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Tripartite optomechanical entanglement via optical-dark-mode control
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We propose how to generate a tripartite light-vibration entanglement by controlling an optical dark mode
(ODM), which is induced by the coupling of two optical modes to a common vibrational mode. This ODM
is decoupled from the vibration, and it can be controlled on demand by employing a synthetic gauge field,
which can enable efficient switching between the ODM-unbreaking and ODM-breaking regimes. We find that
the tripartite optomechanical entanglement is largely suppressed in the ODM-unbreaking regime, but it is
significantly enhanced in the ODM-breaking regime. In particular, the noise robustness of quantum entanglement
in the ODM-breaking regime can be more than twice than that in the ODM-unbreaking regime. This study
offers a method for protecting and enhancing fragile quantum resources and for constructing noise-tolerant and
dark-mode-immune quantum processors and entangled networks.
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I. INTRODUCTION

Quantum entanglement, one of the most striking properties
of quantum mechanics, corresponds to inseparable quan-
tum correlations shared between distant parties [1]. It is the
main resource for many future applications ranging from
quantum metrology to computation, and communication [2].
Optomechanical systems [3–5], owing to a great progress
in single-phonon manipulation [6–9], quantum ground-state
refrigeration [10–18], and quantum squeezing [19–23], have
become a powerful platform for achieving bipartite quantum
entanglement between, e.g., two cavity-field modes, the me-
chanical and cavity-field modes, and two mechanical modes
[24–37]. Particularly, remarkable advances in engineering
bipartite quantum effects have recently been reported. For in-
stance, the quantum entanglement between a cavity field and a
mechanical system [38] and between two massive mechanical
resonators [39–42] was generated and controlled experimen-
tally.

Beyond bipartite quantum entanglement, multipartite en-
tangled states can offer a more fundamental resource for a
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wide range of quantum information processing tasks [43–45],
and thus, they can be used for future quantum technologies,
such as quantum internet and programmable quantum net-
works [43–45]. However, based on cavity optomechanics, the
generation of multipartite optomechanical entanglement (e.g.,
quantum entanglement of multiple cavity-field modes and a
common vibrational mode), and, in particular, its protection
in practical devices have not yet been fully revealed.

In recent years, much attention has been drawn to optical
dark modes (ODMs) [46–50], which are special coherent su-
perpositions of, e.g., two optical modes coupled to a common
vibration in optomechanical systems. Owing to their unique
characteristics in decoupling from the mechanical vibration,
the ODM can be employed for protecting systems from me-
chanical dissipation [46], enable high fidelity conversion of
optical fields or quantum states [47–49], and realize efficient
routing and switching of photons of different wavelengths
[50]. In light of the above potential applications and unique
characteristics, it is natural to study the influence of the ODM
on light-vibration quantum effects, e.g., optomechanical en-
tanglement.

In this paper, we propose how to generate the tripartite
light-vibration entanglement by controlling the ODM in a
three-mode closed-loop optomechanical system, and reveal its
strong robustness against thermal noise. This is realized by
utilizing a synthetic gauge field, which provides a possibility
of fully controllable switching between the optical-dark-
mode-unbreaking (ODMU) and optical-dark-mode-breaking
(ODMB) regimes. Specifically, driving the two cavities with
phase-correlated lasers results in a synthetic magnetic flux,
which induces a synthetic gauge field. This synthetic gauge
field with a topological phase has, respectively, been theo-
retically proposed [51–54] and experimentally demonstrated
[55–61] in closed-loop optomechanical systems.

2643-1564/2022/4(3)/033112(11) 033112-1 Published by the American Physical Society

https://orcid.org/0000-0002-7308-2823
https://orcid.org/0000-0003-1766-8245
https://orcid.org/0000-0002-8222-9268
https://orcid.org/0000-0003-3682-7432
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.033112&domain=pdf&date_stamp=2022-08-10
https://doi.org/10.1103/PhysRevResearch.4.033112
https://creativecommons.org/licenses/by/4.0/


LAI, CHEN, QIN, MIRANOWICZ, AND NORI PHYSICAL REVIEW RESEARCH 4, 033112 (2022)

b

(b)

0

/2π

/23π

π 0
0.1

+
~

-
~G G

(a)

a2

1a

2

1a

a2aa

2

ODMU ODMU

θ
1

2

γm

g

g

Ω

ω

1

L,1

Ω

ω

2

L,2

J

κ

1κ

FIG. 1. (a) Schematics of a three-mode closed-loop optomechan-
ical system. Two cavities aj=1,2 (resonance frequencies ωc, j and
decay rates κ j) are coupled to a common vibration b (resonance
frequency ωm and decay rate γm) via radiation-pressure couplings
gj . The two cavities a1 and a2 are coupled to each other through a
photon-tunneling interaction with strength J . A monochromatic driv-
ing field, with frequency ωL, j and field amplitude � j , is introduced
to drive the jth cavity. (b) In the polar coordinates, the redefined
coupling strengths G̃± is shown versus the modulation phase θ . The
ODM of the system emerges at θ = nπ (for an integer n), corre-
sponding to the ODMU regime, and it can be broken (G̃± �= 0) by
tuning θ �= nπ , corresponding to the ODMB regime. The parameters
used here are G0 j/ωm = 0.1 and J/ωm = 0.1.

