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Steering-enhanced quantum metrology using superpositions of noisy phase shifts
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Quantum steering is an important correlation in quantum information theory. A recent work [Nat. Commun.
12, 2410 (2021)] showed that quantum steering is also useful for quantum metrology. Here, we extend the
exploration of steering-enhanced quantum metrology from single noiseless phase shifts to superpositions of
noisy phase shifts. As concrete examples, we consider a control system that manipulates a target system to
pass through a superposition of either dephased or depolarized phase shifts channels. We show that using such
superpositions of noisy phase shifts can suppress the effects of noise and improve metrology. Furthermore,
we also implemented proof-of-principle experiments for a superposition of dephased phase shifts on the IBM
quantum experience, demonstrating a clear improvement on metrology.
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I. INTRODUCTION

Quantum theory allows one party (Alice) to remotely
steer another party (Bob) by her choice of measurements.
Such a quantum phenomenon is called quantum (or Einstein-
Podolsky-Rosen) steering. Although the concept of quantum
steering was first proposed by Schrödinger in 1936 [1], its
information-theoretic description was formulated only quite
recently, i.e., in 2007 [2–5]. Nowadays, not only many
experimental realizations [6–11] of quantum steering have
been demonstrated, but also various theoretical developments,
such as quantum foundations [12–18], and one-sided device-
independent quantum information tasks [19–25] have been
proposed.

In addition to the information-theoretic formulation, Reid
and co-workers [26,27] investigated quantum steering from
the viewpoint of the local uncertainty principle [28]. The idea
is that the complementary relations between a pair of Bob’s
noncommutative observables could violate the Heisenberg’s
limit, if the correlation shared by Alice and Bob is steerable. In
other words, the local uncertainty principle can be regarded as
a criterion of steering. Recently, Ref. [29] showed that Reid’s
criterion can be extended to the domain of quantum metrology
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[30–34] where Bob aims to estimate an unknown phase-shift
θ generated by a Hamiltonian H . An important result is that
there exists a complementary relation between the variance
of H and the precision of the θ estimation quantified by the
quantum Fisher information (QFI) [35–41]; and this result
has also been demonstrated in an optical system [42]. This
complementary relation can be regarded as not only a metro-
logical steering inequality (MSI), but also a generalized local
uncertainty relation.

The metrological steering task has so far only been inves-
tigated under a noiseless scenario where the phase shift is
generated by a perfect unitary evolution. However, in a real
experimental setup, the effects of noise are ubiquitous such
that the phase shifts could deviate from a perfect unitary and,
thus, neutralize quantum advantages in metrology [43–47]. A
typical source of noise comes from the inevitable interaction
between a given system and its uncontrollable environments.
A question arises on how to mitigate the effects of these
undesired interactions [48,49]. Such a question has been ad-
dressed by applying many different methods, e.g., engineered
reservoirs [50], measurement-error mitigation [48,51], and
dynamical decoupling [52].

Recently, a novel approach, termed superposition of quan-
tum channels, has been used to enhance quantum capacity
in communication tasks [53–59]. In this framework, multiple
quantum channels can be used. Furthermore, an additional
quantum control was introduced to determine which chan-
nel for the target system to pass through. Hence, when the
control system is prepared in a superposition state, the target
system can go through these channels in a quantum-
superposed manner. One can take advantage of the quantum
interference between these channels to alleviate the effects of
noise [60–62].
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In this paper, we consider the cases where the phase shifts
are distorted by either pure dephasing noise or depolarizing
noise. In this sense, we denote the corresponding noise-
distorted phase shifts as dephased and depolarized phase
shifts, respectively. Intuitively, the enhancement of the esti-
mation precision decreases when the noise strength increases.
Furthermore, we investigate the influences of a superposition
of both dephased and depolarized phase shifts by comparing
different (coherent and incoherent) states of the control sys-
tem. We show that the control system in a coherent state can
mitigate the noise and enhance the violation of the MSI. Fi-
nally, we experimentally implemented a metrological steering
task with a superposition of dephased phase shifts on the IBM
quantum (IBM Q), experience [63–66]. Our experimental re-
sults clearly show that the enhancement of the MSI violation
is due to the initial coherence of the control system. We also
provide noise simulations that take into account the inherent
errors of the IBM Q device.

The rest of this paper is organized as follows. In Sec. II, we
review the metrological steering task proposed in Ref. [29]
and extend the discussions to a scenario with a superposition
of noisy phase shifts. In Sec. III, we formalize the concept of
a superposition of noisy phase shifts, and we clearly show that
its usefulness for addressing the metrological steering task. In
Sec. IV, we show our experimental results obtained from the
IBM quantum experience. Finally, we summarize our results
in Sec. V.

