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Efficient optomechanical refrigeration of two vibrations via an auxiliary feedback loop: Giant
enhancement in mechanical susceptibilities and net cooling rates
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We propose a method to realize the simultaneous ground-state refrigeration of two vibrational modes beyond
the resolved-sideband regime via an auxiliary feedback loop (AFL). This is realized by introducing the AFL to
break the dark mode, which is formed by two vibrational modes coupled to a common cavity-field mode. We
obtain analytical results of the effective mechanical susceptibilities and net-refrigeration rates, and find that in
the presence of the AFL a giant enhancement can be achieved for these susceptibilities and refrigeration rates.
Remarkably, the net-cooling rates under the AFL mechanism can be up to four orders of magnitude larger than
those in cases without the AFL. Moreover, we show that the simultaneous ground-state refrigeration arises from
the AFL mechanism, without which it vanishes. This is because in the absence of the AFL, the dark mode
prevents energy extraction through the cooling channels. However, by introducing the AFL, dark-mode breaking
rebuilds the refrigeration channels, and, as a result, leads to the simultaneous cooling of these vibrations. Our
approach has remarkable flexibility and scalability and can be extended to the simultaneous refrigeration of a
large number of vibrations beyond the resolved-sideband regime.
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I. INTRODUCTION

Quantum manipulation of multiple-vibrational-mode sys-
tems has become an important research topic in cavity op-
tomechanics [1–3]. These systems not only provide a unique
platform to study macroscopic mechanical coherence [4–15],
topological energy transfer [16], and quantum many-body
phenomena [17–24], but also can be widely applied in
quantum mechanical computers [25,26], high-performance
sensors [27–29], and nonreciprocal devices [30–37]. To
observe significant quantum mechanical effects of multiple-
vibration systems, a prerequisite is to simultaneously cool
these systems to their quantum ground states by effectively
suppressing their thermal noises.

So far, two effective cooling mechanisms using cav-
ity optomechanics have been proposed to cool a single
mechanical mode to its quantum ground state, i.e., (i) cavity-
resolved sideband cooling [38,39], which is more efficient
in the good-cavity regime, and (ii) feedback-aided cool-
ing [40–54], which is preferable in the bad-cavity regime. To
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further improve the refrigeration efficiency of a mechanical
mode, various new cooling schemes have been proposed,
such as those based on strong couplings [55,56], quantum
interference effect [57–59], modulated pulses [60,61], nonre-
ciprocity [34,62], and domino effect [63,64]. In particular, the
refrigeration of a mechanical resonator has been widely stud-
ied in both optical [65–69] and microwave [70–76] domains.
Despite such achievements, the simultaneous refrigeration of
multiple vibrations remains a major challenge in cavity op-
tomechanics. This is due to cooling suppression originating
from dark modes [77,78], which are induced by coupling mul-
tiple vibrational modes to a common optical mode [6,49,79–
82]. Recently, based on the resolved-sideband-cooling mecha-
nism, a dark-mode-breaking method using an auxiliary-cavity
mode has been developed for cooling multiple mechanical
resonators in the good-cavity regime [83,84]. However, the
answer to the question of whether one can skillfully combine
this method and the feedback-cooling technique to simulta-
neously cool these mechanical resonators in the bad-cavity
regime is yet unclear.

Here, based on the feedback-cooling mechanism [40–51],
we propose to simultaneously cool two vibrational modes
to their quantum ground states by breaking the dark mode
via an auxiliary feedback loop (AFL). We obtain the exact
analytical solutions of effective mechanical susceptibilities,
net-cooling rates, and mechanical frequency shifts. Then,
we find that when switching the AFL-off to AFL-on cases,
the net-refrigeration rates can be increased from γm up to
104γm, where γm is a mechanical decay rate. In particular,
the net-refrigeration rates under the AFL mechanism can be

2643-1564/2022/4(3)/033102(16) 033102-1 Published by the American Physical Society

https://orcid.org/0000-0003-1766-8245
https://orcid.org/0000-0002-8222-9268
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.4.033102&domain=pdf&date_stamp=2022-08-05
https://doi.org/10.1103/PhysRevResearch.4.033102
https://creativecommons.org/licenses/by/4.0/


LAI, QIN, MIRANOWICZ, AND NORI PHYSICAL REVIEW RESEARCH 4, 033102 (2022)

c(a) d

q
1

q
2

d

G1 G2

g
cd,2

g
cd,

gcd,1

AuxiliaryGa a

a
m

-1 1

10

1

2

10
4

j,effГ

jγ

)c()b(

j,effΩ

j

ω ω

ω

0.99

1.02

1

m
-1 1ω ω

1.01

feedback loop
(AFL)

AFL-on

AFL-off

AFL-off:
AFL-on: Cooled

 Uncooled

1,effГ 1γ
2,effГ 2γ 1,effΩ 1

2,effΩ 2

κ

γ1 γ2

c

κa

AFL-on

AFL-off

FIG. 1. (a) Schematics of a multimode optomechanical system. Two mechanical modes qj=1,2 (both with resonance frequency ωm and
mechanical decay rate γ j) are coupled to a common cooling-cavity mode dc (with resonance frequency ωc and cavity-field decay rate κc)
via the radiation-pressure couplings of strengths Gj . An auxiliary cavity da (with resonance frequency ωa and cavity-field decay rate κa) is
coupled to the second mechanical mode via an optomechanical coupling strength Ga. The output fields of the two driven cavities are measured
via homodyne detection, and then the feedback loops (with optomechanical couplings Gk=1,2,a and feedback gains gcd,k=1,2,a) are utilized to
design direct forces exerted on the two mechanical modes, which can lead to the freezing of their thermal fluctuations (i.e., the cold-damping
effect) [40–51]. (b) Effective mechanical damping � j,eff(ω) [see Eq. (22a)] and (c) effective mechanical frequency � j,eff(ω) [see Eqs. (22b)
and (22c)] vs the Fourier frequency ω in the AFL-off (Ga = 0 and gcd,a = 0, solid curves) and AFL-on (Ga/ωm = 0.2 and gcd,a = 0.5, dashed
curves) cases. The parameters used here are �̃c = �̃a = 0, ω j=1,2 = ωm, κc = κa = 3ωm, γ j=1,2 = 10−5ωm, Gj=1,2 = 0.2ωm, gcd, j=1,2 = 0.5,
ζc = ζa = 0.8, and ωfb, j=1,2 = ωfb,a = 4ωm.

tremendously amplified by appropriately designing the AFL.
These tremendously amplified net-cooling rates lead to a giant
enhancement in the cooling performance of the vibrational
modes.

Remarkably, we find that for the AFL-off case, the simul-
taneous refrigeration of two vibrational modes fails due to
the cooling suppression from the dark mode, while for the
AFL-on case, a high efficient ground-state cooling of these
vibrations is achieved, beyond the resolved-sideband regime,
by breaking the dark mode. Physically, the AFL mechanism
provides a useful strategy to break the dark mode and, in turn,
to rebuild cooling channels for extracting thermal phonons
stored in the dark mode. Moreover, we find that due to the
use of the AFL, the cooling efficiency is higher for the me-
chanical mode connected to the AFL. Our model is generic
and can provide a way to simultaneously cool a large number
of vibrational modes in the unresolved-sideband regime via
dark-mode breaking.

The rest of this paper is organized as follows. In Sec. II,
we present a multiple-mode optomechanical model with
the AFL and its Hamiltonian. In Sec. III, we derive the
Langevin equations, show the cold-damping feedback, obtain
the steady-state average phonon numbers, and analyze the
dark-mode control. In Sec. IV, we analyze the multiple-mode
optomechanical refrigeration via the AFL. In Sec. V, we ana-
lyze the optical dark mode, seek optimal feedback parameters,
and give some discussions. In Sec. VI, we generalize our
method to the loop-coupled system and give possible exper-
imental realizations. Finally, we conclude in Sec. VII. The
Appendix includes the detailed parameter expressions of the
effective mechanical susceptibilities.