We find that in the ODMU regime, tripartite light-vibration
entanglement is strongly suppressed by the ODM; while in
the ODMB regime, it is significantly enhanced. The phys-
ical origin behind these phenomena is that the ODM is
decoupled from the vibrational mode, which leads to the sup-
pression of tripartite optomechanical entanglement. However,
the breaking of the ODM enhances tripartite entanglement.
These results show a clear inspiration for enhancing tripar-
tite optomechanical entanglement by controlling the ODM.
In particular, the resulting ODMB entanglement is noise-
tolerant, which is up to twice as strong as that in the ODMU
regime. Our findings pave a way towards engineering and
protecting fragile quantum correlations from the ODM and
thermal noise, and offer a possibility of integrating quantum
processors.

The rest of the paper is organized as follows. In Sec. II,
we present the Hamiltonian of a three-mode closed-loop
optomechanical system, derive the corresponding Langevin
equations, and obtain their solutions. In Sec. III, we derive
the minimum residual contangle, which can be used to quan-
tify the tripartite quantum entanglement, and analyze how to
control an ODM. In Sec. IV, we study the tripartite light-
motion entanglement by controlling the ODM. In Sec. V, we
present some discussions. Finally, we give a brief conclusion
in Sec. VI.

II. HAMILTONIAN, LANGEVIN EQUATIONS,
AND THEIR SOLUTIONS

We consider a three-mode closed-loop optomechanical
system, where two optical modes are optomechanically cou-
pled to a common mechanical resonator, as shown in Fig. 1(a).
The two cavity-field modes are coupled to each other via a
photon-tunneling interaction with strength J . To manipulate
the optical and mechanical degrees of freedom in the system,

we assume that the jth cavity is subjected to a monochro-
matic driving field, with frequency ωL, j and amplitude � j =√

2κ jPL, j/h̄ωL, j where κ j is the cavity-field decay rate and
PL, j is the laser power. In the interaction picture, shutting all
the time dependence due to H0 = ∑2

j=1 ωL, ja
†
j a j , the Hamil-

tonian of the system is (with h̄ = 1)

HI =
2∑

j=1

[�c, ja
†
j a j + g ja

†
j a j (b + b†)] + ωmb†b

+ J (a1a†
2 + a2a†

1) +
2∑

j=1

� j (a j + a†
j ), (1)

where �c, j = ωc, j − ωL, j is the driving detuning of the jth
cavity. The operators a j (a†

j ) and b (b†) are the annihilation
(creation) operators of the jth optical mode and the vibrational
mode, respectively. The g j term describes the light-vibration
interactions between the jth optical mode and the vibrational
mode. The cavity-field driving, which are applied to the jth
cavity, is denoted by the � j terms.

By considering damping and noise effects in the system,
the evolution of this system can be described by the quantum
Langevin equations

ȧ1 = −(κ1 + i�c,1)a1 − ig1a1(b + b†) − iJa2

− i�1 +
√

2κ1a1,in, (2a)

ȧ2 = −(κ2 + i�c,2)a2 − ig2a2(b + b†) − iJa1

− i�2 +
√

2κ2a2,in, (2b)

ḃ = −(γm + iωm)b − ig1a†
1a1 − ig2a†

2a2

+
√

2γmbin, (2c)

where a j,in and bin are the noise operators of the jth cavity
mode and the vibrational mode, respectively. These noise
operators have zero mean values and satisfy the standard
correlation functions:

〈a j,in(t )a†
j,in(t ′)〉 = δ(t − t ′), 〈a†

j,in(t )a j,in(t ′)〉 = 0, (3a)

〈bin(t )b†
in(t ′)〉 = (n̄ + 1)δ(t − t ′), (3b)

〈b†
in(t )bin(t ′)〉 = n̄δ(t − t ′), (3c)

where n̄ = [exp(h̄ωm/kBT ) − 1]−1 is the thermal phonon
number of the vibration, T denotes the temperature of the
thermal reservoir associated with the vibration, and kB is the
Boltzmann constant.

We consider the strong-driving regime, so that the average
photon numbers in the two cavities are sufficiently large.
Then, a linearization procedure can be used to simplify the
physical model. To this end, we express the operators in
Eq. (2) as a sum of their steady-state mean values and quantum
fluctuations, namely: o = 〈o〉ss + δo, for operators o = a j , a†

j ,
b, and b†. By separating the classical motion from quantum
fluctuations, the linearized equations of motion for quantum
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fluctuations can be written as

δȧ1 = (−κ1 − i�1)δa1 − iG1(δb + δb†)

− iJδa2 +
√

2κ1a1,in, (4a)

δȧ2 = (−κ2 − i�2)δa2 − iG2(δb + δb†)

− iJδa1 +
√

2κ2a2,in, (4b)