II. A METROLOGICAL STEERING TASK

In this section, we briefly recall the steering-enhanced
quantum metrology proposed in Ref. [29]. We then extend
the discussion to a scenario with a superposition of dephased
(depolarized) phase shifts.

We start by formulating the noiseless metrological task
where the phase-shift θ is generated by a unitary channel
exp (−iHθ ) with a “generating” Hamiltonian H . We consider
a bipartite state ρAB shared by Alice and Bob. In each round
of the experiment, Alice performs a measurement labeled by
A. The probability to obtain the result a is denoted as p(a|A);
and the conditional reduced state of Bob’s subsystem is ρB,a|A.
After generating a local phase-shift θ , Bob’s conditional re-
duced state becomes ρB,a|A(θ ) = exp(−iHθ )ρB,a|A exp(iHθ ).
It is convenient to summarize the result by defining an as-
semblage as a set of (subnormalized) quantum states, namely,
{Bθ (a, A) = p(a|A)ρB,a|A(θ )}a,A,θ .

After the measurement, Alice sends the classical informa-
tion (a, A) to Bob. Based on this information, Bob can either
measure the observable H or estimate the phase-shift θ by
measuring an observable M. Note that for a given message
(a, A) from Alice, Bob can freely choose the observable M
to obtain the maximum sensitivity, quantified by the QFI
FQ(θ |ρB,a|A) [43,45,67]. Here, FQ(θ |ρ) := Tr[L2

θ ρ(θ )], where
Lθ is the symmetric logarithmic derivate satisfying ∂θρ(θ ) =
1
2 {Lθ , ρ(θ )} [32]. The optimal QFI and the optimal variance
of H can be defined, respectively, as [29]

FQ,opt := max
A

∑
a

p(a|A)FQ(θ |ρB,a|A),

�Hopt := min
A

∑
a

p(a|A)�[ρB,a|A(θ ), H],
(1)

FIG. 1. Illustration of steering-enhanced quantum metrology
with a superposition of quantum channels. Alice (A) and Bob (B)
share a bipartite state ρAB. Alice performs a measurement A and
obtains the corresponding outcome a. Then, Alice sends her informa-
tion (a, A) to Bob through a classical communication. A local phase
shift θ on Bob’s side is generated by a Hamiltonian H . Different
from Ref. [29], in which a phase shift is generated noiseless, we
use a system C to control the evolution of system B and create a
superposition of noisy phase shifts. When C is in state |0〉 (|1〉),
represented by the white (black) dot on the left, system B interacts
with the environment E1 (E2). After creating the superposition of
noisy phase shifts, Bob collects the conditional state and measure
on C. According to Alice’s information, Bob can decide to either
measure H or estimate the phase-shift θ through the measurement
M. Then, he can obtain the optimal variance �Hopt and the optimal
quantum Fisher information FQ,opt.

where �[ρ, H] = Tr[H2ρ] − Tr[Hρ]2. Note that, in general,
the QFI is evaluated for a given θ [68].

In modern terminology, the concept of local-hidden-state
(LHS) model is utilized to determine whether a given assem-
blage is steerable or not. More specifically, an assemblage
that admits a local-hidden-state model can be described
as [2]

BLHS
θ (a, A) =

∑
λ

p(λ)p(a|A, λ)ρB,λ(θ ) ∀ a, A, (2)

where {ρB,λ(θ )}λ,θ are quantum states and {p(a|A, λ)}λ con-
stitute a stochastic map, which maps the hidden variable λ

into a|A. If a given assemblage can be simulated by a local-
hidden-state model, it is unsteerable. Otherwise, it is steerable.
As reported in Ref. [29], when an assemblage is unsteerable,
the MSI can be derived as FQ,opt � 4 �Hopt. Here, we define
the violation V of the MSI, i.e.,

V := max(FQ,opt − 4 �Hopt, 0). (3)

Therefore, V > 0 implies that the assemblage is steerable.