II. MODEL AND HAMILTONIAN

We focus on a multimode optomechanical system, where a
cooling-cavity-field mode is optomechanically coupled to two

vibrational modes. To control the dark mode in the system, we
introduce an auxiliary-cavity-field mode, which is coupled to
the second mechanical mode via a radiation-pressure interac-
tion, as illustrated in Fig. 1(a). For the sake of manipulating
the mechanical and optical degrees of freedom, a monochro-
matic laser, with field amplitude �L (�R) and frequency ωL

(ωR), is used to drive the cooling (auxiliary) cavity. The output
fields of the two driven cavities are measured via homodyne
detection, and then the feedback loops are utilized to design
direct forces applied upon the two mechanical modes, which
can lead to the freezing of their thermal fluctuations (i.e.,
the cold-damping effect) [40,41,43–51]. In a rotating frame
defined by exp(−iωLtd†

c dc − iωRtd†
a da), the Hamiltonian of

the system reads (h̄ = 1)

HI = �cd†
c dc + �ad†

a da +
2∑

j=1

[
ω j

(
p2

j + q2
j

)
2

− λ jd
†
c dcq j

]

− λad†
a daq2 + (�Ld†

c + �Rd†
a + H.c.), (1)

where �c = ωc − ωL and �a = ωa − ωR are, respectively, the
driving detunings of the cooling-cavity and auxiliary-cavity
fields of resonance frequencies ωc and ωa. The operators d†

c
and d†

a (dc and da) are the creation (annihilation) operators of
the cooling-cavity and auxiliary-cavity modes, respectively.
The jth mechanical mode is described by the dimensionless
momentum (p j) and coordinate (q j) operators with resonance
frequency ω j . The λ j term in Eq. (1) describes the optome-
chanical interaction between the cooling-cavity field and the
jth mechanical mode, where λ j = ωc/L

√
1/(mjω j ) is the

strength of a single-photon optomechanical coupling, with L
and mj being the rest length of the cooling cavity and the
mass of the jth mechanical mode, respectively. The interac-
tion (with strength λa) between the auxiliary cavity and the
second mechanical mode is described by the λa term. The
last term in Eq. (1) describes, respectively, the laser driving
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of the cooling and auxiliary cavities, whose amplitudes are
�L = √

2PLκc/ωL and �R = √
2PRκa/ωR, with κc (κa) and PL

(PR) denoting the cavity-field decay rate and the driving power
for the cooling (auxiliary) cavity, respectively. Our physical
model could be implemented using a Fabry-Prot-cavity op-
tomechanical configuration, where a double-movable-mirror
optomechanical cavity is coupled to another cavity field, as
shown in Sec. VI.

III. LANGEVIN EQUATIONS, DARK-MODE CONTROL,
COLD-DAMPING FEEDBACK, AND FINAL MEAN

PHONON NUMBERS

In this section, we derive the Langevin equations of the
system, analyze cold-damping feedback, and obtain the final
steady-state mean phonon numbers of the two mechanical
modes.

A. Langevin equations

To include the damping and noise effects, we consider the
case where the two cavity-field modes are coupled to their
vacuum baths, and the two mechanical modes are subjected to
quantum Brownian forces. Then, the evolution of this system
can be described by the quantum Langevin equations:

ḋc = −i�cdc +
2∑

j=1

iλ jdcq j − i�L − κcdc +
√

2κcdc,in , (2a)

ḋa = −(i�a + κa)da + iλadaq2 − i�R +
√

2κada,in, (2b)

ṗ1 = −ω1q1 + λ1d†
c dc − γ1 p1 + ξ1, (2c)

ṗ2 = −ω2q2 + λ2d†
c dc + λad†

a da − γ2 p2 + ξ2, (2d)

q̇ j = ω j p j, (2e)

where γ j denotes the decay rate of the jth vibrational mode.
The operators dc,in (da,in) and ξ j are, respectively, the noise
operators of the cooling (auxiliary) cavity mode and the Brow-
nian force acting on the jth vibrational mode. These noise
operators have zero mean values and satisfy the following
correlation functions:

〈dc,in(t )d†
c,in(t ′)〉 = δ(t − t ′), 〈d†

c,in(t )dc,in(t ′)〉 = 0, (3a)

〈da,in(t )d†
a,in(t ′)〉 = δ(t − t ′), 〈d†

a,in(t )da,in(t ′)〉 = 0, (3b)

〈ξ j (t )ξ j (t
′)〉 = γ j

ω j

∫
e−iω(t−t ′ )ω

×
[

coth

(
ω

2kBTj

)
+ 1

]
dω

2π
, (3c)

where Tj is the thermal-reservoir temperature associated with
the jth vibrational mode, and kB is the Boltzmann constant.

To cool these vibrational modes, we consider the strong-
driving regime of the two cavities. In this case, the mean
photon number in the two cavities is sufficiently large, and
then a linearization procedure can be used to simplify our
physical model. To this end, the operators in Eq. (2) can be
written as the sums of averages and fluctuations, i.e., o =
〈o〉ss + δo, for dc, d†

c , da, d†
a , q j , and p j . We separate the

quantum fluctuations and classical motions, and then write the
linearized quantum Langevin equations as

δẊc = −κcδXc + �̃cδYc +
√

2κcX in
c , (4a)

δẎc = −�̃cδXc − κcδYc +
2∑

j=1

Gjδq j +
√

2κcY
in

c , (4b)

δẊa = −κaδXa + �̃aδYa +
√

2κaX in
a , (4c)

δẎa = −�̃aδXa − κaδYa + Gaδq2 +
√

2κaY
in

a , (4d)

δ ṗ1 = −ω1δq1 + G1δXc − γ1δp1 + ξ1, (4e)

δ ṗ2 = −ω2δq2 + G2δXc + GaδXa − γ2δp2 + ξ2, (4f)

δq̇ j = ω jδp j, (4g)

where δXl = (δd†
l + δdl )/

√
2 and δYl = i(δd†

l − δdl )/
√

2
(for l = c, a) are the quadratures of the cooling and aux-
iliary cavity fields, and X in

l = (d†
l,in + dl,in )/

√
2 and Y in

l =
i(d†

l,in − dl,in )/
√

2 denote the corresponding Hermitian input
noise quadratures. In addition, we have defined the normalized
driving detunings �̃c = �c − ∑2

j=1 λ j〈q j〉ss (�̃a = �a −
λa〈q2〉ss) and the effective optomechanical couplings Gj =√

2λ j〈dc〉ss (Ga = √
2λa〈da〉ss) with 〈dc〉ss = −i�L/(κc +

i�̃c) and 〈da〉ss = −i�R/(κa + i�̃a).

B. Cold-damping feedback

For the sake of achieving the cold-damping feedback, we
consider the case of �̃c = 0 and �̃a = 0, corresponding to
the highest sensitivity for the position measurements of the
mechanical modes [40,49]. Note that this is essentially differ-
ent from the sideband cooling mechanism, which requires the
red-sideband resonance, i.e., �̃c = ω j and �̃a = ω j [38,39].
By using a negative derivative feedback, the effective decay
rate of the mechanical mode can be largely developed by the
cold-damping feedback technique [40–51].

Physically, the position of the two mechanical modes is
measured through the phase-sensitive detection of the cav-
ity output field, and then the readout of the cavity output
field is fed back onto the two mechanical modes by apply-
ing feedback forces. The intensity of the feedback forces is
proportional to the time derivative of the output signal, and,
therefore, to the velocity of the mechanical modes [40,41,43–
51]. Then, the linearized quantum Langevin equations under
the feedback scheme read

δẊc = −κcδXc +
√

2κcX in
c , (5a)

δẎc = −κcδYc +
2∑

j=1

Gjδq j +
√

2κcY
in

c , (5b)

δẊa = −κaδXa +
√

2κaX in
a , (5c)

δẎa = −κaδYa + Gaδq2 +
√

2κaY
in

a , (5d)

δ ṗ1 = −ω1δq1 + G1δXc − γ1δp1 + ξ1

−
∫ t

−∞
g1(t − s)δY est

c (s)ds, (5e)
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δ ṗ2 = −ω2δq2 + G2δXc + GaδXa − γ2δp2 + ξ2

−
∫ t

−∞
g2(t − s)δY est

c (s)ds

−
∫ t

−∞
ga(t − s)δY est

a (s)ds, (5f)

δq̇ j = ω jδp j . (5g)