δḃ = (−γm − iωm)δb − iG∗
1δa1 − iG1δa†

1

− iG∗
2δa2 − iG2δa†

2 +
√

2γmbin, (4c)

where � j = �c, j + g j (β + β∗) is the normalized driving
detuning of the jth cavity field, and the linearized optome-
chanical coupling strength Gj , with phase θ j , between the jth
cavity-field mode and the vibrational mode is given by

Gj = G0 je
iθ j , for G0 j = g j |α j |, (5)

where the steady-state average values of the dynamical vari-
ables are α1 = −i(Jα2 + �1)/(κ1 + i�1), α2 = −i(Jα1 +
�2)/(κ2 + i�2), and β = −i(g1|α1|2 + g2|α2|2)/(γm + iωm).
Note that a synthetic gauge field with a modulation phase
has recently been realized using three-mode closed-loop op-
tomechanical systems [61], in which the appropriate spatially
dependent hopping phases are realized through external drives
[55–61].

By defining the mechanical and optical quadratures
δXo = (δo† + δo)/

√
2 and δYo = i(δo† − δo)/

√
2, and the

corresponding Hermitian input-noise operators X in
o = (o†

in +
oin )/

√
2 and Y in

o = i(o†
in − oin )/

√
2, we obtain a compact

form of the linearized equations of quantum fluctuations

u̇(t ) = Au(t ) + N(t ), (6)

where u(t ) = [δXa1 , δYa1 , δXa2 , δYa2 , δXb, δYb]T

is the fluctuation operator vector, N(t ) =√
2[

√
κ1X in

a1
,
√

κ1Y in
a1

,
√

κ2X in
a2

,
√

κ2Y in
a2

,
√

γmX in
b ,

√
γmY in

b ]T is
the noise operator vector, and

A=

⎛
⎜⎜⎜⎜⎜⎝

−κ1 �1 0 J iG1− 0
−�1 −κ1 −J 0 −G1+ 0

0 J −κ2 �2 iG2− 0
−J 0 −�2 −κ2 −G2+ 0
0 0 0 0 −γm ωm

−G1+ −iG1− −G2+ −iG2− −ωm −γm

⎞
⎟⎟⎟⎟⎟⎠

,

(7)

is the coefficient matrix, where Gj± = G∗
j ± Gj . The formal

solution of the linearized Langevin equations in (6) is given
by

u(t ) = M(t )u(0) +
∫ t

0
M(t − s)N(s)ds, (8)

where M(t ) = exp(At ).

III. MINIMUM RESIDUAL CONTANGLE AND
DARK-MODE CONTROL

A. Minimum residual contangle and entanglement monogamy

For studying the tripartite quantum entanglement, we fo-
cus on calculating the steady-state value of the covariance
matrix V, which is defined by the matrix elements Vkl =

1
2 [〈uk (∞)ul (∞)〉 + 〈ul (∞)uk (∞)〉], for k, l = 1, . . . , 6. Un-
der the stability condition, the covariance matrix V fulfills the
Lyapunov equation

AV + VAT = −Q, (9)

where Q = diag{κ1, κ1, κ2, κ2, γm(2n̄ + 1), γm(2n̄ + 1)}. The
minimum residual contangle Er|s|t

τ [62,63] can be used to
quantify a tripartite quantum entanglement, defined as

Er|s|t
τ ≡ min

(r,s,t )

[
Er|(st )

τ − Er|s
τ − Er|t

τ

]
, (10)

and is referred here as a tripartite entanglement measure,
where Eu|v

τ is the contangle of subsystems of u and v (v
contains one or two modes), and r, s, t ≡ (d1, d2, c) denotes
all the permutations of the three mode indexes [62]. Note that
Eu|v

τ is defined as the squared logarithmic negativity [62–65],
and it is a proper entanglement monotone.

The residual contangle satisfies the monogamy of quantum
entanglement

Er|(st )
τ � Er|s

τ + Er|t
τ , (11)

which is based on the Coffman-Kundu-Wootters monogamy
inequality [64]. Entanglement monogamy is the fundamental
principle that quantum entanglement cannot be freely shared
between three subsystems (in general, among arbitrarily many
systems).

Here, Er|s|t
τ > 0 indicates that a tripartite quantum entan-

glement is generated. Note that all the parameters in the
following calculations satisfy the stability condition, which is
derived using the Routh-Hurwitz criterion [66]. In addition,
we have confirmed that only a single stable solution exists and
our system has no bistability in all our simulations.

B. Optical-dark-mode control

Actually, the phase θ j of the effective optomechanical
coupling Gj can be absorbed into the new definitions of the
operator δa j , and only the phase difference θ ≡ θ1 − θ2 has
physical effects. Note that to conveniently study the ODM
effect, we fix the phase difference θ together with the photon-
tuneling interaction J . Then, according to Eqs. (4) and (5),
a linearized optomechanical Hamiltonian, under the rotating-
wave approximation (RWA), can be approximately written in
the following form (discarding the noise terms)

HRWA =
∑
j=1,2

[� jδa†
jδa j + G0 j (δbδa†

j + δa jδb†)]

+ωmδb†δb + J (eiθ δa†
1δa2 + e−iθ δa†

2δa1). (12)

In recent years, both theoretical [51–54] and experimen-
tal [55–61] works have demonstrated that a phase-dependent
synthetic gauge field can be induced in closed-loop optome-
chanical platforms. In particular, employing a three-mode
loop-coupling optomechanical system of Ref. [61] has led to
the creation of a synthetic gauge field with appropriate spa-
tially dependent hopping phases, which can be tuned through
external drives [55–61].

