have

∑
j=R,I

∑Nj

k=1 n jk = 1 for the given bath). Using
result_dlbath.extract(), these labels can then be used
to extract specific ADOs, see Example 3 and its associated
notebook for a practical example.

For computing the steady-state solution, we provide two
direct methods, one of which takes advantage of Intel’s MKL
library if installed alongside QuTiP. Full details of the func-
tionality can be seen in the accompanying Jupyter notebooks
(provided in [26]) and documentation [43].

C. Example 1: Spin-boson model

The archetypical test system for studying open quantum
systems is a two-level system (i.e., a spin, or qubit, but we use
the terminology two-level system throughout this paper). In
the context of physical chemistry, it is used as a model of elec-
tronic energy transport between two nearby molecules (i.e.,
a dimer model). Referring back to Eq. (1), in this example
we describe the system Hamiltonian using the standard Pauli
operators to represent the two-level system

HS = ε

2
σz + �

2
σx (13)
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and the coupling operator

Q = σz. (14)

Ultimately the choice of spectral density, J (ω), depends on
the properties of the environment one is considering. A useful
choice is that of an Ohmic (linear) frequency dependence with
a Lorentzian cut-off. This is usually split into two types, the
over-damped Drude-Lorentz form

JD(ω) = 2λγω

(γ 2 + ω2)
(15)

and the underdamped Brownian motion form

JU (ω) = α2�ω[(
ω2

c − ω2
)2 + �2ω2

] . (16)

While superficially similar, the properties of the correspond-
ing correlation functions [CD(t ) and CU (t )] are different in
several important ways. Firstly, as we will show below, with
a Matsubara decomposition CD(t ) has only overdamped ex-
ponents, while CU (t ) can have oscillatory parts. Secondly, JD

has a 1/ω high-frequency tail, while JU converges much more
quickly. This leads to two unique features in CD(t ) at t = 0: a
nonzero imaginary part (which is arguably unphysical [44]),
and a divergent real part.

For example, the Matsubara decomposition of the Drude-
Lorentz spectral density is given by

C(t ) =
∞∑

k=0

cke−νkt , (17)

νk =
{
γ k = 0

2πk/β k � 1,
(18)

ck =
{

λγ [cot(βγ /2) − i] k = 0

4λγ νk/(ν2
k − γ 2)β k � 1.

(19)

The divergent real part at t = 0 can be captured in the HEOM
formalism by treating exponentials above a certain cut-off, Nk ,
as delta functions [12]. Since νk = 2πk/β, if 1/νk is much
smaller than other important timescales, we can approximate,
e−νkt ≈ δ(t )/νk , and

C(t ) ≈
Nk∑

k=0

cke−νkt +
∞∑

k=Nk+1

ck

νk
δ(t ). (20)

It is convenient to calculate the whole sum
∞∑

k=0

ck

νk
= 2λ

βγ
− iλ, (21)

and subtract off the contribution from the finite Nk Matsubara
terms that are kept in the hierarchy, and treat the residual
as a prefactor multiplying a delta function. It is then possi-
ble to show [12] that the delta-function contribution to the
correlation functions can be described by Lindbladian terms
in the HEOM; and thus the equation of motion in Eq. (11)
is modified so that the Liouvillian evolution includes these
Lindblad terms

L = −iH×
S + �T [2QρQ† − Q†Qρ − ρQ†Q], (22)

FIG. 1. HEOM results for the excited state probability ρ11 and
the coherence ρ01 versus time for a two-level system coupled to
a bosonic environment described by a Drude-Lorentz spectral den-
sity. The system parameter used here is ε = 0.5�, and the bath
parameters are λ = 0.1�, γ = 0.5�, and T = 0.5�. We compare a
solution of the Bloch-Redfield master equation to the Matsubara de-
composition with Nk = 2, the same decomposition with the Tanimura
terminator, and the case where only the primary (Drude) exponent
(k = 0) is kept in Eq. (17), and a large number (Nk = 15 × 103)
of Matsubara terms are summed and fit with Nf = 4 exponents.
The horizontal dashed black line shows the thermal (steady) state
result obtained from a reaction-coordinate approach. The code for
generating this figure can be found in example notebook 1a [26].

where

�T = 2λ

βγ
− iλ −

Nk∑
k=0

ck

νk
. (23)

This treatment is sometimes called the “Tanimura-
terminator”, and an example of how to include it is presented
in the accompanying example notebook 1a [26].

As described earlier, the QuTiP-BoFiN package [45,46]
will automatically determine that real and imaginary ex-
ponents are close, and if the coupling operator for both
exponents are equal, it will combine them into a single com-
mon exponent. Note that for degenerate exponents in the real
or imaginary terms alone the code will not automatically
combine terms.

1. Two-level system coupled to a Drude-Lorentz bath

In Fig. 1 we show a simple example of the dynamics of a
two-level system coupled to a Drude-Lorentz bath. We com-
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FIG. 2. HEOM results for the excited state probability versus
time for a two-level system coupled to a bosonic environment with a
Drude-Lorentz spectral density in the strong coupling regime. Here
we use the system parameter ε = 0.0, � = 0.2γ , and the bath param-
eters λ = 2.5γ , and T = γ . We show the case of a single Matsubara
exponent, the same with the Tanimura terminator, the Padé decom-
position also with a single (non-Drude) exponent, and again a fit of
Nk = 15 × 103 Matsubara terms, this time with Nf = 3 exponents.
The code for generating this figure can be found in example notebook
1b [26].

pare several optional approaches. This includes an explicit
truncation of the Matsubara decomposition at Nk = 2, the
same truncation with the Tanimura terminator, and an example
where a large number of Matsubara terms (Nk = 15 × 103)
are summed up and numerically fit using the fitting function
CF = ∑Nf

i=1 aiebit with Nf = 4 exponents. We also show the
solution from the standard Bloch-Redfield solver in QuTiP
(i.e., a generalized Born-Markov-Secular master equation). In
the accompanying example notebook 1a [26] we also present
the results of a Padé decomposition of the correlation func-
tions, but do not show it in the figure (it essentially converges
faster than the Matsubara case alone as it gives the same result
as the Matsubara plus terminator decomposition, but without
the need of an equivalent terminator).