The applied quantum Langevin equations are equivalent to the
standard quantum master equation describing the stationary
behavior of the system. It would also be interesting to analyze
a generalized method based on, e.g., a feedback quantum
master equation like in Ref. [85], which can give another
clear insight for the feedback cooling. In Eqs. (5e) and (5f),
the convolution term

∫ t
−∞ g j (t − s)δY est

c (s)ds (for j = 1, 2)
is the cooling-cavity feedback force acting on the jth me-
chanical mode. In Eq. (5f), the convolution term

∫ t
−∞ ga(t −

s)δY est
a (s)ds is the auxiliary-cavity feedback force acting on

the second mechanical mode. These feedback forces depend
on the past dynamics of the detected quadratures δYi (for
i = c, a), which are driven by the weighted sum of the fluctu-
ations of the mechanical modes. The causal kernel is defined
by [40,49,51]

g j (t ) = gcd, j
d

dt
[θ (t )ωfb, je

−ωfb, j t ], for j = 1, 2, a, (6)

where ωfb, j and gcd, j are, respectively, the feedback bandwidth
and the dimensionless feedback gain. Equation (6) shows the
causal kernel, which was applied in a number of works related
to cooling (see Refs. [40,49,51]). The estimated intracavity
phase quadratures δY est

l (s) (for l = c, a) can be obtained from
the homodyne measurement of the output quadrature Y out

l=c,a(t ).
We generalize the usual input-output relation

δY out
l=c,a(t ) =

√
2κlδYl (t ) − Y in

l (t ) (7)

to the case of a nonunit detection efficiency by modeling a
detector with quantum efficiency ζl with an ideal detector
preceded by a beam splitter (with transmissivity

√
ζl ), which

mixes the incident field with an uncorrelated vacuum field
Y υ

l (t ). Then, we obtain the generalized input-output relation,
which is given by [40,49,51]

Y out
l=c,a(t ) =

√
ζl [

√
2κlδYl (t ) − Y in

l (t )] −
√

1 − ζlY
υ

l (t ). (8)

The estimated phase quadratures δY est
l (t ) are obtained

as [40,49,51]

δY est
l=c,a(t ) = Y out

l (t )√
2ζlκl

= δYl (t ) −
Y in

l (t ) +
√

ζ−1
l − 1Y υ

l (t )
√

2κl
.

(9)

Here we highlight that, in principle, the advantage of
cold-damping feedback is that it does not require optical cav-
ities because detection via homodyning of the back-scattered
light is sufficient to reach the ground state. However, in our
work, we focus on the cold-damping feedback cooling based
on cavity optomechanical systems, and the optical cavity is
necessary for the feedback cooling based on cavity optome-
chanics. In cavity optomechanical systems, a high sensitivity
provided by the cavity readout of mechanical motion can also
be used for directly cooling the mechanical motion via active

feedback. The main idea is to obtain the oscillator position by
a phase-sensitive detection of the cavity output and to use it
to generate a negative feedback on the oscillator, i.e., a force
proportional to the time derivative of the output signal. This
increases the damping rate of the system without increasing
thermal noise (which corresponds to cold damping). Because
the scheme relies on the precise readout of the instantaneous
oscillator position, the ideal configuration comprises both
weak coupling and a fast cavity decay. The maximum amount
of cooling is limited by the imprecision of the readout. An
important aspect here is the phenomenon of noise squashing
where the noise on the detector and the noise-driven motion
of the mechanical oscillator become correlated.

Below, we seek the steady-state solution of Eq. (5) by
solving it in the frequency domain with a Fourier transforma-
tion. We define the Fourier transform for an operator r(t ) =
(1/2π )1/2

∫ ∞
−∞ e−iωt r̃(ω)dω (for r = δXa(c), δYa(c), δq j=1,2,

δp j=1,2, ξ j=1,2, X in
a(c), and Y in

a(c)), and consequently the quantum
Langevin equations (5), with the cold-damping feedback, can
be solved in the frequency domain. Based on the steady-state
solution, we can calculate the spectra of the position and
momentum operators for two mechanical modes, and, then,
the final mean phonon numbers in these resonators can be
obtained by integrating the corresponding fluctuation spectra.

C. Final mean phonon numbers

Mathematically, we can obtain the final steady-state av-
erage phonon number in the jth vibrational mode using the
following relation [40,63,86]

n f
j=1,2 = 1

2

[〈
δq2

j

〉 + 〈
δp2

j

〉 − 1
]
, (10)

where 〈δp2
j〉 and 〈δq2

j 〉 are, respectively, the variances of
the momentum and position operators of the jth vibrational
mode. By solving Eq. (5) in the frequency domain and inte-
grating the corresponding fluctuation spectra, the variances of
the momentum and position operators are

〈
δq2

j

〉 = 1

2π

∫ ∞

−∞
Sqj (ω)dω, (11a)

〈
δp2

j

〉 = 1

2πω2
j

∫ ∞

−∞
ω2Sqj (ω)dω. (11b)

For the corresponding vibrational modes, the fluctuation spec-
tra of the momentum and coordinate operators can be defined
by

So(ω) =
∫ ∞

−∞
e−iωτ 〈δo(t + τ )δo(t )〉ssdτ, (o = q j, p j ),

(12)
where 〈·〉ss is the steady-state mean. In the frequency domain,
the fluctuation spectra can be expressed as

〈δõ(ω)δõ(ω′)〉ss = So(ω)δ(ω + ω′), (o = q j, p j ). (13)

Thus, this system can be solved in the frequency domain. We
note that the exact analytical results of the final mean phonon
numbers are obtained based on Eqs. (10), (11), and (20).

The task of this work is to solve the cooling-suppression
obstacle caused by the dark mode by our AFL method. So,
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we just need to derive the cooling rates and the mean steady-
state phonon numbers, which can be used for studying the
cooling performance. Note that the simulations of the cooling
dynamics starting with a high-temperature mechanical state is
very important too. This is because a simulation of the cooling
dynamics could also yield the total cooling time, which could
be important information for future experiments.

D. Dark-mode control

Here, we introduce the annihilation (creation) operators
for the two mechanical modes b j = (q j + ip j )/

√
2 [b†

j =
(q j − ip j )/

√
2], and then study the dark-mode effect in

the system. We assume red-detuned cavity fields. Thus, the
Hamiltonian in Eq. (5) contains the term describing frequency
conversion (i.e., beam-splitter-type interaction), while the
two-mode squeezing interaction term can be safely ignored.
After performing the linearization, we obtain the linearized
Hamiltonian in the rotating-wave approximation (RWA) as

HRWA =
∑
j=1,2

[ω jδb†
jδb j + Gj (δdcδb†

j + δd†
c δb j )]

+
∑

k=c,a

�̃′
kδd†

k δdk + Ga(δdaδb†
2 + δd†

a δb2), (14)

where �̃′
c and �̃′

a are the normalized driving detunings of the
cooling and auxiliary cavities, respectively.

Below, in detail, we discuss the physical system when
the auxiliary cavity is absent (Ga = 0) and present (Ga �= 0),
respectively.

(i) In the absence of the auxiliary device, i.e., Ga = 0, the
system possesses the dark mode, which leads to inefficient
cooling for all the mechanical modes. In this case, the two
mechanical modes coupled to a common cavity can form a
bright mode B+ and a dark mode B−, which are, respectively,
defined as

B+ = G1δb1 + G2δb2

G0
, Bright, (15a)

B− = G2δb1 − G1δb2

G0
, Dark, (15b)

where G0 =
√

G2
1 + G2

2. Then, the Hamiltonian in Eq. (14)
becomes

HRWA = �̃′
cδd†

c δdc +
∑

l=+,−
ωlB

†
l Bl + G+(δdcB†

+ + δd†
c B+)

+ G−(B†
+B− + B†

−B+), (16)

where ω+ = (ω1G2
1 + ω2G2

2)/G2
0, ω− = (ω1G2

2 + ω2G2
1)/G2

0,
and the accordingly redefined coupling strengths are given by

G+ = G0, G− = (ω1 − ω2)G1G2

G2
0

. (17)

In Fig. 2(a), we plot the redefined coupling strengths
G± versus the coupling-strength ratio G2/G1. We find from
Fig. 2(a) and Eqs. (16) and (17) that, when ω2 = ω1, the
redefined coupling strength G− is equal to zero (i.e., G− = 0;
see the red lines), which indicates that the mode B− is de-
coupled from the system and it becomes a dark mode; while
the redefined coupling strength G+ is always positive G+ > 0
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FIG. 2. (a) In the absence of the auxiliary device (Ga = 0), the
redefined coupling strengths G+ (blue curve) and G− (red line) vs
the optomechanical coupling ratio G2/G1. (b) The redefined coupling
strengths G± and Ga,± vs the optomechanical coupling ratio G2/G1

in the presence of the auxiliary device (Ga �= 0). Here ω2 = ω1 and
other parameters are the same as those used in Fig. 1.