In light of the above achievements in realizing the synthetic
gauge field using the three-mode closed-loop optomechanical
platforms [61], we below employ this synthetic gauge field
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to control the ODM in these systems, so that the tripar-
tite light-vibration entanglement can be flexibly controlled.
Specifically, we here consider the following two cases:

(i) In the absence of the synthetic gauge field, i.e., J = 0,
the two optical modes can form an optical bright mode A+ and
an optical dark mode A−, which are given by

A+ = G01δa1 + G02δa2

G0
, optical bright mode, (13a)

A− = G02δa1 − G01δa2

G0
, optical dark mode, (13b)

where G0 =
√

G2
01 + G2

02. Then, the Hamiltonian in Eq. (12)
can be rewritten as

HRWA =
∑
j=±

� jA
†
jA j + ωmδb†δb + G+(δbA†

+ + A+δb†)

+ G−(A†
+A− + A†

−A+), (14)

where �+(−) = [G2
01(02)�1 + G2

02(01)�2]/G2
0 and the coupling

strengths are

G− = G01G02(�1 − �2)

G2
0

, G+ = G0. (15)

We can see from Eqs. (14) and (15) that when �1 = �2, the
mode A− is decoupled from the system due to G− = 0, and
it becomes an ODM. Owing to the decoupling of the ODM
from the vibrational mode, the generation of the tripartite
light-vibration entanglement is largely suppressed.

(ii) Since the ODM leads to the suppression of the tri-
partite entanglement generation, it is natural to ask the
question whether one can break this ODM to further gen-
erate purer tripartite optomechanical entanglement. To this
end, a synthetic magnetism is introduced in the system for
controlling the ODM, i.e., J �= 0. Specifically, by introducing
two superposition-optical modes associated with the synthetic
magnetism Ã+ and Ã−, defined by

Ã+ = f δa1 − eiθ hδa2, (16a)

Ã− = e−iθ hδa1 + f δa2, (16b)

the Hamiltonian in Eq (12) becomes

HRWA =
∑
j=±

(�̃ j Ã
†
j Ã j + G̃∗

jδbÃ†
j + G̃ j Ã jδb†) + ωmδb†δb,

(17)

where �̃± = 1
2 (�1 + �2 ±

√
(�1 − �2)2 + 4J2), and the re-

defined coupling strengths are given by

G̃+ = f G01 − e−iθ hG02, G̃− = eiθ hG01 + f G02, (18)

with f = |�̃−−�1|√
(�̃−−�1 )2+J2

, and h = J f
�̃−−�1

.

In Fig. 1(b), the redefined coupling strengths G̃± are plot-
ted as a function of the modulation phase θ . It shows that
only at θ = nπ (i.e., in the ODMU regime), Ã+ [for an odd n,
G̃+ = 0 (see blue symbols)] or Ã− [for an even n, G̃− = 0 (see
red symbols)] becomes the ODM. A counterintuitive coupling
of the ODM to the vibrational mode can be achieved by
tuning θ �= nπ (i.e., in the ODMB regime), which means the
breaking of the ODM [see Fig. 1(b)]. The underlining physical

mechanism is that the constructive or destructive interference
between the two coupling paths, by modulating the phase θ ,
enables a flexible switch between the ODMU and ODMB
regimes.

To provide a clearer interpretation of our results, we
here derive various approximate analytical expressions for
the redefined coupling strengths in the symmetric-detuning
and symmetric-coupling regimes, as well as in the resolved-
sideband regime. In the symmetric-detuning (� j=1,2 = �)
and symmetric-coupling (G0 j=1,2 = G) cases, the redefined-
coupling strengths G̃± in Eq. (18) become G̃± ≈ G(1 ±
e∓iθ )/

√
2. One can clearly see that the redefined-coupling

strengths G̃± strongly depend on the modulation phase θ .
Furthermore, by considering the case of � j=1,2 = �, κ j=1,2 =
κ , g01 = g02 = g, and J  ωm,�, in the resolved-sideband
regime (i.e., κ  ωm), we obtain the approximate analytical
expressions of the redefined coupling strengths as: G̃± ≈
g�
�

(1 ± e∓iθ )/
√

2. It can be intuitively seen that in the
resolved-sideband regime, (i) the DMB is governed by the
modulation phase θ and (ii) the strength of the redefined-
coupling strengths can be enhanced by tuning the amplitude
� of the driving lasers applied to the optical cavities. These
observations based on our analytical approximate results are
well matched with the numerical simulations based on the
exact results.