We can see from Fig. 1 that, for this choice of parameters,
either the Tanimura-terminator, the Padé decomposition, or
the fitting approach is needed to reach the correct steady-
state (alternatively more discrete terms must be included in
the Matsubara summation). The black dashed lines show the
steady-state obtained using a reaction-coordinate approach
[7]. This trend can be confirmed with a pure-dephasing ana-
lytical result, which is provided in example notebook 1e [26],
but not explicitly shown here.

2. Two-level system very strongly coupled to a Drude-Lorentz bath

Moving to a more challenging parameter regime (see also
example notebook 1b [26]), Fig. 2 shows the situation of a
very strong coupling between system and environment (as
used as a benchmark in [17]). We compare the results obtained
with a single Matsubara term, the same with the termina-
tor included, a single Padé decomposition term, and a case
where we sum up a large number of Matsubara terms and
fit them with auxiliary exponents. Here the Bloch-Redfield
approach fails completely, so it is not explicitly shown. As

described in [17], in this case the terminator result converges
very quickly, while many discrete Matsubara terms would be
needed without it. The Padé result also converges faster than
the single-term Matsubara result, as does the result using a
fit, but with a higher numerical overhead. We expect a more
sophisticated fitting algorithm may provide better results (as
evidenced by the better performance of the Padé decomposi-
tion with less exponents).

3. Two-level system coupled to an underdamped bath

Moving to the underdamped case, the underdamped spec-
tral density gives correlation functions (again using the
Matsubara decomposition) separated explicitly into real and
imaginary parts of the form

cR
k =

⎧⎪⎪⎨
⎪⎪⎩

α2 coth(β(� + i�/2)/2)/4� k = 0

α2 coth(β(� − i�/2)/2)/4� k = 0
−2α2�εk

β[(�+i�/2)2+ε2
k )][(�−i�/2)2+ε2

k ]
k � 1,

(24)

νR
k =

⎧⎪⎨
⎪⎩

−i� + �/2 k = 0

i� + �/2 k = 0

2πk/β k � 1,

(25)

cI
k =

{
iα2/4� k = 0

−iα2/4� k = 0,
(26)

νI
k =

{
i� + �/2 k = 0

−i� + �/2 k = 0.
(27)

Where � = √
�2

c − (�/2)2. Note that here we slightly
abuse notation to include the pair of complex conjugate terms
with one index (k = 0). These are presented as separate terms
in the real and imaginary decomposition here, but the package
will again combine real and imaginary parts of the k = 0
components with equal exponents, such that there are two total
effective exponents instead of four.

In Fig. 3 (see also example notebook 1c [26]) we show a
typical result for a strongly coupled, narrow spectral density.
We see a large deviation between the Born-Markov-Secular
Bloch-Redfield result and the HEOM result, and a conver-
gence of the HEOM result with around four Matsubara terms.
In particular, we observe that the Matsubara terms, for narrow
spectral densities like this one, largely contribute to correcting
detailed balance and arriving at the correct steady state. We
benchmark this effect by plotting the steady-state using the
reaction coordinate (RC) method [7], which shows how as we
add more Matsubara terms to the HEOM approach we tend
towards the steady-state predicted by the RC method (see [8]
for a more detailed analysis of this effect, and results that
include fitting of Matsubara terms to reach T = 0).

D. Example 2: FMO-complex

The HEOM method has a long history of being applied
to problems in physical chemistry, particularly in the study
of transport of electronic excitations through light-harvesting
complexes [13,47–49]. The typical parameters of such sys-
tems sit in a regime where it is hard to justify any particular
perturbative approximation, as the electronic dipole coupling
between chromophores and the dominant environmental in-
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FIG. 3. HEOM result for the excited state probability versus time
for a two-level system coupled to a underdamped spectral density
with system parameter ε = 0.5�, and bath parameters α = 0.5�3/2,
� = 0.5�, ωc = �, and T = 0.05�. Here we show how the result
converges as we increase the number of Matsubara terms, and com-
pare to the solution from the Bloch-Redfield master equation solver
(which fails drastically). The black dashed line represents the thermal
steady-state predicted by the reaction coordinate method. The code
for generating this figure can be found in example notebook 1c [26].

fluence are, in many cases, of the same order. One of the
most studied examples of this type of problem is that of the
Fenna-Mathews-Olson (FMO) complex. It serves us well here
as a way to show how to use our package for a system with
several internal levels coupling to independent environments.

One again starts with a Hamiltonian description of the
system. We model a single excitation moving through the
FMO complex with a seven-site model

HS =
∑

i

εi|Ei〉〈Ei| +
∑
i 
= j

Ji, j |Ei〉〈Ej |, (28)

where the on-site energy of site i is given by εi and the dipole
coupling between bacteriochlorophyls (BChl) i and j is given
by Ji, j .

Again we treat the environment as a continuum of har-
monic oscillators, and assume that each BChl is coupled to
an independent but identical bath of such oscillators. This
represents how the harmonic nuclear motion of the molecules
leads to changes in the electronic energies. The coupling
operator for the ith bath is thus Qi = |Ei〉〈Ei|, and we as-
sume each independent bath is described by a Drude-Lorentz
spectral density. A separate bath class object can be created
for each bath, associated with each system coupling operator,
using whatever bath-decomposition scheme one requires. An
explicit example of this is given in example notebook 2 [26].

We provide an example of simulation results in Fig. 4
showing how, with the initial condition of an excitation lo-
calised on site 1, the populations evolve up to 1 ps. These
results identically recreate those seen in [13].