III. A SUPERPOSITION OF NOISY PHASE SHIFTS

Throughout this paper, we consider that a noisy phase-shift
channel �θ can be described by a noiseless one followed by a
noisy channel � [44], i.e.,

�θ (ρ) = �(e−iHθρeiHθ ), (4)

where the noisy channel � commutes with the unitary U =
exp (−iHθ ), i.e., �(UρU †) = U�(ρ)U †, to guarantee that
H is still the generating Hamiltonian of θ in the output
noisy states. We now consider a scenario for superpos-
ing two identical noisy phase shifts as shown in Fig. 1.
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According to Ref. [54], a superposition of multiple chan-
nels is well defined if the implementation of each member
channel is specified. More specifically, according to the
Stinespring dilation theorem [69–71], there exist nonunique
system-environment models to describe the channel �θ ,
namely,

∃UBE(θ ), EE s.t. �θ (ρ) = TrE[UBE(θ )(ρ ⊗ EE)U †
BE(θ )], (5)

where UBE(θ ) denotes the system-environment global uni-
tary, and EE is the initial state of the environment. Here, we
introduce a quantum control system C to determine which
environment (i.e., E1 or E2,) affects the system B. We consider
that the total system is initially prepared in

ρtot = | j〉〈 j|C ⊗ ρ ⊗ EE1 ⊗ EE2 (6)

for j being either 0 or 1. In this case, the total evolution can
be described by

Utot = |0〉 〈0|C ⊗ UBE1 (θ ) + |1〉 〈1|C ⊗ UBE2 (θ ). (7)

The reduced state of C and B reads

ρCB(θ ) = TrE1,E2 [Utot (| j〉〈 j|C ⊗ ρ ⊗ EE1 ⊗ EE2 )U †
tot]

= | j〉〈 j|C ⊗ TrE j [UBE j (ρ ⊗ EE j )U
†
BE j

]

= | j〉〈 j|C ⊗ �θ (ρ). (8)

In other words, when C is prepared in state | j〉, B interacts
with the corresponding environment E j . Thus, if C is prepared
in an incoherent mixed state, i.e., (|0〉 〈0|C + |1〉 〈1|C)/2, sys-
tem B has equal probabilities to interact with either E0 or
E1. For simplicity, we consider that UBE1 (θ ) and UBE2 (θ ) are
isomorphic to each other (so EE1 = EE2 ); that is, two phase
shifts are implemented in the same way.

On the other hand, when the control C is prepared in
|+〉C = (|0〉C + |1〉C)/

√
2, we obtain

ρCB(θ ) = 1C

2
⊗ �θ (ρ) + (|0〉 〈1|C + |1〉 〈0|C)

2
⊗ T ρT †,

(9)
where T = TrE[UBE(1 ⊗ E )] characterizes the quantum in-
terference effect between these two channels [54]. The
interference effect occurs simultaneously with the nonzero
off-diagonal terms in C. In this case, the target passes through
a “superposition of noisy phase-shift channels.” Note that we
have omitted the subscripts for the environments because they
are isomorphic to each other.

Now, we perform a set of projective measurements,
{|+〉 〈+|C , |−〉 〈−|C} with |±〉 = (|0〉 ± |1〉)/

√
2, on the

quantum control C. The postmeasured states of B then read

ρB,±(θ ) = TrC[(|±〉 〈±|C ⊗ 1B)ρCB(θ )]

Tr[(|±〉 〈±|C ⊗ 1B)ρCB(θ )]

= �θ (ρ) ± T ρT †

2P±
, (10)

where P± = Tr[(|±〉 〈±|C ⊗ 1B)ρCB(θ )] are the probabilities
of the outcomes ± for the projective measurements. Equa-
tion (10) shows that the postmeasured state does not only
depend on the noisy phase-shift �θ , but also on the quantum
interference effects described by T .

We are now ready to demonstrate the main result of this
paper that: the superposition of phase shifts can enhance the
violation of the MSI. To highlight this point, we compare the
two cases:

(1) control C is prepared in an incoherent mixed state 1C/2
(without a superposition of phase shifts),

(2) control C is in a superposition |+〉 〈+|C state (with a
superposition of phase shifts).

We show that case (1), in general, cannot improve the
violation of MSI; nevertheless, for case (2), it is possible to
observe an enhancement of the MSI violation under some
circumstances.

Let us now investigate the postmeasured states to gain more
insight. For case (1), we can observe that the reduced state
of C and B is separable, i.e., ρCB = 1C/2 ⊗ �θ (ρ), and, thus,
the measurement |±〉 〈±|C ⊗ 1B on this separated state cannot
affect system B.

After tracing out the control system C, we observe that
the postmeasured state is �θ (ρ), which is identical to using
a single-noise phase shift. In this case, the violation cannot be
enhanced [see the task discussed in Eq. (16)] because both
optimal QFIs (variances) calculated from the postmeasured
state, i.e., FQ,opt,± (�Hopt,±) are the same as the original QFI
(variance) in Eq. (1). Thus, case (1) cannot improve our task
for any kind of noisy phase shifts. Note that although we only
consider the maximally mixed state, this result generally holds
for all convex mixtures of the states |0〉 〈0|C and |1〉 〈1|C.