Here it is worth presenting some discussions on the reason
for choosing the values of the system parameters. In realistic
systems, the strength of the linearized effective optome-
chanical coupling should be much smaller than mechanical
resonance frequency ωm. In addition, the photon-tunneling
interaction between the two cavities can be realized by optical
backscattering [34,59–61]. This backscattering of the photons
is induced by the surface roughness and material defects in
practical devices. Therefore the value of the photon-tunneling
coupling strength used in our simulations should be of the
same order of the decay rates of the cavity-field modes. These
assumed values of parameters should be accessible under the
near-future experimental conditions. In this work, to obtain
a significative amount of quantum entanglement, we have
made a careful analysis in a wide parameter range by com-
bining theoretical [24] and experimental [38–42] works, and
we have assumed experimentally feasible conditions in our
manuscript.

IV. TRIPARTITE LIGHT-MOTION ENTANGLEMENT

In the above section, we have derived the minimum resid-
ual contangle, and have analyzed how to control the ODM in
the three-mode optomechanical system. Now we study in de-
tail the tripartite optomechanical entanglement by controlling
the ODM.

In Fig. 2(a), we plot the tripartite light-vibration entangle-
ment, quantified by the minimum residual contangle Er|s|t

τ ,
as a function of the driving detunings � j = � of the two
cavities, when the system operates in both ODMU (J = 0, see
the blue curve) and ODMB (J/ωm = 0.2 and θ = π/2, see
the red curve) regimes. We find that in the ODMB regime, the
tripartite entanglement is nearly twice as large as that in the
ODMU regime. The underlying physical mechanism is that
the ODM is decoupled from the vibration, and this results in
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FIG. 2. (a) Tripartite optomechanical entanglement, quantified
by the minimum residual contangle Er|s|t

τ , versus the effective driving
detunings � j=1,2 = � of the two cavities in the ODMU (J = 0, blue
curves) and ODMB (J/ωm = 0.2 and θ = π/2, red curves) regimes.
(b) Minimum residual contangle Er|s|t

τ as a function of �2/�1 in both
ODMU and ODMB regimes, when �1/ωm = 0.45. Other parameters
are: G0 j/ωm = 0.2, κ j/ωm = 0.2, γm/ωm = 10−5, and n̄ = 0.

the suppression of the tripartite optomechanical entanglement.
However, the breaking of the ODM leads to the enhancement
in quantum entanglement. These results show a clear inspira-
tion for enhancing tripartite optomechanical entanglement via
the control of the ODM.

Moreover, we find from Fig. 2(b) that, when turning off
the synthetic gauge field (i.e., J = 0, see the blue curve), the
tripartite optomechanical entanglement is strongly suppressed
by the ODM, corresponding to the emergence of the dip [see
the blue curve in Fig. 2(b)]. In particular, this ODM effect
can work in a wider driving detuning range, i.e., �2/�1 >

0.5. In contrast to this, once turning on the synthetic gauge
field (i.e., J �= 0 and θ �= nπ ), the dip becomes a peak [see
the red curve in Fig. 2(b)], and this indicates that the tripartite
light-vibration entanglement is significantly enhanced due to
breaking the ODM. In particular, the maximum amount of the
resulting entanglement in the ODMB regime is larger than that
in the ODMU case.

To determine how significant enhancement in the tripartite
optomechanical entanglement can be reached, we here intro-
duce an entanglement-amplification factor , which is defined
as

 = Er|s|t
τ,ODMB

Er|s|t
τ,ODMU

. (19)
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FIG. 3. Amplification factor  of the tripartite optomechanical
entanglement versus the photon-tunneling coupling J and the mod-
ulation phase θ under the optimal driving detunings � j=1,2/ωm =
0.45. Here the white dashed curve denotes the case of J = 0. Other
parameters are the same as those in Fig. 2.

Based on Eq. (19), we show the effect of the parameters
J and θ of the synthetic magnetism on the entanglement-
amplification factor  in Fig. 3. We find that the tripartite
optomechanical entanglement can be significantly amplified
by tuning the synthetic magnetism parameters. For example,
when the synthetic magnetism is off (i.e., when J = 0), no
amplification for the tripartite entanglement can be observed
(i.e.,  = 1, see the white horizontal dashed line). However,
when the synthetic magnetism is on, the amplification of
the tripartite entanglement emerges, and even the entangle-
ment amplification factor can increase up to  = 2.24. When
J/ωm → 0.4 and θ → nπ for an integer n, we obtain 0 <

 < 1. This is because the optical backscattering losses in
practical devices [34,61] strongly suppress the entanglement
generation. Physically, the backscattering of photons can be
induced by various imperfections of devices, such as surface
roughness and material defects, as described by, e.g., the
photon-tunneling coupling J [34,61].

Moreover, we can see from Fig. 3 that the tripartite light-
vibration entanglement is significantly enhanced, i.e.,  > 1,
in the regions 0 < θ < π and π < θ < 2π , and the max-
imal amount can be observed around θ = π/2 and 3π/2,
corresponding to maximal quantum interference. However,
the tripartite optomechanical entanglement is strongly sup-
pressed, i.e., 0 <  < 1 at θ = nπ , which is due to the
presence of the ODM.