To show how a non-Markovian environment differs from
a Markovian one, in Fig. 5 we show the results, using the

FIG. 4. HEOM results for the site-populations of the FMO com-
plex versus time. The FMO complex consists of seven sites coupled
to seven identical but independent baths each described by a Drude
Lorentz spectral density with parameters λ = 35 cm−1, γ −1 = 166
fs, T = 300 K. For the FMO Hamiltonian we use the data employed
in [13]. In comparison to Fig. 5 we see that the exact solution predicts
much longer coherent oscillations than the equivalent weak-coupling
solution. The code for generating this figure can be found in example
notebook 2 [26].

same parameters, for the standard Bloch-Redfield solver in
QuTiP. This solver, under standard Born-Markov-Secular ap-
proximations, takes into account the frequency dependence
of the bath spectral density, the eigenstate structure of the
system Hamiltonian, and the pure dephasing that arises from
the low-frequency behavior of the bath.

In the accompanying notebook 2 [26] we explicitly show
how these different contributions affect the dynamics, and

FIG. 5. Site-populations for the FMO complex versus time as
given by the standard Bloch-Redfield solver in QuTiP. Parameters
are the same as in Fig. 4: λ = 35 cm−1, γ −1 = 166 fs, T = 300 K.
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we see there quite explicitly that the pure dephasing (in the
eigenbasis) has a very strong effect on the dynamics, largely
suppressing coherent oscillations. This comparison explicitly
shows that weak-coupling models fail to predict the correct
coherence timescale in this case, due to the highly non-
Markovian environment [13,50] (as determined partially by
the narrow cut-off γ ). In earlier papers suppression of low-
frequency noise was shown to arise for super-Ohmic spectral
densities [51], based on arguments regarding the frequency
dependence of the Markovian pure-dephasing contribution,
but appears here due to the non-Markovian nature of the
environment.

Interestingly, whether the electronic coherence, as exhib-
ited in the oscillations seen in Fig. 4, actually survives in
nature is still hotly debated [23]. In [23] the authors observe
no electronic coherence beyond 60 fs, in contrast with earlier
experiments [52–55]. In modeling their data they employ a
theoretical method using a much broader and stronger bath
spectral density than that used in [13] that strongly suppresses
the coherent oscillations of the type shown in in Fig. 4. Here
we adapt the spectral density employed in the supplementary
information of [23],

J (ω) = γOhmωe−ω/ωOhm
c + 2

π

S�3
r ω�r(

�2
r − ω2

)2 + ω2�2
r

(29)

with the parameters listed there [56] [see Figs. 6(a) and 6(b)
for a plot of this function].

To gain some insight into this parameter regime, we first
truncate the FMO space to only the first two-sites coupled to
a single bath. This gives a reduced total Hamiltonian similar
to our earlier examples,

Hred = ε

2
σz + �σx (30)

with a coupling operator to a single bath Q = σz/
√

2, where
the factor

√
2 arises in the reduction of the original two-bath

model to the normal modes of a single-bath model (see [57]
for more details on this step in the reduction). Using the FMO
parameters we employed earlier we find ε = −120 cm−1 and
� = −87.7 cm−1, and again use T = 300 K.

We then simulate this reduced system using the HEOM in
two ways: First we do a very rough approximation using a sin-
gle overdamped Drude-Lorentz spectral density, then we do a
more nuanced fit using two underdamped spectral densities.
We then repeat the simulations using the reaction-coordinate
(RC) approach [7], a method that is more approximate than
the HEOM but known to perform well at high temperatures
[58] even with broad spectral densities.

Importantly, the RC method gives us access to a density
operator for the original system plus an effective collec-
tive “reaction coordinate” mode, from which we can obtain
system-environment properties less directly accessible with
the HEOM. In addition, since the RC approach amounts to
performing a Bogoliubov transformation on the original bath
modes combined with tracing out a residual environment, we
can calculate the system-RC entanglement via quantities like
the negativity. We expect this to be a lower-bound on the
entanglement between the system and the original full envi-
ronment (since said entanglement cannot be increased by local

FIG. 6. (a) Shows a fit of the spectral density J (ω) from Eq. (29)
with a single overdamped Drude-Lorentz spectral density function,
giving γ = 637 cm−1 and λ = 300 cm−1. (b) Shows a fit instead
using two under-damped Brownian motion spectral densities, giv-
ing α2

1 = 0.11ω3
c,1, ωc,1 = 900 cm−1, �1 = 800 cm−1, and α2

2 =
0.25ω3

c,2, ωc,2 = 500 cm−1, �2 = 990 cm−1. (c) Shows the HEOM
and RC results obtained for dynamics of several matrix elements on
the two-site dimer model using the fit from (a), while (d) shows the
same using the fit from (b). The RC and HEOM produce comparable
results, and the choice of fitting function has little influence on the
system dynamics in this case. (e) Shows the entanglement between
system and RC mode(s) as determined by the negativity using the
single RC mode model for the fit in (a) and and two RC modes using
the fit in (b).

operations and classical communication), if the perturbative
approximation for deriving a master equation for the residual
bath modes holds.

Figure 6 demonstrates the results from these various ap-
proaches. First of all, we use the exact HEOM method to
validate the more approximate RC method in this parameter
regime, and we see that for both choices of spectral densities
the methods produce identical system population dynamics
and steady states, and that both spectral density choices pro-
duce essentially the same result. This appears to be because
the large coupling at low frequencies dominates the system
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dynamics and causes quick suppression of coherent dynamics
in both the site [ρ11 in Figs. 6(c) and 6(d)] and eigenbases [ρge

in Figs. 6(c) and 6(d)].
Furthermore, Fig. 6(e) shows the result of calculating the

negativity between the system and the single RC mode used
for the overdamped Drude-Lorentz spectral density, and the
two modes used for the two-underdamped spectral densities.
We observe dynamics in this quantity up to several 100 fs and
significant nonzero steady-state values in both cases. Note that
the nonsecular master equation used to describe the residual
bath of the reaction-coordinates can sometimes induce non-
positive eigenvalues in the RC modes themselves, as it does
not necessarily preserve positivity. This potentially signals
the start of a breakdown of the perturbative approximation
needed to derive this master equation, and thus suggests a
limit on how much we can infer about the original system-bath
entanglement. However, for the parameters used in Fig. 6,
negative eigenvalues only appear at very short times and are
small compared to the negativity values shown in Fig. 6(e).