For case (2), we consider two concrete examples: the
dephased and depolarized phase shifts are, respectively,
characterized by the following system-environment unitary
evolution:

U deph
w |ψ〉 ⊗ |0〉E =

√
1 − w

2
|ψθ 〉 ⊗ |0〉E

+
√

w

2
σz |ψθ 〉 ⊗ |1〉E , (11)

U depo
v |ψ〉 ⊗ |0〉E =

√
1 − 3v

4
|ψθ 〉 ⊗ |0〉E

+
√

v

4
σx |ψθ 〉 ⊗ |1〉E

+
√

v

4
σy |ψθ 〉 ⊗ |2〉E

+
√

v

4
σz |ψθ 〉 ⊗ |3〉E , (12)

where |ψθ 〉 = exp (−iZθ ) |ψ〉 and w (v) is the visibility for
the dephased (depolarized) phase shift.

The postmeasured states conditioned on the results ± and,
according to Eq. (10), can be written as

ρ
deph
B,a|A,±(θ ) = �

deph
θ,w (ρB,a|A) ± (

1 − w
2

)
ρB,a|A(θ )

1 ± (
1 − w

2

) ,

ρ
depo
B,a|A,±(θ ) = �

depo
θ,v (ρB,a|A) ± (

1 − 3v
4

)
ρB,a|A(θ )

1 ± (
1 − 3v

4

) , (13)
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where ρB,a|A(θ ) = exp (−iZθ )ρB,a|A exp (iZθ ), and �
deph
θ,w

(�depo
θ,v ) is denoted as a single use of the dephased (depo-

larized) phase shift. Additionally, the probabilities of the
dephased and depolarized phase shifts are as follows:

Pdeph
± = 1

2
±

(
1

2
− w

4

)

Pdepo
± = 1

2
±

(
1

2
− 3v

8

)
. (14)

One can discover that the postmeasured state with ρC =
|+〉 〈+|C can be effectively characterized by a mixture of a
noisy phase shift, i.e., �

deph
θ,w (ρB,a|A) or �

depo
θ,v (ρB,a|A), and a

noiseless shift, i.e., ρB,a|A(θ ). Thus, the effects of noise can
be probabilistically decreased.

For dephased phase shifts, the postmeasured states on +
can be seen as a state suffering from another dephased noise
with visibility w′; that is

ρ
deph
B,a|A,+(θ ) = �

deph
θ,w (ρB,a|A) + (

1 − w
2

)
ρB,a|A(θ )

2 − w
2

= 2
(
1 − w

2

)
ρB,a|A(θ ) + w

2 σzρB,a|A(θ )σz

2 − w
2

=
(

1 − w′

2

)
ρB,a|A(θ ) + w′

2
σzρB,a|A(θ )σz,

(15)

where w′ = 2w/(4 − w). One can observe that w′ < w when
w ∈ [0, 1], which indicates that the effect of noise can be
mitigated. For the − case, we observe that the postmeasured
state undergoes the unitary transform σz and is independent
of w, i.e., ρ

deph
B,a|A,−(θ ) = σzρB,a|A(θ )σz. Both ± cases of the

postmeasured states include the information of the unknown
phase-shift θ .

To further discuss the coherent-control-enhanced violation
of the MSI, we consider the average optimal QFI and variance
by taking into account their probabilities [33], namely,

F avg
Q,opt :=

∑
±

P±FQ,opt,±, �H avg
opt :=

∑
±

P±�Hopt,±.

(16)
In Fig. 2, we present the average violations V of MSI, i.e.,

V = max
(
F avg

Q,opt − 4�H avg
opt , 0

)
, (17)

of the two phase shifts, in which the Bell state |
+〉AB =
(|00〉 + |11〉)/

√
2 and the Pauli observable A = {σx, σz} are

considered. We denote the average violations of the two ex-
amples as:

(a) dephased phase shifts with visibility w labeled by
Vdeph

w (Ṽdeph
w ),

(b) depolarized phase shifts with visibility v denoted by
Vdepo

v (Ṽdepo
v )

with C initially prepared in 1C/2 (|+〉 〈+|C), respectively.
For the example of the dephased phase shifts, as shown in

Fig. 2(a), one can observe that the system with a superposi-
tion of dephased phase shifts has a clear enhancement of the
violations for a given visibility w [see Fig. 2(a)]. Remarkably,