In the above section, we have showed that a significant
enhancement in the tripartite optomechanical entanglement
can be achieved via the ODM control. It is natural to ask the
question: can we further improve the tripartite light-vibration
entanglement by tuning the other parameters of the system?

For further elucidating this problem, we plot the tripartite
light-vibration entanglement in Fig. 4(a), quantified by the
minimum residual contangle Er|s|t

τ , as functions of the op-
tomechanical coupling strengths G01 and G02 in the ODMB
regime. We see that the tripartite optomechanical entangle-
ment can be significantly enhanced by increasing G0 j , and
that the maximal amount of the tripartite entanglement can be
observed for 0.2 � G0 j/ωm � 0.3. Moreover, in Fig. 4(b), we
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FIG. 4. (a) Tripartite light-vibration entanglement measure Er|s|t
τ

vs the optomechanical coupling strengths G01 and G02 when
κ j=1,2/ωm = 0.2, in the ODMB regime. (b) Er|s|t

τ vs G0 j when
κ j/ωm = 0.2, in both ODMU (blue solid curve) and ODMB (red
dashed curve) regimes. (c) Er|s|t

τ vs the cavity-field decay rates κ1

and κ2 when G0 j/ωm = 0.2, in the ODMB regime. (d) Er|s|t
τ vs κ j

when G0 j/ωm = 0.2, in both ODMU (blue solid curve) and ODMB
(red dashed curve) regimes. Other parameters are the same as those
in Fig. 2.

plot the tripartite optomechanical entanglement measure Er|s|t
τ

as a function of the light-motion coupling strengths G0 j in
both ODMU (blue solid curve) and ODMB (red dashed curve)
regimes. We find that in both ODMU and ODMB regimes, the
tripartite optomechanical entanglement could be further en-
hanced by increasing the optomechanical coupling strengths
G0 j . In particular, we show that the tripartite optomechanical
entanglement in the ODMB regime is larger than that in the
ODMU regime (i.e., Er|s|t

τ,ODMB > Er|s|t
τ,ODMU).

In Fig. 4(c), the tripartite optomechanical entanglement
measure Er|s|t

τ is plotted as functions of the decay rates κ1

and κ2 of the two cavities, when the system works in the
ODMB regime. For clearly investigating the influence of the
sideband-resolution condition on the tripartite optomechani-
cal entanglement, the mechanical frequency ωm is chosen as
a frequency scale. This demonstrates that the phonon side-
band can be well resolved from the cavity-emission spectrum
when κ j/ωm  1, corresponding to the resolved-sideband
limit [10–13]. In particular, in this resolved-sideband regime,
i.e., κ j/ωm  1, We find that the tripartite optomechanical
entanglement becomes much larger for a smaller cavity-field
decay rate κ j .

To further elucidate this observation, we plot the tripartite
optomechanical entanglement measure Er|s|t

τ as a function of
the cavity-field decay rate κ j , in both ODMU (blue solid
curve) and ODMB (red dashed curve) regimes, as shown in
Fig. 4(d). We can see that in these two regimes, the phonon
sidebands can be well resolved (i.e., κ j/ωm  1, see the blue-
shaded area), and that the tripartite quantum entanglement
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FIG. 5. Tripartite optomechanical entanglement measure Er|s|t
τ

as a function of the thermal phonon number n̄ of the mechanical
resonator in the ODMU (blue symbols) and ODMB (red symbols)
regimes. Other parameters are the same as those in Fig. 2.

can be significantly improved with decreasing κ j . However,
in the unresolved-sideband regime κ j/ωm > 1, the tripartite
entanglement becomes much worse for a larger cavity-field
decay rate κ j (see the yellow-shaded area). Despite this, when
κ j/ωm  1, the amount of the tripartite light-vibration en-
tanglement in the ODMB regime is much larger than that in
the ODMU regime (i.e., Er|s|t

τ,ODMB > Er|s|t
τ,ODMU). These findings

offer a different method to enhance fragile quantum resources
by appropriately designing the cavities.

Our ODMB mechanism paves a feasible way to enhance
fragile quantum resources via the control of an optical dark
mode, and it can be used for constructing the noise-tolerant
quantum processors and quantum networks. To study the
noise robustness of the resulting tripartite optomechanical
entanglement, we plot the minimum residual contangle Er|s|t

τ

as a function of the thermal phonon number n̄ of the vibra-
tion, when the system operates in both ODMB and ODMU
regimes, as shown in Fig. 5. We find that for the ODMU
regime, the tripartite optomechanical entanglement emerges
only for the thermal phonon number n̄  1500 (see the blue
symbols). However, for the ODMB regime, it can persist for
the thermal phonon number near n̄ = 3000 (see the red sym-
bols), which is twice that of the ODMU case. In particular,
we find that with the increase of the thermal phonon number
n̄, the tripartite light-vibration entanglement in the ODMB
regime is always much lager than that in the ODMU regime.
Our findings provide a way for enhancing and protecting
fragile quantum resources from thermal noise and ODM, and
pave a way towards noise-tolerant large-scale entanglement
networks.