In a more complex model involving more sites, we expect
the negativity between the first two sites and the environment
to decay with time as the electronic excitation moves through
the complex. Nevertheless, these results suggest that observ-
ing electronic coherence alone can be insufficient to determine
whether nontrivial system-environment correlations can be
neglected, particularly when the effective coupling to the envi-
ronment is on the order of the system energies. In addition, we
see here the benefit of combining the exact HEOM with more
approximate but nuanced methods, like the RC approach.

E. Example 3: Quantum heat transport

In the examples discussed so far, we have investigated
the time evolution of the system density matrix alone. An
intriguing feature of the HEOM is that it also allows us to
study observables that depend on the state of the environment,
which is encoded in the auxiliary density operators (ADOs).
In this example, we will demonstrate this feature by calculat-
ing the quantum heat current in a two two-level system setup.
The heat transport in this setup was originally studied by Kato
and Tanimura in Ref. [24]; we here show that their results can
be reproduced with ease using our framework.

The setup consists of two coupled two-level systems,
which are each in turn coupled to an individual heat reservoir.
The Hamiltonian describing the two-level systems is

HS = ε

2

(
σ 1

z + σ 2
z

) + J12
(
σ 1

+σ 2
− + σ 1

−σ 2
+
)
, (31)

where ε denotes the level splitting, J12 the coupling between
two-level systems, and σ K

z,± denotes the usual Pauli matri-
ces for the K th two-level system. Each reservoir is modeled
as a continuum of harmonic modes with an overdamped
Drude-Lorentz spectral density as defined in Eq. (15). The
multi-reservoir setup can be easily treated using the HEOM
by including a bath index K ∈ {1, 2} in the multi-index of the
ADOs. The bath coupling operators are given by QK = σ K

x .
A temperature difference T1 > T2 induces heat transport in

the setup. Due to the second law of thermodynamics, the heat
flow is on average directed from the hot side to the cold one.
Our goal is to determine the individual heat currents between

FIG. 7. HEOM results for the steady-state heat current in the two
two-level system setup. The parameters were chosen as follows: γ1 =
γ2 = 2ε, T1 = 2.02ε, T2 = 1.98ε, and λ1 = λ2 = ζ̄ (J12/2), where
the dimensionless parameter ζ̄ parametrizes the system-bath cou-
pling strength. This plot is a reproduction of the HEOM-curves in
Figs. 3(a-i) to 3(a-iii) of Ref. [24]. The code for generating this
figure can be found in example notebook 3 [26]

the system and the reservoirs, which are generally given by
jK (t ) = ∂t 〈HK

B 〉 with HK
B being the Hamiltonian of the K th

reservoir. These can be determined from the ADOs as follows
[59]:

jK = �K
T tr[[[HS, QK ], QK ] ρ] − 2CK

I (0) tr
[
Q2

Kρ
]

+
∑
j=R,I

NK
j∑

k=1

γ
j;K

k tr[QKρ ( jk;K )]. (32)

We here added indices signifying the reservoir-dependency
to the rates γ

j;K
k , the cut-offs NK

j , the correlation function
CK (t ) and the Tanimura-terminator �K

T . The symbol ρ ( jk;K )

denotes the level-1 ADO corresponding to the multi-index
(0 . . . 0, 1, 0 . . . 0) with only a single nonzero entry at the
indicated position.

In our library, the HierarchyADOsState class facilitates
the extraction of specific ADOs from the full state of the
simulation. The formula in Eq. (32) can therefore be easily im-
plemented, as we demonstrate in detail in example notebook
3 [26]. In Fig. 7, we show the behavior of the steady-state heat
current jss = j2,ss = − j1,ss in the high-temperature regime
as a function of the system-reservoir coupling strength. The
figure shows that the heat current vanishes both for large and
small coupling strengths and reaches a maximum in the inter-
mediate regime. The behavior at large coupling strengths is
caused by a quantum Zeno-like effect, where a strong system-
reservoir interaction suppresses the coherence of the system,
inhibiting the energy flow between the individual two-level
systems [24,60,61].

F. Example 4: Driven systems and dynamical decoupling

Another powerful aspect of the HEOM lies in the fact that
it is valid for any system Hamiltonian, even time-dependent
ones. As a concrete example, we show here how it can be
used to study dynamical-decoupling, a common tool used to
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“undo” dephasing from an environment, even for finite pulse
duration (i.e., away from the “bang-bang” pulse limit).

The general idea of dynamical decoupling is that dephasing
from a non-Markovian environment can be undone by the
application of certain choices of fast pulse-control on the
system itself. We follow the protocol outlined in [62], which
involves rapid applications of π pulses, interspersed with peri-
ods of interaction with the environment. The intuitive concept
is that if these pulses act faster than the memory time of the
bath, by swapping the state of the two-level system, the effect
of the environment can be reversed due to a change in sign in
the interaction.

Here we choose again a Hamiltonian in the form of
Eq. (13), but setting � = 0 and adding a time-dependent drive
term,

HS = ε

2
σz + HD(t ). (33)

We use the same coupling operator as Eq. (14), and the same
spectral density as Eq. (15). We move to an interaction picture
with respect to the time-independent part of HS , such that the
drive Hamiltonian has the form

H̃D(t ) =
np∑

n=1

Vn(t ) σx. (34)

The pulse is chosen to be, for equal spacing �t be-
tween pulses, Vn(t ) = V̄ , for n�t + (n − 1)τp � t � n�t +
nτp, and zero elsewhere, [see Fig. 8(b) for a schematic of the
pulse shapes]. The period of the actual pulses themselves is
τpV̄ = π/2. Note that in comparison to [62] we omit some
phase factors that appear if one considers a more realistic
model of the drive.

In Fig. 8(a) (see also example notebook 4 [26]) we show
the time evolution of the coherence of the two-level sys-
tem assuming the initial condition ψ (t = 0) = 1√

2
(|0〉 + |1〉).

When the τp is chosen to be fast (and the corresponding V̄
strong so that V̄ τp = π/2) we see the expected cancellation
of dephasing occurring (green curve). If the pulse is too slow,
we see the onset of dephasing (blue curve). The decoherence
expected with no pulse at all is also shown (orange dashed
curve).