FIG. 2. Average violations V of the metrological steering in-
equality. We set θ = 0 and plot the average violations of two
examples: (a) dephased and (b) depolarized phase shifts with the
visibilities w and v, respectively. Note that ρC = 1C/2 and ρC =
|+〉 〈+|C represent different choices of the initial states of the control
systems. One can observe in example (a) that the control ρC =
|+〉 〈+|C can enhance the violation for a given visibility; although
the system is fully dephased, we can still witness V ≈ 0.33 with
ρC = |+〉 〈+|C. For example, (b), the depolarized noise (with ρC =
1C/2) causes a sudden vanishing of the violation when v ≈ 0.29;
however, if ρC = |+〉 〈+|C, it can enhance the violation and extend
the sudden-vanishing effect to v ≈ 0.42.

although the system is completely dephased (w = 1), we can
still find V ≈ 0.33.

For the example of depolarized phase shifts, the superposi-
tion of depolarized phase shifts can enhance the violation and
extend the sudden vanishing of the violation from v ≈ 0.29 to
v ≈ 0.42 [see also Fig. 2(b)].

Note that one can consider a more general coherent state
for the control qubit, i.e., |ψ〉C = √

α |0〉C + √
1 − α |1〉C,

where α ∈ [0, 1] determines the degree of coherence of the
state. More specifically, the degree of coherence vanishes
when either α = 0 or α = 1, and it monotonically increases
(decreases) in the region [0,0.5] ([0.5,1]). One can further
find that the degree of the methodological enhancement agrees
with the amount of the system C’s initial coherence.
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TABLE I. Summary of results for Alice’s measurements A with
outcomes a, which include the probability p(a|A) and the corre-
sponding postmeasured state ρa|A.

A σx σz

a 0 1 0 1
p(a|A) 0.5 0.5 0.5 0.5
ρa|A |+〉 〈+| |−〉 〈−| |0〉 〈0| |1〉 〈1|

IV. EXPERIMENTAL DEMONSTRATION

In this section, we propose a circuit model of superposi-
tion of dephased phase shift that only consists of 12 CNOT

gates and 17 single-qubit gates, and demonstrate the enhance-
ment on a IBM Q processor. Additionally, we simulate the
device-intrinsic noise to identify the effects of noise in our
experimental data.

To further decrease the circuit depth, we consider a sce-
nario known as temporal steering [72–75]. Therein, the initial
maximally entangled state shared by Alice and Bob can be
replaced by a prepare-and-measure scenario [76,77]. More
specifically, under the temporal steering scenario, Alice now
measures σx and σz on the maximally mixed state 1/2, in-
stead of performing local measurements on the bipartite state
|ψ〉AB. Note that since the IBM Q does not allow its users
to manipulate the postmeasured state, we directly prepare the
eigenstates of σx and σz with probability p(a|A). In this way,

one can obtain the same assemblage as in Table I, before we
start the noisy metrological test.

After the initial assemblage is constructed, there is no
operational difference between spatial and temporal steerings
in the metrological test because the property of the maximally
entangled state X ⊗ Y |
+〉AB = 1 ⊗ Y X T |
+〉AB. Thus, we
only focus on Bob’s subsystem (see also the similar discus-
sion in Ref. [25]). Under the assumptions of macrorealism
[78,79] (i.e., the properties of the system are well defined and
measurements do not disturb the system), a temporally clas-
sical assemblage can be expressed by a hidden-state model
described in the same form of local-hidden-state model cf.,
Eq. (2). In other words, if the hidden-state model is satisfied,
the noisy channel breaks the temporal steerability such that
the collections of states are well defined.

A. Circuit implementation on the IBM Q

As shown in Fig. 3, we provide a circuit model to ex-
perimentally implement the metrological steering task with
the superposition of dephased phase shifts described in the
previous section [Eqs. (7) and (11)]. This circuit involves
four qubits, which serve as control C, system B, and the two
environments, E1 and E2, respectively. Because CNOT gates on
the IBM Q are restricted by the connectivity of the devices, we
find that the implementation of the circuit on the devices with
the coupling map shown in Fig. 3(b) can minimize the number
of CNOT gates.

FIG. 3. Circuit model for steering-enhanced quantum metrology with a superposition of dephased phase shifts. Schematics of our circuit
model (a) without and (c) with details. (b) In the topology of the four qubits that we chose in the IBM-Cairo device, the numbers label the
qubits No. 24, No. 25, No. 26, and No. 22, representing system C, B, E1, E2, respectively. Here, the visibility w is tuned by the angle φ, such
that w = 2 sin2(φ/2). We use the standard symbols for quantum gates (see the Appendix).
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This circuit can be divided into three parts: (i) state prepa-
ration, (ii) the superposition of dephased phase shifts, and
(iii) measurement on qubits C and B. In (i), qubits C, B,
and E1,(2) are prepared in states |+〉 〈+|, ρa|A, and |0〉 〈0|1,(2),
respectively. In the IBM Q device, all qubits are initially in
state |0〉. The state preparation can be achieved by applying
single-qubit gates on each qubit. For instance, we can obtain
a |+〉C by applying a Hadamard gate on control system C.