(see the blue curves), which means that B+ is a bright mode.
Owing to the presence of the dark mode [6,49,79–82], the
cooling of the two mechanical modes is strongly suppressed.

Physically, the two mechanical modes coupled to a com-
mon cavity-field mode can be hybridized into a bright mode
and a dark mode decoupled from the system. As a result,
the dark mode prevents extracting energy through the cool-
ing channels, and then the thermal noise, associated with
the dark mode, is kept in the system. This means that the
dark mode is a major obstacle for multiple-mode cooling in
cavity optomechanical systems. Thus, it is naturally to ask the
question whether we can control the dark mode to cool these
mechanical modes.

(ii) To control this dark mode, an auxiliary device is intro-
duced into the system, i.e., Ga �= 0. By substituting operators
B+ and B− into the Hamiltonian in Eq. (14), we obtain

HRWA =
∑

k=c,a

�̃′
kδd†

k δdk

+
∑

l=+,−
ωlB

†
l Bl + G+(δdcB†

+ + δd†
c B+)

+ G−(B†
+B− + B†

−B+) + Ga+(δdaB†
+ + δd†

a B+)

− Ga−(δdaB†
− + δd†

a B−), (18)

where we have introduced rescaled coupling strengths Ga±:

Ga± = χG2(1), (19)

where χ = Ga/G0. It can be seen from Eqs. (18) and (19) that,
in the presence of the auxiliary device (i.e., Ga �= 0), the two
hybrid modes B+ and B− are coupled to the system, which
means that both B+ and B− are bright modes. Physically, the
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auxiliary device provides a useful strategy to couple the dark
mode to the system and, in turn, to rebuild the cooling channel
for extracting the thermal phonons stored in the dark mode.

In Figs. 2(b), we plot G± and Ga,± versus the coupling-
strength ratio G2/G1 when ω1 = ω2. We can see that, even
though G− is always equal to zero (see the red lines), the ap-
plication of the auxiliary device can lead to a strong coupling
of the dark mode to the system (i.e., Ga,− > 0, see the red
symbols), which indicates that the dark mode B− becomes
a bright mode. This provides a simple method of switching
between the dark-mode and bright-mode regimes by using the
auxiliary devices.

Here we should highlight that the AFL consists of an auxil-
iary cavity (Ga �= 0) and an auxiliary cold-damping feedback
(CDF) [gcd,a �= 0; see Fig. 1(a)], which are, respectively, used
for controlling the dark mode and generating an auxiliary
feedback force acting on the second mechanical resonator. To
realize the feedback cooling of the two mechanical resonators,
the system needs the joint effect of the auxiliary cavity and the
auxiliary CDF. Note that the auxiliary CDF is indispensable
to the feedback cooling, and without the auxiliary CDF (i.e.,
gcd,a = 0), the use of the auxiliary cavity (i.e., Ga �= 0) only
destroys the dark mode but cannot realize the feedback cool-
ing. Physically, the combination of the auxiliary cavity and
the auxiliary CDF does not only break the dark mode but also
make the feedback cooling possible.

The main idea behind the proposed method is quite simple.
Specifically, if addressing either one of the mechanical modes
is made possible, the symmetry of the system is broken and
one can control both dark and bright mechanical modes. We
believe that the simplicity of this main idea is the advantage
of the proposed method rather than its drawback because
this indicates a solid physical ground for the predicted giant
improvement in cooling efficiency and other related quanti-
ties. In particular, our method could solve the outstanding
challenge concerning the cooling suppression caused by the
mechanical dark mode and pave a way toward dark-mode
breaking in multimode optomechanics. Analogously, a well-
known method of side-band cooling is also quite simple, as
it corresponds to anti-Stokes Raman scattering discovered
almost a century ago. That simple and old idea has led to
developing and implementing highly nontrivial methods for
quantum technologies in recent years.

IV. DOUBLE-MODE OPTOMECHANICAL
REFRIGERATION VIA THE AFL

In this section, we study in detail the cooling of the two
vibrational modes by analyzing their effective mechanical
susceptibilities, laser-cooling rates, and noise spectra.

A. Analytical results of the effective susceptibilities, cooling
rates, and noise spectra

In the AFL-on case, the coordinate fluctuation spectra of
the two vibrational modes can be obtained as

Sq1 (ω) = |χ1,eff(ω)|2[Sfb,1(ω) + Srp,1(ω) + Sth,1(ω)], (20a)

Sq2 (ω) = |χ2,eff(ω)|2[Sfb,2(ω) + Srp,2(ω) + Sth,2(ω)

+ Sfb,a(ω) + Srp,a(ω)]. (20b)

Here, we have introduced the effective susceptibility of the jth
vibrational mode as

χ j,eff(ω) = ω j
[
�2

j,eff(ω) − ω2 − iω� j,eff(ω)
]−1

, (21)

where � j,eff(ω) is the effective mechanical decay rate and
� j,eff(ω) is the effective mechanical resonance frequency of
the jth vibrational mode, which are given by

� j,eff(ω) = γ j + γ j,C(ω), (22a)

� j,eff(ω) = ω j + δω j (ω). (22b)

In Eq. (22a), the net cooling rates of the first and second
mechanical resonators are

γ1,C = G1gcd,1ω1ωfb,1

[
−G2gcd,2ω2ωfb,2E15ω

E2
10 + E2

11

+ κcωfb,1 − ω2

(κc + ωfb,1)2ω2 + (κcωfb,1 − ω2)2

]
, (23a)

γ2,C = Gagcd,aω2

{
κa(2ω2 + E4)(

κ2
a + ω2

)2 − (κaA2 − ωA3)ω

A2
2 + A2

3

}

− G2gcd,2ω2ωfb ,2A14

A2
10 + A2

11

, (23b)

and the mechanical frequency shifts, induced by the optical
spring effect, are given by

δω1 =
√

ω2
1 + G1gcd,1ω1ωfb,1ω2�1 − ω1, (24a)

δω2 =
√

ω2
2 + (Gagcd,aω2�2 − G2gcd,2ωfb,2�3)ω2

−ω2, (24b)

where

�1 = κc + ωfb,1

(κc + ωfb,1)2ω2 + (κcωfb,1 − ω2)2

+ G2gcd,2ω2ωfb,2E14

E2
10 + E2

11

, (25a)

�2 = κaA3 + ωA2

A2
2 + A2

3

+ 1

κ2
a + ω2

, (25b)

�3 = A15ω

A2
10 + A2

11

, (25c)

and other parameters are presented in the Appendix.
We see from Eqs. (23a) and (24a) that when the feedback

loop acting on the first mechanical mode is broken (i.e., G1 =
0 or gcd,1 = 0), the cooling of the first mechanical mode be-
comes inefficient (i.e., γ1,C = 0), and, at the same time, there
is no mechanical frequency shift for this resonator (i.e., δω1 =
0). This indicates that, in the absence of the feedback loop for
the first mechanical resonator, the mechanical resonator be-
comes a dissipative harmonic resonator, i.e., �1,eff = ω1 and
�1,eff = γ1. Similarly, for the second mechanical resonator
[see Eqs. (23b) and (24b)], due to the breaking of its feedback
loops (i.e., Ga = 0 or gcd,a = 0, and G2 = 0 or gcd,2 = 0),
a dissipative harmonic resonator emerges, i.e., �2,eff = ω2

and �2,eff = γ2.
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In Eq. (20), the thermal noise spectrum Sth, j (ω) of the jth
mechanical mode is given by

Sth, j (ω) = γ jω

ω j
coth

(
h̄ω

2κBTj

)
. (26)

Sfb, j (ω) is the cooling-cavity feedback-induced noise spec-
trum, and Srp, j (ω) denotes the cooling-cavity radiation-
pressure noise spectrum for the jth mechanical mode.
Moreover, Sfb,a(ω) and Srp,a(ω) denote the auxiliary-cavity
feedback-induced noise spectrum and the auxiliary-cavity
radiation-pressure noise spectrum for the second mechanical
mode, respectively. The analytical expressions of these noise
spectra are so complicated that we do not show them here.