It has been shown [63,64] that for environments with very
sharp cut-offs [65] (e.g., step functions), a squared-sinusoidal
choice of spacing is optimal [a scheme referred to as Uhrig
dynamical decoupling (UDD)]. In that case, one sets Vn(t ) =
V̄ when

sin2[πn/(2np + 2)](Tmax − npτp) + (n − 1)τp

� t � sin2[πn/(2np + 2)](Tmax − npτp) + nτp, (35)

and zero elsewhere. This produces pulses that are clustered
more closely together at the beginning and end of the overall
time-evolution period Tmax.

The Drude-Lorentz spectral density we use for this ex-
ample has a very long tail, and thus this approach is not
guaranteed to be optimal at all times. In Fig. 9 we demonstrate
this by comparing the final coherence ρ01 at time t = Tmax

as a function of γ and for 100 decoupling pulses. We see
that for smaller γ the UDD outperforms the equally spaced
case, but as we increase γ its performance drops. Interestingly,

FIG. 8. Example of dynamical decoupling showing the coher-
ence ρ01 of a two-level system coupled to an environment with a
Drude-Lorentz spectral density. Here � = 0, λ = 1 × 10−4V̄f , γ =
1 × 10−2V̄f , T = 0.1V̄f , where V̄f is the amplitude of the fast drive.
For the slow drive we choose V̄ = 0.02V̄f , and in both cases we
choose a pause period of �tV̄f = 10. The lower figure (b) shows
the drive amplitudes as a function of time. In (a) we see that very
slow pulses perform much worse than fast pulses, as expected due
to the competition with the bath memory time. Note that here and
in Fig. 9 we operate in a rotating frame with the drive, and assume
that the system frequency is much larger than the drive amplitude
(ε � V̄ ) such that the rotating wave approximation is valid. The code
for generating this figure can be found in example notebook 4 [26].

as expected from the discussions in [63,64], the coupling
strength λ does not reduce the relative effectiveness of the
UDD appreciably. These results demonstrate how HEOM can
be used to validate control schemes in realistic scenarios such
as finite pulse length and realistic choices of spectral density.

To evaluate time dependence in the Hamiltonian, our code
mirrors the typical approach taken for standard solvers used in
the QuTiP package. The time-dependence is defined through
a function that is sent alongside the dependent part of the
Hamiltonian in a list. For the above example, this follows
simply as

H = [Hsys, [sigmax(), drive]]
where drive is a function determining the time-dependence.
The various parameters can also be defined as arguments for
the function. Our code also accepts QobjEvo format for the
time dependence.

G. Arbitrary spectral densities

A great deal of effort has been made in the literature to
optimize the analytical decomposition of the Drude-Lorentz
spectral density into exponentials, so as to minimize the nu-
merical overhead in the HEOM. For more general spectral
densities, one can consider two approaches: fitting the spectral
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FIG. 9. Example of dynamical decoupling showing the coher-
ence ρ01, after a total evolution time Tmax = 1000(1/V̄ ), of a
two-level system coupled to an environment with a Drude-Lorentz
spectral density versus γ , the width (inverse memory time) of the
bath. Each run includes 100 dynamical decoupling pulses, and we
compare equally spaced pulses (labelled DD in the figure legend)
with the UDD scheme described in the text. The parameters here are
chosen as � = 0, λ = 0.001V̄ , 0.0005V̄ , 0.00005V̄ , and T = 0.05V̄ .
There is a clear crossover for larger values of γ where the UDD
scheme becomes less efficient than the standard equally spaced
scheme (DD). The code for generating this figure can be found in
example notebook 4 [26].

density directly with Drude-Lorentz or underdamped spectral
densities, or evaluating the correlation functions and fitting
those directly. Both approaches have been discussed in the
literature [66,67], with the general consensus being that the
optimal choice depends on what one is evaluating—the dy-
namics of short or long time scales, the spectral response of
the system, etc. A more recent method also suggests general-
izing the types of functions used in the decomposition of the
correlation functions [36].

To compare the different fitting approaches, we can con-
sider a class of spectral densities with polynomial frequency
dependence and exponential cut-off,

J (ω) = αωsω1−s
c exp

(
− ω

ωc

)
. (36)

The correlation functions for these spectral densities are
[68]

C(t ) = 1

π
αω1−s

c β−(s+1)�(s + 1)

×
[
ζ

(
s + 1,

1 + βωc − iωct

βωc

)

+ ζ

(
s + 1,

1 + iωct

βωc

)]
, (37)

wherein � is the Gamma function and ζ is the generalized
Zeta function.

Here we present one simple example of fitting the Ohmic
case s = 1, but the following can also be applied to other
examples. If one chooses to fit Eq. (36) directly, Meier and
Tannor [18] proposed using a set of underdamped spectral

FIG. 10. A demonstration of the fitting of the spectral density of
an Ohmic environment with exponential cut-off [Eq. (36) with s = 1]
using kJ = 4 underdamped Brownian motion terms. We use bath
parameters α = 3.25 and T = ωc. The resulting correlation functions
are shown in (a) and (b), the original and fit spectral density is shown
in (c), and the resulting power spectrum is shown in (d). In evaluating
the correlation functions we use only one Matsubara term K = 1.
The residual error seen in the real part is then compensated for using
a terminator. The code for generating this figure can be found in
example notebook 1d [26].

densities in the form

JF
U (ω) =

kJ∑
i=1

2α2
i �

′
iω[{(ω + �i )2 + �′2

i }
{
(ω − �i )2 + �′2

i

}] . (38)

Here, in converting this decomposition into the same form as
those in Sec. II C, we set �′

i = �i/2. In Fig. 10 (see also exam-
ple notebook 1d [26]) we show an example of such a fitting,
for an Ohmic environment s = 1, using kJ = 4 terms. With
the fitting parameters we can also reconstruct the correlation
functions and power spectrum, as a check of validity of the fit.