In (ii), the circuit model of the superposition of dephased
phase shifts is shown in Fig. 3(a). The qubit topology of the
four qubits that we chose in IBM-Cairo is shown in Fig. 3(b).
Through control qubit C, system B can interact with alter-
native environments. We divide the total unitary in Fig. 3(a)
into a gate sequence, which is shown in Fig. 3(c). In this
sequence, we use control rotation with angle φ on system
B and its corresponding environment. After we trace out its
environment, this control-rotation gate is effectively equal to
the pure dephasing noise on system B. Here, the visibility of
the pure dephasing noise w is tuned by angle φ such that
φ = 2 sin−1(

√
w/2) with φ ∈ [0, π/2]. In (iii), we measure

σx on qubit C and measure σz or σy on qubit B. Note that
IBM Q only allows us to conduct σz measurements. Therefore,
we can apply a Hadamard gate (H) before σz measurement to
obtain σx, and a phase gate (S) plus a Hadamard gate to obtain
the measurement σy.

Let us now elaborate how to obtain the FI and the variance
from the measurement results. The measurement data can be
summarized by a set of probabilities {pθ,φ (b, c|M, ρa|A,c )},
where M ∈ {σz, σy} denotes Bob’s measurement with the out-
come b ∈ {0, 1}, and c ∈ {+,−} is the outcome of measuring
σx on C. Note that {Mb}b is the set of positive operators that
satisfy

∑
b Mb = 1. The probability p(b|M ) is given by Born’s

rule, i.e., p(b|M, ρ) = Tr[Mbρ]. The marginal probabilities
then read

pθ,φ (b|M, ρa|A) =
∑

c

pθ,φ (b, c|M, ρa|A,c ). (18)

In addition, the optimal FI reads

Fopt,± := max
A

∑
a

p(a|A,±)F (θ |M, ρa|A,±), (19)

where F (θ |M, ρ) denotes the FI obtained from state ρ with
measurement M, which is defined as

F (θ |M, ρ) :=
∑

b

[∂θ pθ (b|M, ρ)]2

pθ (b|M, ρ)
. (20)

Note that the FI for a given measurement M is a lower
bound of QFI i.e., F (θ |M, ρ) � FQ(θ |ρ) [32], and thus, Fopt �
FQ,opt.

As a similar approach in Eq. (16), we take both outcomes
c = + and c = − with the probabilities P± into account to
obtain the average optimal FI, i.e.,

F avg
opt :=

∑
±

P±Fopt,±. (21)

We implement our proposal on the IBM-Cairo device be-
cause it has longer relaxation and coherence times, i.e., T1,
T2, and lower gate errors than other available IBM Q devices
(see Table II and the information from IBM Q website [80]).

TABLE II. Error parameters in the IBM-Cairo device. The num-
ber of the four qubits in the IBM-Cairo device are labeled by: No.
25, No. 24, No. 26, and No. 22, representing systems B, C, E1, and
E2, respectively. Where T1 (T2) is the relaxation (dephasing) time, �X

is the Pauli gate error, and �R is the readout error. Note that these
error rates are public information on the IBM Q website [80]. These
numbers are presented here for completeness.

Qubits T1 (μs) T2 (μs) �X (10−4) �R (10−2)

B 118.4 194.5 1.5 1.0
C 122.2 196.5 4.7 1.5
E1 84.1 44.1 1.7 0.1
E2 102.3 138.4 3.0 2.1

CNOT gate CNOT error (10−3) Gate time (ns)

B-C 6.8 309.3
B-E1 6.6 248.9
B-E2 9.0 202.7

In addition, we choose the qubits, labeled by No. 25, No. 24,
No. 26, and No. 22 in the device, to represent B, C, E1, and
E2, respectively, because of their connectivities [see Fig. 3(b)].
As shown in Fig. 4, we provide the results by conducting
experiments on the IBM-Cairo device with 10 000 shots for
each data point.

To calculate the partial derivative of the probability in
Eq. (20), we use a fitting function g(θ ) = 0.5 + α sin(2θ +
β ), to interpolate the pθ,φ , where α and β are fitting param-
eters. Also, we take θ = 0 to obtain the maximum value of
the optimal FI. We observe that the system with a control
state ρC = |+〉 〈+|C can increase F avg

opt and decrease �Zavg
opt .