B. Giant enhancement of mechanical susceptibilities
and net-cooling rates via the AFL

Now, let us study how the AFL largely tunes the effective
susceptibilities of the two mechanical modes by analyzing
their effective mechanical decay rates �eff, j and effective me-
chanical resonance frequencies �eff, j .

In both AFL-off [see solid curves in Figs. 1(b) and 1(c)]
and AFL-on (see dashed curves) cases, we plot the effective
mechanical decay rates �eff, j and the effective mechanical
resonance frequencies �eff, j versus the frequency ω, as shown
in Figs. 1(b) and 1(c). We find that owing to the AFL, both
� j,eff and � j,eff are significantly increased at resonance ω =
±ωm. For example, when the system operates in the AFL-
off case, the effective mechanical decay rates �eff, j at ω =
±ωm are equal to 2γ j , which indicates the two mechanical
modes cannot be cooled [see the solid curves in Fig. 1(b)].
In contrast to this, when switching to the AFL-on case, �eff, j

at ω = ±ωm can be increased from ≈2γ j to 	 103γm [see
the dashed curves in Fig. 1(b)]. This giant enhancement in
the effective mechanical decay rates �eff, j not only makes the
simultaneous cooling of the two mechanical modes feasible
but also could potentially be used for mechanical devices with
a large frequency bandwidth.

In addition, we find from Fig. 1(c) that the slight modu-
lation of the mechanical frequencies can be realized by the
“optical spring effect,” which may lead to the mechanical
frequency shifts in the case of low-frequency mechanical
resonators. However, for our higher resonance frequencies
(ω j/2π = 10 MHz), the optical spring effect does not signifi-
cantly alter the mechanical frequencies, i.e., �eff, j ≈ ωm when
ω/ωm = 1, as shown in Fig. 1(c)].

To further understand the underlying physics of the op-
tomechanical refrigeration under the AFL mechanism, we
here study the net-refrigeration rates γ j,C and the mechanical
resonance frequency shifts δω j of the two mechanical modes
for the resonance case, i.e., ω = ωm. Specifically, we first plot
the net-cooling rates γ j,C as a function of the coupling strength
Ga and the feedback gain gcd,a of the AFL, as shown in Fig. 3.
We see that when the AFL is broken (Ga = 0 or gcd,a = 0), the
net-cooling rates of the two mechanical modes are extremely
small (i.e., γ j,C ≈ γ j). This results in an inefficient cooling of
these mechanical modes, owing to the breaking of the AFL.

When we increase the values of Ga or gcd,a, the net-cooling
rates γ j,C are tremendously amplified, for example, γ j,C can
be increased from γ j,C/γ j ≈ 1 to ≈103–104. In particular, we
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FIG. 3. (a) Net-refrigeration rate γ j,C [see Eq. (23)] of the jth
vibrational mode versus the AFL-coupling strength Ga, when the
AFL-feedback gain gcd,a = 0.5. The horizontal solid lines denote
an inefficient net-refrigeration rate, when the AFL is broken, i.e.,
gcd,a = 0. (b) Net-refrigeration rate γ j,C vs the AFL-feedback gain
gcd,a, when Ga = 0.2ωm. The horizontal solid lines denote an inef-
ficient net-refrigeration rate when the AFL is broken, i.e., Ga = 0.
Here we set the parameter ω = ωm, and other parameters are the
same as those used in Fig. 1.

find that with increasing either Ga or gcd,a, the net-cooling rate
of the second mechanical mode is larger than that of the first
one, i.e., γ1,C > γ2,C. Physically, the AFL does not only break
the dark mode of the system but also offer another cooling
channel for the second mechanical mode.

Moreover, we show that by using the AFL mechanism,
a slight modulation of the mechanical frequencies emerges.
In Fig. 4, the mechanical-frequency shift δω j is plotted as a
function of the coupling strength Ga or the feedback gain gcd,a

of the AFL. We find that in the absence of the AFL mech-
anism (gcd,a = 0 or Ga = 0), the mechanical-frequency shift
is not induced for the two mechanical modes (i.e., δω j=1,2 =
0), while by utilizing the AFL mechanism, a mechanical-
frequency shift emerges. However, the resonance frequencies
of the two mechanical modes are changed slightly, which is
due to a small “optical spring effect” for our high resonance
frequencies of the mechanical modes.

C. Dependence of the refrigeration on the cooling-cavity
and AFL parameters

The feedback refrigeration of a single mechanical mode
in cavity optomechanics is due to the cold-damping effect
by a designed feedback force applied to this mechanical
mode [40,41,43–51]. Correspondingly, for multiple mechan-
ical modes, in principle, the feedback-assisted refrigeration
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AFL-feedback gain gcd,a = 0.5. The horizontal solid lines denote
the unshifted mechanical frequency when the AFL is broken, i.e.,
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The horizontal solid lines denote the unshifted mechanical frequency
when the AFL is broken, i.e., Ga = 0. Here we take ω = ωm, and
other parameters are the same as those used in Fig. 1.

mechanism can also lead to their simultaneous refrigeration.
However, we find a lack of cooling phenomenon that the
multiple mechanical modes coupled to a common cavity-field
mode are lack of cooling via the feedback-based refrigeration
mechanism. This is because the dark-mode effect, induced by
the coupling of the multiple mechanical modes to a common
cavity, prevents the extraction of the thermal occupations from
the dark mode. Since this counterintuitive refrigeration results
from the dark-mode effect, it is natural to ask whether one can
break the dark-mode effect to further cool these mechanical
modes to their ground states. To solve this problem, we use
the AFL not only to destroy the dark-mode effect but also
to manipulate the cooling performance of these mechanical
modes.

In Figs. 5(a) and 5(b), we plot the final steady-state av-
erage phonon numbers n f

j of the jth mechanical mode as a
function of the optomechanical coupling strength Gj and the
feedback gain gcd, j , when the system is in both AFL-off and
AFL-on cases. We find that, in the absence of the AFL, the
two mechanical modes are uncooled with increasing either Gj

or gcd, j (see the upper horizontal lines). The physical origin
behind this lack of cooling is that the dark mode decouples
from the system and prevents extracting thermal phonons.
In contrast, by using the AFL, the ground-state cooling of
the two mechanical modes become possible (n f

j < 1; see the
dashed curves). Physically, the application of the AFL pro-
vides the physical origin for destroying the dark mode and

rebuilding the cooling channels, so that thermal excitations
can be extracted.

In particular, it is shown that in the AFL-on case, the
cooling performance of the second mechanical mode is much
better than that of the first one, with increasing either Gj

or gcd, j [see the dashed curves in Figs. 5(a) and 5(b)]. The
optimal cooling performances of the two mechanical modes
can be achieved for the parameters 0.2 � Gj/ω j � 0.4 and
0.25 � gcd, j � 1. However, when Gj → 0 or gcd, j → 0, the
first mechanical modes cannot be cooled because of the break-
ing of its feedback loop, while the second one still can be
cooled. This is because the AFL is always applied on the
second resonator and provides another cooling channel to
extract its thermal phonons.

When the system operates in the AFL-off [see the upper
horizontal lines in Fig. 5(c)] and AFL-on (see the dashed
curves) cases, the steady-state average phonon number n f

j is
plotted as a function of the cooling-cavity feedback bandwidth
ωfb, j , as shown in Fig. 5(c). We see that, for the AFL-off case,
the cooling of the two mechanical modes is totally inefficient,
while for the AFL-on case, the ground-sate cooling is possible
(n f

1 , n f
2 < 1). Furthermore, we find that the optimal cooling of

the two mechanical modes is achieved when ωfb, j/ωm ≈ 4.
When we decrease the cooling-cavity feedback bandwidth,
i.e., ωfb, j → 0, the cooling efficiency of the two mechanical
modes becomes much lower. Physically, a lower feedback
bandwidth, corresponding to a longer time delay of the feed-
back loop, leads to a lower cooling efficiency of the mechanical
modes.