Instead, if we choose to fit the correlation functions, we
treat the real and imaginary terms separately, and expand them
as

CF
R (t ) =

kR∑
i=1

ci
Re−γ i

Rt cos
(
ωi

Rt
)
,

CF
I (t ) =

kI∑
i=1

ci
I e

−γ i
I t sin

(
ωi

I t
)
. (39)

In Fig. 11 we show the fitting for the same parameters as
Fig. 10 using kR = kI = 3 terms, as well as the reconstructed
power spectrum. One can see that at negative frequencies this
fit has some residual oscillations, which may lead to some
small error in the dynamics. In both spectrum and correlation
function fitting, it is important to restrain the fitting parameters
to some degree, as arbitrary parameters can make achieving
convergence in the resulting HEOM simulation difficult.

We compare the results of both approaches in Fig. 12 for
parameters close to Fig. 2, except with slightly narrower bath
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FIG. 11. A demonstration of the fitting of the correlation func-
tions of an Ohmic environment with exponential cut-off [Eq. (36)
with s = 1] using kR = 3 and kI = 3 exponential terms terms. We use
bath parameters α = 3.25 and T = ωc. The original and fit correla-
tion functions are show in (a) and (b). The resulting spectral density
and power spectrum are also shown in (c) and (d) respectively. The
code for generating this figure can be found in example notebook
1d [26].

FIG. 12. Dynamics of the excited state population ρ11(t ) for a
two-level system coupled to an Ohmic environment with exponen-
tial cut-off [Eq. (36) with s = 1] for α = 3.25, T = 0.5ωc, ε = 0,
� = 0.2ωc. We show results for fitting the spectral density with
kJ = 1, and 3 underdamped Brownian motion terms, and for fitting
the correlation functions with kr = kI = 1 and 3 terms. For the case
where we fit the spectral density, we use Nk = 1 and the standard
terminator to approximate the other Matsubara terms. Here, and in
Fig. 13(a) HEOM truncation of Nc = 11 is used to get convergence.
Examples of these fits used to generate the data in this figure are
shown in Figs. 10 and 11. The code for generating this figure can be
found in example notebook 1d [26].

FIG. 13. Difference in the dynamics as evaluated by the HEOM
and that given by an analytical result for the coherence |ρ10(t ) − ρana

10 |
for a two-level system initially prepared with maximal coherence,
and coupled to an Ohmic environment with exponential cut-off
[Eq. (36) with s = 1] for α = 3.25, ε = 0, and � = 0. The latter
means that, unlike Fig. 12, this result is integrable, and we can com-
pare to an analytical result. (a) is for T = 0.5ωc, as in Fig. 12, while
(b) is for a lower temperature of T = 0.25ωc. In (a) we show re-
sults for fitting the spectral density with kJ = 1, and 3 underdamped
Brownian motion terms, and for fitting the correlation functions with
kr = kI = 1 and 3 terms. For the case where we fit the spectral den-
sity, we here use Nk = 1 and the standard terminator to approximate
the other Matsubara terms. In (b) the lower temperature means we
have to both increase the number of spectral functions and employ
more Matsubara terms to reach results comparable to the correlation
function fitting results.

and longer time-scales. More importantly, for the spectral
density decomposition, we employ a terminator to compen-
sate for the relatively low truncation of the Matsubara terms
(see Fig. 10). The number of ADOs, and hence numerical
cost, with the correlation fitting method is 2(kR + kI ). For the
spectral density fitting each kJ term adds two exponents for
the non-Matsubara term, and a single exponent for each Mat-
subara term. Hence the number of exponents is kJ (2 + NK ).
In Fig. 12 we see that kR = kI = 3 gives comparable results
to kJ = 3, Nk = 1 (Nk = 0 performs badly and is not shown),
implying similar numerical cost for approximately the same
accuracy in this case (with slightly less exponents needed for
the spectral fitting approach).

However, as one lowers the temperature, more and more
Matsubara terms are needed in the spectrum approach. This is
corroborated by Fig. 13, which compares the fitting parame-
ters in the HEOM against the analytical result available when

013181-12



QuTiP-BoFiN: A BOSONIC AND FERMIONIC … PHYSICAL REVIEW RESEARCH 5, 013181 (2023)

we set the system Hamiltonian to commute with the bath cou-
pling operator (here achieved by setting � = 0). First we see
that, in Fig. 13(a), for the same parameters and temperature as
Fig. 12, for kJ = 3 and kR = kI = 1 we see similar magnitude
of accuracy, while kR = kI = 3 does exceptionally well. In
Fig. 13(b), at a temperature lowered by a factor of a half
compared to Fig. 12, we find that the spectral decomposition
requires both more spectral terms and more Matsubara terms
to be on par with the correlation function fitting result. In
particular, the cyan curve for kR = kI = 3 requires twelve ex-
ponents in total, while the blue curve for KJ = 4 and NK = 4
requires 24 exponents, suggesting much lower numerical cost
for correlation function fitting in the low temperature regime.

In all cases we use a standard least-squares algorithm for
the fitting procedure. More sophisticated fitting approaches
[67], or taking advantage of known properties of the bath
correlation functions, may produce better overall results. One
may also consider fitting the power spectrum as a third method
(which equates to fitting the Fourier transform of the correla-
tion functions). Also, while one can use analytical limits in
some case to benchmark the results (like the pure dephasing
result in Fig. 13), in general one may lack a way validate any
given result. One potential strategy is to perform both fitting
procedures (spectrum and correlation functions), and check
convergence of the system dynamics in both cases (large
differences between them suggest one or both contain non-
negligible errors). A more formal refinement of this approach
may be to develop error bars on a given result based on the
different fitting procedures used, akin to the error bars used in
[8] based on noise introduced into the fitting procedure.

III. FERMIONIC ENVIRONMENTS

A. Basic definitions

In the previous section we summarized how a bath of
bosonic modes can influence a discrete system. Another com-
mon scenario is that of a macroscopic conductor coupled
to a microscopic impurity, in which case one must consider
how discrete states interact with a continuum of fermionic
modes. Such a scenario is traditionally analyzed with a range
of many-body techniques, but in recent years it was shown that
the HEOM method can be applied to this scenario as well.
Here we summarize the basic definitions, and present some
examples from the fields of quantum transport and single-
molecule electronics.