V. DISCUSSIONS

In this section, we show some discussions on possible
experimental realizations of our model, and on the tripartite
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entanglement measures and the importance of our measure of
entanglement.

A. Discussions on possible experimental realizations

In this section, some discussions are presented for showing
the experimental realization of the photon-tunneling coupling
for our model and related ones. Currently, the photon-hopping
interaction between the two cavity fields has been experimen-
tally implemented in a microsphere optomechanical cavity
system [59–61,67], where a microresonator supports a pair
of degenerate counterclockwise and clockwise traveling-wave
whispering-galley modes. The resonant frequencies of these
modes are modulated by a radial breathing (vibrational) mode,
which changes the circumference of a microsphere. Then,
the optomechanical coupling is induced between the radial
breathing mode and the counterclockwise (clockwise) mode.
Note that the photon-tunneling interaction between the coun-
terclockwise and clockwise optical modes is realized due to
optical backscattering, and, in experiments, this backscatter-
ing of photons can be induced by the surface roughness and
material defects in practical devices [59–61]. By utilizing
counterclockwise and clockwise optical modes and a vibra-
tional mode, we can induce a precisely controllable synthetic
gauge field by just tuning the phases of the external driving
lasers [61].

In addition, based on membrane-in-the-middle configu-
ration optomechanical-cavity systems [68], we can realize
the photon-tunneling coupling between the two cavity fields
and, then, implement the loop-coupled optomechanical sys-
tem in experiments in an optomechanical-cavity system. In
the membrane-in-the-middle configuration, there exist two
cavity-field modes (the left and right subcavity modes), which
are coupled to each other via a photon-tunneling interaction.
The vibration of the mechanical membrane modulates the
resonant frequencies of the two subcavity modes and, as a
result, the radiation-pressure coupling is induced between the
left (right) subcavity mode and this vibrational mode.

Actually, this nontrivial phase can also be realized by us-
ing multiple tones based on cavity optomechanical systems
[58,69,70]. For example, in a four-mode loop-coupled op-
tomechanical configurations [58,69], two cavity modes are
coupled indirectly via two nondegenerate vibrational modes,
and the system is driven by four tones in the well-resolved
sidebands. In this case, the nontrivial phase of the system
can be induced by tuning the phases of the driving tones. In
addition, using the standard optomechanical interactions can
lead to a nontrivial phase in a three-mode optomechanical
system [70], where two nondegenerate resonators are coupled
to a common cavity. In that system, the cavity is driven by four
tones, and this nontrivial phase can be tuned in situ simply via
the phases of the driving tones applied to the cavity.

B. Discussions on tripartite entanglement measures and the
importance of our measure of entanglement

Here we present some discussions on tripartite entangle-
ment measures and on the importance of the measure of
entanglement applied by us.

TABLE I. Five disjoint classes of three-mode (tripartite) states
concerning their bipartite and tripartite entanglement based on the
classification of Ref. [71]. Here “+” indicates that a given measure is
nonzero. Examples of states ρ ≡ ρABC of each class can be generated
by our optomechanical system for the parameters, which are speci-
fied in the last column. HereA (i.e., an example for class 1) includes
the GHZ-like states of Ref. [72];B (i.e., an example for class 2) is the
two-mode squeezed vacuum in the first two modes and the vacuum
in the third mode; C (i.e., an example for class 3) includes separable
states with respect to two of the three bipartitions but inseparable
with respect to the third bipartition; D (i.e., an example for class
4) includes separable states with respect to all three bipartitions
but cannot be written as a mixture of tripartite product states; E
(i.e., an example for class 5) includes the vacuum state in all three
modes. Note that tripartite entanglement corresponds to three-mode
biseparability (class 4).

Class State ρ EA|B|C
ρ EA|(BC)

ρ EB|(CA)
ρ EC|(AB)

ρ Examples

1 Fully entangled + + + + A
2 Single-mode biseparable + + + 0 B

+ + 0 +
+ 0 + +

3 Two-mode biseparable + + 0 0 C
+ 0 + 0
+ 0 0 +

4 Three-mode biseparable + 0 0 0 D
5 Fully separable 0 0 0 0 E

One can consider some (nonnegative) measures of tripartite
(EA|B|C

ρ ) and bipartite (EA|(BC), EB|(CA)
ρ , and EC|(AB)

ρ ) entangle-
ment for a given three-mode state ρ ≡ ρABC such that they
are zero if and only if ρ can be decomposed, respectively, as
follows:

EA|(BC)
ρ = 0 iff ρ =

∑
i

ρA
i ⊗ ρBC

i , (20)

EB|(CA)
ρ = 0 iff ρ =

∑
i

ρB
i ⊗ ρCA

i , (21)

EC|(AB)
ρ = 0 iff ρ =

∑
i

ρC
i ⊗ ρAB

i , (22)

EA|B|C
ρ = 0 iff ρ =

∑
i

ρA
i ⊗ ρB

i ⊗ ρC
i . (23)

These measures of entanglement can be chosen in various
ways, and ours are specified below. Note that the above single-
mode (ρA

i ,...) and two-mode (ρAB
i ,...) mixed states can be

replaced by pure states (as in, e.g., Ref. [71]) without loosing
any generality of these decompositions.