Since the AFL mechanism plays a crucial role in destroy-
ing the dark mode and rebuilding the cooling channels of the
system, the dependence of the cooling performance of these
mechanical modes on the parameters of the AFL mechanism
should be studied in detail.

In the AFL-on case, we plot the thermal phonon number
n f

j as a function of the AFL coupling strength Ga and the
AFL feedback gain gcd,a, as shown in Figs. 5(d) and 5(e),
respectively. It can be seen that when we turn on the AFL
(Ga �= 0 and gcd,a �= 0), the two mechanical modes can be
cooled to their quantum ground states efficiently (n f

j < 1) due
to the breaking of the dark mode; while when turning off the
AFL (Ga = 0 or gcd,a = 0), they cannot be cooled because
of the emergence of the dark mode. In addition, we find that
the cooling efficiency of the second mechanical mode is much
better than that of the first one under proper parameter condi-
tions and that the optimal refrigeration performances can be
observed for 0.2 � Ga/ωm � 0.6 and 0.4 � gcd,a � 1.5. The
resulting asymmetrical ground-state cooling is due to the fact
that the AFL exerted on the second mechanical mode provides
another cooling channel for extracting the thermal phonons of
the second mechanical mode.

Surprisingly, there exists one cooling switch point (i.e.,
n f

1 = n f
2 ) in Fig. 5(e). This phenomenon indicates that by

appropriately engineering the AFL, a flexible asymmetric-to-
symmetric or symmetric-to-asymmetric cooling switch can
be achieved. Moreover, we show that when Ga/ωm < 0.2
and gcd,a < 0.5, the refrigeration performance becomes less
efficient by decreasing Ga and gcd,a. These findings mean
that the AFL plays a crucial role of the dark-mode breaking
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FIG. 5. [(a)–(c)] Final steady-state mean phonon numbers, n f
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2 , of the two mechanical modes vs (a) the cooling-cavity optomechan-
ical coupling strength Gj , (b) the cooling-cavity feedback gain gcd, j , and (c) the cooling-cavity feedback bandwidth ωfb, j , when the system
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[(d)–(f)] In the AFL-on case, n f

1 (blue solid curves) and n f
2 (red dashed curves) are plotted vs (d) the AFL optomechanical coupling strength

Ga, (e) the AFL feedback gain gcd,a, and (f) the AFL feedback bandwidth ωfb,a. Other parameters are the same as in Fig. 1.

and the cooling impetus and that all the mechanical modes
are uncooled when the AFL is broken (i.e., Ga/ωm → 0 or
gcd,a → 0). This is because the reappearance of the dark-mode
effect breaks the cooling channels.

In addition, the cooling performance of the two mechanical
modes is plotted as a function of the feedback bandwidth ωfb,a

of the AFL, as shown in Fig. 5(f). It is shown that (i) the op-
timal cooling performance of the two mechanical modes can
be observed for ωfb,a/ωm � 3 and that (ii) the cooling of the
two mechanical modes becomes inefficient when ωfb,a → 0.
This is because a lower feedback bandwidth indicates a longer
time delay of the feedback loop, resulting in a lower cooling
efficiency for the two mechanical modes.

In Fig. 6, we plot the final mean steady-state phonon num-
bers n f

1 (see blue symbols) and n f
2 (see red symbols) versus

the cooling-cavity decay rate κc and the AFL-cavity decay
rate κa, when the system operates in the AFL-on case. We
find that with decreasing either κc or κa, the cooling efficien-
cies of the two mechanical modes become much lower in
the resolved-sideband regimes and that the ground-state cool-
ing can be achieved (n f

1 , n f
2 < 1) in the unresolved-sideband

regimes: κc/ωm > 1 and κa/ωm > 1. On the other hand, the

optimal cooling of the two mechanical modes is achieved for
κc/ωm > 2 and κa/ωm > 2. Our unresolved-sideband cooling
results are fundamentally different from those in the sideband
cooling, for which the optimal cooling is reached only in the
resolved-sideband regime [38,39,66].

Moreover, it is worth comparing the cooling rates of the
two mechanical modes (with the AFL on) with the cooling
rate of the second mechanical mode when the first mechanical
mode is decoupled from the main optical cavity, i.e., with
G1 = 0 and Gcd,1 = 0.

To illustrate this point, we plot the net-cooling rates γ j,C

of the jth mechanical mode versus the AFL-coupling strength
Ga, when the first mechanical mode is present (G1 �= 0 and
Gcd,1 �= 0, see the solid curves) and absent (G1 = 0 and
Gcd,1 = 0, see the dashed curves), as shown in Fig. 7. In the
absence of the first mechanical mode, the net cooling rates of
the two mechanical modes are much larger than their mechan-
ical damping rates (i.e., γ j,C 	 γ j), which means that both
mechanical modes can be efficiently cooled to their quantum
ground states. In particular, we see that when we increase the
value of Ga, the net-cooling rate of the second mechanical
mode is larger than that of the first one, i.e., γ1,C > γ2,C.
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Physically, the AFL plays a role not only in breaking the
dark mode of the system, but also in opening another cooling
channel for the second mechanical mode. In the absence of
the first mechanical mode, we find that the cooling rate of the
first mode is equal to zero due to the breaking of its cooling
channel, while the cooling rate of the second mechanical
mode is larger than that in the case where the first mechanical
mode is present. In conclusion, these results indicate that by
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the parameter ω = ωm, and other parameters are the same as those
used in Fig. 1.
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the AFL-off (solid curves) and AFL-on (dashed curves) cases. Other
parameters are the same as those used in Fig. 1.

introducing the AFL to a typical optomechanical system, the
net-cooling rate of the resonator can be largely enhanced, and
this is crucial for developing the cooling performance of the
system.

We note that although the dark mode exists theoretically
only in the degenerate-resonator case, i.e., ω1 = ω2, the dark-
mode effect, induced by this dark mode, actually works within
a finite mechanical detuning range in the near-degenerate-
resonator case. To know the width of the frequency-detuning
window associated with this dark-mode effect, in Fig. 8 we
show the final average phonon numbers n f

1 and n f
2 as functions

of the mechanical frequency ratio ω2/ω1 in both AFL-off
(see the solid curves) and AFL-on (see the dashed curves)
cases. For the AFL-off case, the ground-state cooling of the
two mechanical modes is unfeasible in both degenerate and
near-degenerate-resonator cases, as marked by the shadow
area. The width of the shadow area can be characterized by
the effective mechanical linewidth, |ω2 − ω1| � � j,eff. This
is because the cooling of the two mechanical resonators is
strongly suppressed in this region, and thus the two mechani-
cal resonators have a significant spectral overlap and become
effectively degenerate.

However, when the AFL is introduced to the system
(see the dashed curves in Fig. 8), the dark-mode effect is
completely broken, and the ground-state cooling of these me-
chanical modes can be realized irrespective of the value of
the ratio ω2/ω1. These results indicate that both degenerate
and near-degenerate vibrational modes can be cooled to their
quantum ground states and that our method can solve the
cooling suppression obstacle for both near-degenerate and
degenerate cases.

The dark modes in cavity optomechanics can be divided
into (i) mechanical and (ii) optical dark modes. Physically,
the mechanical (optical) dark modes are induced by the
coupling of multiple mechanical (optical) modes to a com-
mon optical (mechanical) mode. The mechanical dark modes
are governed by the mechanical-frequency detuning (i.e.,
ω2 − ω1) between the resonators. They are formed when the
mechanical-frequency detuning is equal to zero (i.e., ω2 −
ω1 = 0) and are suppressed when the mechanical-frequency
detuning is nonzero (i.e., ω2 − ω1 �= 0).
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Similarly, for the optical dark modes, their formations are
directly decided by the driving-detuning difference between
the optical modes. The zero value of the driving-detuning
difference leads to the creation of the optical dark modes, and
the suppression of the formation of the dark mode is caused
by a nonzero value of the driving-detuning difference between
the optical modes. In this work, we focus only on studying
the effect of the mechanical dark mode on the cooling perfor-
mance of the mechanical modes. In Fig. 8, we demonstrate
that although the mechanical dark mode exists theoretically
only for the zero-value mechanical detuning (i.e., ω1 = ω2),
the dark-mode effect actually will be worked for a wide de-
tuning range (i.e., ω1 �= ω2; see the shadow region in Fig. 8).
In the following section, we will study the optical-dark-mode
effect of the system in detail.