Again, in the standard second-quantized Hamiltonian for-
malism, we can write the interaction of a fermionic mode c,
{c, c†} = 1, with support on the system space, with a fermonic
bath,

H = HS +
∑

k

εkd†
k dk +

∑
k

fk (d†
k c + c†dk ), (40)

where, as with the bosonic case, HS is the free Hamiltonian of
the system (which can contain arbitrary degrees of freedom)
and HB = ∑

k εkd†
k dk is the free Hamiltonian of the electronic

reservoir.
As with the bosonic case, we can characterize the free

environment through its second-order correlation functions.
However, now we discriminate between the order in which
excitations are created or destroyed in the environment, so that

we define two different correlation functions, defined by the
choice of σ = ±,

Cσ (t ) = 1

2π

∫ ∞

−∞
dωeσ iωt J (ω) fF [σβ(ω − μ)]. (41)

In the following we primarily follow the notation and choices
made by Schinabeck et al. [25]. Unlike in the bosonic case,
we do not divide the correlation functions explicitly into real
and imaginary parts, but in the form

Cσ (t ) ≈
lmax∑
l=0

ησ,l e
−γσ,l t (42)

where η and γ can be complex numbers.
The hierarchical equations of motion for such an environ-

ment [25,69,70] are then written as

ρ̇
(n)
jn... j1

=
(
L −

n∑
m=1

γ jm

)
ρ

(n)
jn... j1

− i
∑

j

Aσ̄ ρ
(n+1)
j jn... j1

− i
n∑

m=1

(−)n−mC jmρ
(n−1)
jn... jm+1 jm−1... j1

, (43)

where now j = (σ, l ) is a multi-index, L = −iH×
S is the

normal system evolution, and as before ρ (0) is the density op-
erator of the system and n > 0 are auxiliary density operators
(ADOs). The superoperators are

Aσ̄ ρ (n) = cσ̄ ρ (n) + (−)nρ (n)cσ̄ , (44)

Cσ ρ (n) = ησ,l c
σ ρ (n) − (−)nρ (n)η∗

σ̄ ,l c
σ . (45)

Here we use σ̄ = −σ , c+ = c†, and c− = c. The above def-
initions are easily extended to multiple baths by extension of
the index j, as in the bosonic case. Still following the notation
of [25] in this generalization, we will refer to the multi-index
j = (K, σ, l ), such that there are Nj = 2NK (lmax + 1) indices
where NK are the number of reservoirs, and the factor of two
arises for the two signs of σ , and (lmax + 1) are the number
of exponents in the decomposition of the reservoir correlation
functions.

The primary differences between the bosonic and
fermionic HEOM are the following. Firstly, in the fermionic
HEOM multi-indices j can only take the values 0 or 1, due
to the fermionic nature of the operators in the environment,
and thus the truncation parameter NC is the maximum amount
of nonzero indices in j, and NC � Nj(equality implies no trun-
cation). Secondly, because fermionic operators anti-commute,
the ordering of the indices is now important. Hence the various
parity terms that arise in Eq. (43) depending on how many
nonzero indices are in the list. This is, in particular, vital
for the second term in Eq. (43), where on raising an index
value from 0 to 1, one can notice that we append the new
nonzero index to the left of the list ρ

(n+1)
j jn... j1

. Thus one must
then move the index to its appropriate position in the unique
multi-index j. In doing so, we pick up an additional parity
on this term depending on how many nonzero terms appear
between the position on the left and default position of said
ADO in the list. Note that in other implementations [32], an
additional optimization is done by taking advantage of the
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Hermiticity relation between ADOs with conjugate σ . We do
not implement that optimization at this stage.

To demonstrate the application of this method, we employ
a Lorentzian spectral density of the form

J (ω) = ηW 2

[(ω − μ)2 + W 2]
, (46)

where μ is the chemical potential, W is the width of the envi-
ronment, as before, and η a coupling strength. For fermions,
the distribution in Eq. (41) is

fF (x) = [exp(x) + 1]−1. (47)

We again have the choice of decomposing the correlation
functions into exponentials in several different ways. The
Matsubara decomposition proceeds similarly to the bosonic
case. Thus, here we present the Padé decomposition, which
approximates the Fermi distribution as

fF (x) ≈ f approx
F (x) = 1

2
−

lmax∑
l

2kl x

x2 + ε2
l

, (48)

where kl and εl have to be evaluated numerically, and depend
on the choice of lmax (see [16], and the example notebooks 5a
and 5b [26], for details). Performing this decomposition, and
evaluating the integral for the correlation functions gives (see
Supplemental Material of [25])

η0 = ηW

2
f approx
F (iβW ), (49)

γσ,0 = W − σ iμ, (50)

ηl 
=0 = −i · km

β
· ηW 2

− ε2
m

β2 + W 2
, (51)

γσ,l 
=0 = εm

β
− σ iμ. (52)

The Padé decomposition we used for the bosonic case follows
in a similar way.

B. Observables

As with the bosonic method, one can directly solve for the
dynamics and steady-state properties of system observables.
Generally in transport problems, for which the fermionic
method is particularly useful, other quantities of interest are
the steady-state current, conductance, higher-order transport
statistics, and spectral properties. The current, for example,
depends on properties of the environment, and can be ex-
tracted from the auxiliary density operators, rather than just
the system density matrix. It is related to the first-order ADOs
(see section 2.2.4 of [71] for a detailed derivation),

〈IK〉 = −ie
∑

l

TrS
[
cρ (1)

K,+,l − c†ρ
(1)
K,−,l

]
. (53)

As with the heat-engine examples discussed earlier, the
HierarchyADOsState class allows the extraction of specific
ADOs from the results. These can then be straightforwardly
used with the above formula (see example notebooks 5a and
5b [26]).

FIG. 14. The analytical current and the result from the HEOM,
using the Padé decomposition, for the single-impurity model, as a
function of the bias voltage �μ, for η = 0.01 eV, T = 300 K, and
W = 1 eV, and the impurity energy is ε = 0.3 eV. The code for
generating this figure can be found in example notebook 5a [26].