The threshold of the average MSI violations can be increased,
i.e., from w ≈ 0.38 to w ≈ 0.69.

B. Noise simulations

Here, we also provide noise simulations by using NUMPY

and QUTIP [81–83] (see also the similar discussion in
Refs. [84,85]). In our noise model, we consider three different
sources of the intrinsic noise from the device: qubit relaxation
and qubit dephasing (QRQD), CNOT error, and readout error.

First, the QRQD is modeled by the following Lindblad
master equation [86,87]:

∂ρ(t )

∂t
=

n∑
m

γ
(m)

T1

2
[2σ

(m)
− ρ(t )σ (m)

+ − {σ (m)
− σ

(m)
+ , ρ(t )}]

+
n∑
m

γ
(m)

T2

2

[
2σ (m)

z ρ(t )σ (m)
z − {

σ (m)2
z , ρ(t )

}]
,

(22)

where γ
(m)

T1
= 1/T (m)

1 and γ
(m)

T2
= 1/T (m)

1 − 1/(2T (m)
2 ) are the

mth qubit relaxation and decoherence rates, respectively.
Here, σ+(σ−) denotes the atomic creation (annihilation) op-
erator, and the corresponding relaxation (dephasing) time T1

(T2) are summarized in Table II. We model the QRQD effect
that occurs after performing a total unitary evolution (see
Fig. 5) and simulate it using the master equation solver ME-
SOLVE in QUTIP [81–83]. We sum over all the gate times in
the circuit and obtain the total gate time ≈3, 725 ns. Note
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FIG. 4. Experimental results and noise simulations of the metrological tasks with the dephased phase shifts: the control C is prepared
in (a) ρC = 1C/2 (without a superposition of phase shifts) and (b) ρC = |+〉 〈+|C (with a superposition of phase shifts). Specifically, the
red-cross (blue-circle) data points are the experimental results of the average optimal Fisher information (the optimal variance) with respect
to the visibility w. Note that θ = 0. Here, the error bars are obtained from 40 individual rounds of experiments; each experimental data point
consists of 10 000 individual runs performed on about ten different dates. Therefore, the error bars represent the variance of the IBM-Cairo
device to conduct these experiments in long timescales. The solid curves represent the noise simulations for the dephased phase shifts with
ρC = |+〉 〈+|C; the dashed curves represent the noise simulations with ρC = 1C/2. Although we consider only several common noisy resources,
the tendencies and magnitudes of noise simulations approach the actual experiment in both cases (a) and (b). We clearly observe that the
control in a superposition state, i.e., |+〉 〈+|C, can enhance the optimal Fisher information and decrease the optimal variance; thus, it extends
the violations of the metrological steering inequality from w ≈ 0.38 to w ≈ 0.69.

that each Pauli-X gate in the IBM-Cairo device takes 21.3 ns,
and the Hadamard gate H (phase gate S) gate takes five (three)
times longer than the Pauli-X gate.

Second, the gate error is determined from the randomized
benchmarking [88,89]. In a quantum assembly simulator, the
gate error for the n-qubits system can be modeled by depolar-
izing noise [90], i.e.,

Gerr (ρ) = (1 − �G)ρ + �G
1

2n
, (23)

where �G is the gate error rate. In our model, we assume that
the gate errors are sequentially accumulated; thus, we multiply
the different error rates which appear in the circuit. Inserting
the CNOT-gates error rate and the single-qubit Pauli-gates error

FIG. 5. Model of noise simulations. We model the qubit relax-
ation and qubit dephasing effects that occur after performing a total
unitary evolution. We apply depolarizing and bit-flip channels to
describe gate errors and read-out errors (on the system B and C),
respectively. Here, qubit relaxation and qubit dephasing (QRQD)
represents the qubit relaxation and qubit dephasing channel which
action is given by the master equation in Eq. (22); the CNOT error Gerr

is modeled by the depolarizing noise in Eq. (23); the readout error
Rerr is described by the bit-flip channel in Eq. (24).

rate �X shown in Table II, we estimate that this gate error rate
is about 9.2%.

Finally, the readout error occurs because quantum devices
have the probability of misrecording the ideal result 0(1) as
1(0). Therefore, it can be modeled by a bit-flip channel, i.e.,

Rerr (ρ) = (1 − �R)ρ + �Rσxρσx, (24)

where �R is the probability of the readout error.
As a result, the primary source causing errors is the number

of CNOT gates because they create a significant error rate
compared to single-qubit gates. Moreover, the CNOT gates also
take longer times [83], meaning that they also increase the
error effects from the QRQD. Although we have “only” used
12 CNOT gates and 17 single-qubit gates in our circuit imple-
mentation of a superposition of the dephased phase shifts, it
still creates errors greater than 27.0%.