V. OPTICAL DARK MODE, OPTIMAL FEEDBACK
PARAMETERS, AND DISCUSSION

A. Optical dark mode

In the system, there also exists an optical dark mode
formed by the two optical modes coupled to a common me-
chanical mode. For demonstrating the optical dark mode, we
here consider the case where the main and auxiliary optical
modes couple to a mechanical mode; i.e., we set G1 = 0 and
gcd,1 = 0 in Eq. (5). Then, the two optical modes can form the
optical bright mode D+ and the optical dark mode D−, which
are given by

D+ = G2δdc + Gaδda

G̃0
, Optical bright mode, (27a)

D− = Gaδdc − G2δda

G̃0
, Optical dark mode, (27b)

where G̃0 =
√

G2
2 + G2

a. Then, the Hamiltonian in Eq. (5)
can be rewritten as

HRWA =
∑
j=±

�̃ jD
†
j D j + ω2δb†

2δb2 + G̃+(δb2D†
+ + D+δb†

2)

+ G̃−(D†
+D− + D†

−D+), (28)

where �̃+(−) = [G2
2(a)�̃

′
c + G2

a(2)�̃
′
a]/G̃2

0 and the coupling
strengths are

G̃− = G2Ga(�̃′
c − �̃′

a)

G̃2
0

, G̃+ = G̃0. (29)

We can see from Eqs. (28) and (29) that when �̃′
c = �̃′

a, the
mode D− is decoupled from the system due to G̃− = 0, and it
becomes an optical dark mode. Similar to the mechanical dark
mode, the formation of the optical dark mode is decided by the
driving-detuning difference (i.e., �̃′

c − �̃′
a) between the two

optical modes. We find that when the detuning difference is
equal to zero (�̃′

c − �̃′
a = 0), the optical dark mode emerges

and that the suppression of the formation of the dark mode
occurs when this difference is nonzero (�̃′

c − �̃′
a �= 0).

B. Optimal feedback parameters

How to practically choose the feedback bandwidths and
gains is very crucial for achieving the fastest cooling and
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FIG. 9. Net-refrigeration rate γ j,C of the jth vibrational mode vs
(a) the feedback gain gcd and (b) the feedback sideband ωfb. The
final mean phonon numbers n f

j of the jth vibrational mode vs (c) the
feedback gain gcd and (d) the feedback sideband ωfb. Here we set the
parameter ω = ωm, and other parameters are the same as those used
in Fig. 1.

lowest stationary occupation. To know the optimal feedback
parameters, we considered the case of gcd, j = gcd,a = gcd and
ωcd, j = ωcd,a = ωcd, and then plotted the net-cooling rates
γ j,C and the final mean phonon numbers n f

j of the jth mechan-
ical mode (for j = 1, 2) as functions of the feedback gain gcd

and the feedback bandwidth ωfb, as shown in Fig. 9.
One can see from Figs. 9(a) and 9(b) that the net-cooling

rates can be significantly improved by increasing either gcd or
ωfb, and that the optimal feedback bandwidth can be observed
for ωfb/ωm > 3. In addition, we can see that the net-cooling
rate of the second mechanical mode is always much larger
than that of the first one. Moreover, the optimal cooling
performance (i.e., the lowest stationary occupation) of the
two vibrational modes is located in the areas gcd ≈ 0.5 and
ωfb/ωm > 3, as shown in Figs. 9(c) and 9(d). In particular,
we find that under proper parameter conditions, the cooling
performance of the second resonator is better than that of the
first one, and this can be explained by the fact that the AFL
offers another cooling channel for the second resonator.

C. Discussion

Here we discuss the cooling case, where the auxiliary-
cavity driving detuning is not equal to zero, i.e., �a �= 0. In
Fig. 10, we plot the net cooling rate γ j,C of the jth mechanical
mode as a function of the auxiliary-cavity driving detuning
�a, when the AFL is turned on. Here we choose the mechani-
cal frequency ωm as the frequency scale, so that we can clearly
see the relationship between the optimal driving detunings.
We see that by introducing the AFL, the net-cooling rates
γ j,C of the two mechanical modes are much larger than their
mechanical decays (i.e., γ j,C 	 γm), which means that the si-
multaneous ground-state cooling is achievable in this system.
In particular, we find that the peak values of the net-cooling
rates emerge when �a = 0, and net-cooling rates become
smaller with the increase of the auxiliary-cavity detuning
�a. This is because the highest sensitivity for the position
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Fig. 1.

measurements can be achieved for a resonant cavity (i.e.,
�a = 0) and in the large-cavity bandwidth limit κ 	 ωm.

VI. GENERALIZATION TO THE LOOP-COUPLED
SYSTEM AND POSSIBLE EXPERIMENTAL

REALIZATIONS

Here, we extend our method to a loop-coupled system,
where the auxiliary cavity is coupled to both mechanical
modes. When the system is driven by the red-detuned lasers,
the linearization scheme can be performed to simplify the
system, and thus the linearized Hamiltonian in the RWA reads

HRWA =
∑
j=1,2

[ω jδb†
jδb j + Gj (δdcδb†

j + δd†
c δb j )]

+ �̃′
cδd†

c δdc + �̃′
aδd†

a δda + Ga(δdaδb†
2 + δd†

a δb2)

+ Ga1(δdaδb†
1 + δd†

a δb1), (30)

where Ga1 (Ga) is the effective optomechanical coupling
strength between the first (second) mechanical mode and the
auxiliary cavity-field mode. By considering the degenerate-
resonator case (i.e., ω1 = ω2) and by substituting the opera-
tors B± [see Eq. (15)] into the Hamiltonian in Eq. (30), we
obtain

HRWA = �̃′
cδd†

c δdc + �̃′
aδd†

a δda +
∑

l=+,−
ωlB

†
l Bl

+ G+(δdcB†
+ + δd†

c B+)

+ (Ga1+ + Ga+)(δdaB†
+ + δd†

a B+)

+ (Ga1− − Ga−)(δdaB†
− + δd†

a B−), (31)

where Ga1± is introduced rescaled coupling strength, defined
as

Ga1+(−) = χ1G1(2), (32)

with χ1 = Ga1/G0. In Fig. 11, we plot the redefined effec-
tive optomechanical coupling strength G+ (the black dashed
line), (Ga1+ + Ga+) (the red dotted line), and |Ga1− − Ga−|
(the red solid line) as functions of the auxiliary-cavity op-
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FIG. 11. Redefined effective coupling strengths G+ (black
dashed line), (Ga1+ + Ga+) (red dotted line), and |Ga1− − Ga−| (red
solid line) vs the auxiliary-cavity optomechanical coupling ratio
Ga1/Ga. Here we assume Ga/ωm = 0.2, and other parameters are the
same as those used in Fig. 1.

tomechanical coupling ratio Ga1/Ga. It can be seen that by
tuning the coupling ratio Ga1/Ga, the coupling strengths G+
and (Ga1+ + Ga+) are always nonzero, which indicates that
the mode B+ is a bright mode. In contrast to this, when
Ga1 = Ga, we obtain the coupling strength Ga1− − Ga− = 0,
and this means that the mode B− is decoupled from the
system and becomes a dark mode. Thus, the excitation en-
ergy stored in the dark mode cannot be extracted through
the optomechanical-cooling channel. For the general case
of Ga1 �= Ga, the dark-mode effect is broken, and thus the
ground-state cooling of the two mechanical resonators be-
comes feasible under proper parameter conditions.

Now, let us discuss possible experimental realizations of
this loop-coupled optomechanical system. In the microwave
domain, this system can be realized using a superconduct-
ing circuit [87], which consists of two microwave cavities
and two vibrational modes, as shown in Fig. 12(a). Specifi-
cally, two microwave cavities can be defined by combining
a vacuum-gap capacitor with an inductive network. The
vacuum-gap capacitor has a mechanically compliant top plate
that vibrates with several spectrally distinct mode frequencies,
corresponding to different vibrational modes. Furthermore,
one can experimentally realize the system using another su-
perconducting circuit optomechanical system [88], where the
mechanical motions are capacitively coupled to a multimode
microwave circuit, as shown in Fig. 12(b). The circuit sup-
ports two optical modes, both of them coupled to the same
vacuum-gap capacitor, and the two microwave cavities are
symmetrically coupled to the mechanical modes. In the opti-
cal domain, this system can be realized by using a multimode
optomechanical cavity [30], where two optical modes are
coupled to two mechanical modes. To prevent cross-mode
interactions, the two optical modes are chosen to be well
separated.