C. Code functionality

The functionality of the fermionic solver is largely the
same as the bosonic one. Each bath is specified via its decom-
position into correlation functions, and the associated system
operator coupling operator should be provided as a single
operator associated with the coupling to the dk modes in the
bath (i.e., the single fermion c in the examples below). We
provide a Matsubara (LorentzianBath) and Padé decom-
position (LorentzianPadeBath) of the Lorentzian spectral
density given in Eq. (46), or a generic bath (FermionicBath).
Examples of this functionality can be found in the documen-
tation and the example notebooks [26].

D. Example 1: Integrable single-impurity model

To benchmark the accuracy of the code it is useful to con-
sider an integrable example of the single-impurity Anderson
(SIAM) model. In this case we consider a single spin-less
fermionic impurity coupled to two reservoirs

HSIAM = c†c +
∑

K=L/R,k

εK,kd†
K,kdK,k

+
∑

K=L/R,k

fK,k
(
d†

K,kc + c†dK,k
)
. (54)

We assume the reservoirs are described by Eq. (46) and
Eq. (47) but generalize them to have different chemical po-
tentials so that the impurity sees a bias �μ = μL − μR. The
steady-state current is a well-known analytical result [72],

〈I〉 =
∫ ∞

−∞

2dω

π

JL(ω)JR(ω)[ f {β(ω − μL )}− f {β(ω − μR)}]
[JL(ω)+JR(ω)]2+4[ω − ε− λL(ω)− λR(ω)]2

where the Lamb shifts are

λL(ω) = (ω − μL )JL(ω,μL )

2W
. (55)

λR(ω) = (ω − μR)JR(ω,μR)

2W
. (56)

In Fig. 14 we show the analytical current and the result
from the HEOM, using the Padé decomposition, as a function
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FIG. 15. Current versus the bias voltage for a single impurity
coupled to a vibronic mode with ε = 0.3, eV � = 0.2 eV, λ =
0.12 eV, T = 300 K, W = 104 eV, and η = 0.01 eV. Note that
increasing lmax tends to increase the current at large bias voltages,
while increasing the other convergence parameter, the bosonic cut-
off N , tends to decrease it, gradually giving a converged result in the
vicinity of the red curve. The code for generating this figure can be
found in example notebook 5b [26].

of the bias voltage �μ, for η = 0.01 eV, T = 300 K, and
W = 1 eV, with the impurity energy ε = 0.3 eV. From this
figure we see quite clearly that the current flow through the
impurity is zero until the bias window is equal or larger than ε.
The current then follows quite closely the energy dependence
of the reservoir power spectrum multiplied by the Fermi func-
tion. We note that, as discussed in-depth in [73], the HEOM
here converges at nmax = 2.

E. Example 2: Vibronically assisted transport

Moving away from this simple, integrable, case, we con-
sider the example of a single impurity coupled to a vibronic
mode. Such a model is widely discussed in the literature of
single-molecule electronics and nanosystems [74,75]. Here
we explicitly reproduce an example from Fig. 1(a) in [25].
The model used there considers Eq. (54) with the addition of
an explicit vibronic degree of freedom in terms of a single
bosonic mode,

Hvib = HSIAM + �a†a + λ(a + a†)c†c. (57)

In solving this example one has several options: treat the
bosonic mode as a HEOM bosonic environment (as done in
[74]), include it explicitly in the system Hamiltonian with a
discrete Fock space representation, perform a polaron trans-
formation first (as done in [25]), or finally, perform a polaron
transform and absorb the vibronic coupling into the lead
couplings (which is then treated with an additional approx-
imation, as done in [76] and [75]). We choose the second
option here, and truncate the bosonic Fock space at a level
N which gives convergence. It is equivalent to the first and
third options, while being the most general approach for the

demonstration of our library, and is also numerically more
difficult than the polaron and direct HEOM approach.

In Fig. 15 we show an example of the current versus
the bias voltage for ε = 0.3, eV, � = 0.2 eV, λ = 0.12 eV,
T = 300 K, W = 104 eV, and η = 0.01 eV. We see that at
large bias voltages we need a large number of bosonic Fock
states to see convergence in the current, consistent with the
Appendix of [25]. The result appears to converge to the
result reported in that paper for lmax = 5 and N = 34 and
NC = 2. Note that, if one instead employs the polaron trans-
form approach, a higher-tier result (e.g., NC = 3 here) can
be obtained at little numerical cost because its affect on the
tier below can be found analytically. We do not employ this
optimization here; however, as it is not generally applicable
to all problem Hamiltonians. Interestingly, while the current
seems to converge, the correlation functions obtained with the
Padé decomposition are not converged (due to the wide-band
limit of W = 104 eV). This “quicker” convergence of sys-
tem properties occurs because, for fermionic environments,
certain highly over-damped contributions to the bath corre-
lation functions do not contribute to the system dynamics
(see the supplementary information of [77,78] for a detailed
proof).

IV. CONCLUSIONS

The HEOM method has, in the last ten years, grown in
popularity and applicability. The package we present in this
paper [43,45,46] captures most of this general applicability in
being able to treat both bosonic and fermionic environments,
the modeling of multiple environments and time-dependant
system Hamiltonians, as we have demonstrated above. We
have reproduced seminal results presented elsewhere, partic-
ularly the FMO treatment of [13] and the vibronic transport
of [25], and also demonstrated some applications, including
dynamical decoupling with finite length pulses, demonstrating
potential future applications in quantum control and noisy
intermediate-scale quantum computing.

Future planned enhancements include full integration into
QuTiP’s quantum control and QIP libraries, support for time-
dependent bath parameters (e.g., time-dependent chemical
potential in fermionic systems), and support for solving prob-
lems with a system coupled to a fermionic and bosonic
environment simultaneously within the HEOM description
[74]. For improved efficiency, further optimization of the
fermionic solver construction (e.g., employment of the her-
miticity relation discussed in [41] and [32]) is planned, as
well as more robust and powerful parallel computing support,
including GPU support.
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