Following the classification introduced in Ref. [71] (and
then applied to many specific systems, including optomechan-
ical ones in, e.g., Ref. [73]), one can distinguish five different
classes of entanglement, which are listed in Table I for a sys-
tem composed of three modes (or parties, say A, B, and C).
Note class 4 of three-mode biseparable states, which are
separable with respect to all three bipartitions, but cannot
be written as a mixture of tripartite product states, given in
Eq. (23). These are usually referred to as tripartite entangled
states, and play a central role in this paper.
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In particular, various measures of entanglement can be
used to properly classify bipartite and tripartite entanglement
of classes of states listed in Table I. Concerning measures of
bipartite entanglement, one can choose among dozens of mea-
sures, but for quantifying tripartite entanglement the choice
of measures is much more limited [74]. In addition to the
minimum residual contangle introduced in Ref. [62], as stud-
ied by us, one could apply, in principle, a finite-dimensional
multipartite concurrence introduced in Refs. [75,76] in the
limit of large-dimensional modes. That measure has also an
intuitive physical interpretation, but it is much more difficult
to be calculated for systems of a large dimension (note ours is
infinite-dimensional), because it requires finding numerically
an infimum over all possible decompositions of a given mixed
state.

We note that tripartite entanglement in optomechanical
systems was studied already two decades ago (see, e.g.,
Refs. [73,77,78]). In particular, Ref. [78] discusses how to
generate bipartite and tripartite entanglement in a system com-
posed of three subsystems (modes, denoted here as A, B,C):
a micromechanical resonator and two output optical fields.
Specifically, (i) purely optical bipartite entanglement between
two output modes (of the two-mode reduced system) and (ii)
fully tripartite optomechanical entanglement (corresponding
to class 1 in Table I). Bipartite entanglement is quantified
by the (logarithmic) negativity corresponding to the negative
eigenvalue of the partially transposed (PT) two-mode-reduced
matrices. Tripartite entanglement is revealed and quantified
analogously by the minimum eigenvalues for the PT three-
mode matrices with respect to each of the three modes.
This corresponds to applying bipartite PT-based entanglement
measures for all the three different bipartitions of the ABC
system, i.e., A|(BC), B|(CA), and C|(AB). It is found, for
some ranges of the system parameters, that these eigenvalues
can be all negative, showing that their system can be fully
tripartite entangled [73]. Clearly, tripartite entanglement (cor-
responding to Class 4) occurs if a tripartite state ρ exhibits
both (i) EA|(BC)

ρ = EB|(CA)
ρ = EC|(AB)

ρ = 0 and (ii) EA|B|C
ρ > 0.

By checking conditions (i) without testing conditions (ii) (i.e.,
without calculating EA|B|C

ρ ), one cannot say whether a given
state ρ belongs to Class 4 or Class 5 of completely separable
states. However, by calculating EA|B|C

ρ via the minimum resid-
ual contangle, we are able to distinguish these two cases for
our model.

In fact, the contangle (and its absolute value) can be use-
ful for various quantum information applications. Here some
discussions are shown to clearly explain the importance of the
measure of entanglement applied by us. In this work, the main
reason for us of applying the minimum residual contangle,
as a measure of a tripartite entanglement, is its relation to

entanglement monogamy in addition to its simple computabil-
ity. In fact, the measure was introduced in Ref. [62], as a
continuous-variable analog of the famous Coffman-Kundu-
Wootters monogamy inequality [64] designed for testing the
monogamy of entanglement of discrete systems. Entangle-
ment monogamy describes one of the most fundamental
properties of quantum entanglement, which means that en-
tanglement cannot be freely shared between arbitrarily many
parties (in our case, three modes). The monogamy of en-
tanglement has many fundamental applications (for a review
see Ref. [79]). It is especially useful in proving the security
of quantum cryptosystems (see, e.g., Refs. [80,81]). But the
interest in multipartite entanglement and its monogamy is
not limited to quantum cryptology, quantum communication,
and quantum computing [82]. For example, an apparent vi-
olation of entanglement monogamy, which is referred to as
polyamory and studied in, e.g., black holes [83], would lead
to major paradoxes of quantum mechanics and cosmology.

VI. CONCLUSIONS

We have showed how to realize a tripartite optomechanical
entanglement via the control of the ODM, which is formed
by two optical modes coupled to a common vibrational mode.
The tripartite light-vibration entanglement can be significantly
enhanced via the ODMB mechanism, without which it is
strongly suppressed. In particular, the noise robustness of the
tripartite quantum entanglement in the ODMB regime can
be even twice as large as that in the ODMU regime. This
study can enable constructing large-scale entanglement net-
works with the dark-mode immunity and the noise tolerance,
and also open up a range of exciting opportunities for quan-
tum information processing and quantum metrology protected
against the ODM.
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