V. SUMMARY

In this paper, we generalize the metrological steering task
described in Ref. [29] to a scenario with superpositions of
noisy phase shifts. We show that the control in |+〉 〈+|C (i.e.,
via a superposition of dephased and depolarized phase shifts)
can alleviate the noisy effect and enhance the average viola-
tions of the MSI in comparison with the case where the control
is in an incoherent mixed state (i.e., without superposition of
dephased and depolarized phase shifts).

Moreover, we proposed a circuit model for superposing
two dephased phase shifts and experimentally implemented
the circuit on the IBM quantum experience. We clearly
observe the violations of the MSI, and the experimental results
agree with our noise simulations.
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FIG. 6. Circuit implementation of a superposition of depolarized phase shifts. We assume that the control system C and all the environments
Ei (i = 1, . . . , 4) are initialized to |0〉.

Finally, it is known that the order of channels can also be
coherently controlled [91,92]. Therefore, it would be promis-
ing to apply this framework to the noisy metrological steering
task.
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APPENDIX: CIRCUIT MODEL OF A SUPERPOSITION OF
DEPOLARIZED PHASE SHIFTS

In this Appendix, we aim to construct a circuit that satisfies
the depolarized phase shifts implementing the operations in
Eq. (12). A direct way to design a depolarizing phase shift
circuit is that we can use three different kinds of Toffoli gates
to represent the system transformation errors modeled by σx,
σy, and σz with different probabilities [93]. As shown in Fig. 6,
we use a two-qubit system, which plays the role of a four-level
environment in Eq. (12), i.e.,

|0〉E → |0〉|0〉E, |1〉E → |0〉|1〉E,

|2〉E → |1〉|0〉E, |3〉E → |1〉|1〉E. (A1)

To fit the factors
√

1 − 3v/4 and
√

v/4 in Eq. (12), we ap-
ply a unitary U (ζ , ξ ), which maps the two-qubit environment
|0〉|0〉E into√

1 − 3v

4
|0〉|0〉E +

√
v

4
(|0〉|1〉E + |1〉|0〉E + |1〉|1〉E), (A2)

with two rotation parameters ζ and ξ on the environmental
system (see also Fig. 7). After mapping U (ζ , ξ ), we obtain

FIG. 7. Circuit implementing the unitary operation U (ζ , ξ ),
which maps |0〉|0〉E onto the state in Eq. (A3).
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the initial state,

|0〉|0〉E → cos
ζ

2
cos

ξ

2
|0〉|0〉E +

√
1

2
sin

ζ

2
|0〉|1〉E

+ cos
ζ

2
sin

ξ

2
|1〉|0〉E +

√
1

2
sin

ζ

2
|1〉|1〉E.

(A3)

One can find that if we let ζ = 2 sin−1√v/2 and ξ =
2 sin−1√v/(4 − 2v), we can obtain the red (blue) box in
Fig. 6, which is equal to U depo

v in Eq. (12).
In general, to implement a superposition of quantum chan-

nels in a gate-based quantum simulation requires using many
Toffoli gates [94,95]. For the superposition of two depolarized
phase shifts, we require an additional control system. There-
fore, there are six controlled Toffoli gates required to simulate
the desired dynamics (see Fig. 6). Since a Toffoli gate can be

decomposed into six CNOT gates and nine single-qubit gates
[93]; therefore, a single controlled Toffoli gate contains 52
CNOT gates and needs ≈16 400 ns to operate.

In total, there are 328 CNOT gates in our circuit of depolar-
ized phased shifts, creating gate-error rates of, at least, 94.3%,
and a total gate time ≈111, 945 ns. In our noise simulations of
the depolarized noise phase shifts, the 4 �̃Zavg

opt is larger than
0.99 and the F avg

opt is less than 0.01. Thus, we do not observe
the violation of the metrological steering inequality in Eq. (3)
on IBM Q devices because the circuits error is too large and
destroys the quantum advantages.

For clarity and completeness, we recall the meaning of
standard gates used in our implementation both in Figs. 3 and
6. Specifically, X , Y , Z represent Pauli gates, H the Hadamard
gate, and S the phase gate, defined as S = diag(1, i). Also,
Rz(θ ) is the rotation gate along the z axis with angle θ , written
as Rz(θ ) = diag[exp (−iθ/2), exp (iθ/2)].
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