When we turn off the coupling channel between the
auxiliary-cavity mode and the first mechanical mode, the
loop-coupled system (see Fig. 12) reduces the system shown
in Fig. 1. Here, we present some discussions on the exper-
imental realization of our model, when the auxiliary cavity
couples only to the second mechanical mode. In the op-
tical domain, this system can be realized based on the
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(a)

(b)

FIG. 12. (a) Schematic of the optomechanical circuit consisting
of two microwave cavities and two vibrational modes. Two mi-
crowave cavities are defined by combining a vacuum-gap capacitor
with an inductive network, and the vacuum-gap capacitor has a
mechanically compliant top plate that vibrates with several spectrally
distinct mode frequencies, i.e., the vibrational modes. (b) Imple-
mentation of a superconducting microwave circuit optomechanical
device. A superconducting circuit featuring two electromagnetic
modes in the microwave domain is capacitively coupled to a mechan-
ical element (a vacuum-gap capacitor denoted by dashed rectangle)
and inductively coupled to a microstrip feedline. The end of the
feedline is grounded and the circuit is measured via black-scattered
light.

Fabry-Prot-cavity optomechanical configurations, which con-
sist of a double-movable-mirror optomechanical cavity cou-
pled to another cavity field, as shown Fig. 13. In this system,
the two mechanical resonators q j=1,2 are coupled to a com-
mon cooling cavity dc via the radiation-pressure couplings of
strengths Gj . An auxiliary cavity da is coupled to the second
mechanical resonator q2 via an optomechanical coupling of

κ

ac

c

1G 2G aGd d

γ
1 γ

2
q1 κaq2
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Feedback

gcd,1
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FIG. 13. Implementation of a multimode optomechanical system
using the Fabry-Prot-cavity optomechanical configuration consisting
of a double-movable-mirror optomechanical cavity (dc) coupled to
another cavity field (da). The cooling-cavity mode dc (with resonance
frequency ωc and cavity-field decay rate κc) is coupled to the two
mechanical resonators qj=1,2 (both with resonance frequency ωm and
mechanical decay rate γ j) through the radiation-pressure couplings
of strengths Gj . The second mechanical resonator q2 is also coupled
to the auxiliary cavity da (with resonance frequency ωa and cavity-
field decay rate κa) via an optomechanical coupling Ga. The output
fields of the two driven cavities are measured via homodyne detection
and then the feedback loops (with optomechanical couplings Gk=1,2,a

and feedback gains gcd,k=1,2,a) are utilized to design direct forces
exerted on the two mechanical resonators. This leads to the freezing
of their thermal fluctuations (i.e., the cold-damping effect) [40–51].

the strength Ga. The homodyne detection is used for mea-
suring the output fields of the two driven cavities and then
the direct forces exerted on the two mechanical resonators are
designed by utilizing the feedback loops, which can lead to the
freezing of their thermal fluctuations (i.e., the cold-damping
effect) [40–51].

The proposed physical model is general, and hence, it
can be implemented using cavity optomechanical platforms
in which the involved interactions can be realized. To im-
plement the dark-mode-breaking multimode cooling by the
auxiliary feedback loop, three important ingredients are re-
quired: (a) The first and second mechanical modes can be
coupled to the first optical mode; (b) the second mechanical
mode can be coupled to the second optical mode; and (c) the
distinct homogeneous feedback forces can be applied to both
mechanical modes. Therefore, these three elements should
be implementable in our candidate experimental systems. It
should be pointed out that although these three ingredients
have been realized in separate experiments, the implemen-
tation of the combination of these three requirements in the
same experimental setup has not been experimentally reported
yet. This is a potential experimental challenge in realistic
experimental setups. However, we believe that this challenge
can be overcome in the near future.

VII. CONCLUSION

In conclusion, we have solved the outstanding challenge of
cooling suppression from mechanical dark modes in cavity
optomechanics and shown how to simultaneously cool two
vibrational modes to their quantum ground states beyond the
resolved-sideband regime by breaking the dark mode via an
AFL. We have found that using our AFL method can lead
to a flexible switch between the dark-mode-breaking and
dark-mode-unbreaking regimes. Our method can lead to a
giant amplification in the net-cooling rates and the effective
mechanical susceptibilities of the two vibrational modes, and
this can be used for significantly developing the cooling per-
formance of these vibrational modes. Remarkably, we find
that in the absence of the AFL, all the mechanical modes are
uncooled due to the dark mode, while by introducing the AFL,
the simultaneous ground-state refrigeration becomes feasible
because of the dark-mode breaking.

In addition, we have shown that the refrigeration per-
formance of the two mechanical modes can be flexibly
switched between the symmetric-cooling and asymmetric-
cooling regimes, by appropriately engineering the feedback
gain of the AFL. Our work could potentially be used for
expanding the frequency bandwidth of mechanical devices,
observing quantum mechanical effects, and manipulating
macroscopic mechanical coherence.
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APPENDIX: ANALYTICAL EXPRESSIONS OF THE STEADY-STATE MEAN PHONON NUMBER

In this Appendix, we show the expressions of other parameters used in Eqs. (23)–(25). These expressions are given by

A1 = (ω2 − ωfb,2ωfb,a)κc + (ωfb,a + ωfb,2)ω2, A2 = [E4 + 2κaωfb,a]ω,

A3 = E4ωfb,a − 2κaω
2, A4 = κc

(
ω2 − ω2

1

) + γ1ω
2, A5 = [

κcγ1 − (
ω2 − ω2

1

)]
ω,

A6 = κcγ1 − ω2, A7 = (κc + γ1)ω, A8 = (
A6 + ω2

1 + G1gcd,1ω1
)
ωfb,1ω,

A9 = (
κcω

2
1 − A7ω

)
ωfb,1, A10 = (ωA4 − A8)ω − (ωA5 − A9)ωfb,2,

A11 = (ωA4 − A8)ωfb,2 + (ωA5 − A9)ω, A12 = γ1ω
2 + (

ω2 − ω2
1

)
ωfb,1,

A13 = [
γ1ωfb,1 − (

ω2 − ω2
1

)]
ω, A14 = A12A10 + A13A11,

A15 = A13A10 − A12A11, B1 = [(ωfb,a + ωfb,2)κc − (ω2 − ωfb,2ωfb,a)]ω,

C1 = [−E4 − 2κaωfb,a]ω, D1 = 2κaω
2 − E4ωfb,a,

E1 = (ω2 − κaκc)ω − (κa + κc)ωfb,2ω, F5 = ω2 − κcωfb,1, (A1)

and

F1 = (ω2 − κaκc)ωfb,2 + (κa + κc)ω2, F2 = E4ω2, F3 = 2κaω2ω, F4 = −(κc + ωfb,1)ω,

F6 = Gagcd,aωfb,aE1, F7 = F1Gagcd,aωfb,a, F8 = −(E4 + 2κaωfb,a)ω, F9 = 2κaω
2 − E4ωfb,a,

E2 = ω2G2gcd,2ωfb,2F8 + ω2F6, E3 = ω2G2gcd,2ωfb,2F9 + ω2F7, E4 = κ2
a − ω2, E5 = 2κaω,

E6 = (E4ω + E5γ2)A1 − (E4γ2 − E5ω)B1, E7 = (E4ω + E5γ2)B1 + (E4γ2 − E5ω)A1,

E8 = ω2(F2A1 + F3B1) − ω(E6 + E2), E9 = ω2(F2B1 − F3A1) − ω(E7 + E3),

E10 = F4E8 − F5E9, E11 = F4E9 + F5E8, E12 = E4ω + 2κaωfb,aω,

E13 = E4ωfb,a − 2ω2κa, E14 = E12E10 + E13E11, E15 = E13E10 − E12E11. (A2)
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