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Classification and reconstruction of optical quantum states with deep neural networks
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We apply deep-neural-network-based techniques to quantum state classification and reconstruction. Our
methods demonstrate high classification accuracies and reconstruction fidelities, even in the presence of noise
and with little data. Using optical quantum states as examples, we first demonstrate how convolutional neu-
ral networks (CNNs) can successfully classify several types of states distorted by, e.g., additive Gaussian
noise or photon loss. We further show that a CNN trained on noisy inputs can learn to identify the most
important regions in the data, which potentially can reduce the cost of tomography by guiding adaptive data
collection. Secondly, we demonstrate reconstruction of quantum-state density matrices using neural networks
that incorporate quantum-physics knowledge. The knowledge is implemented as custom neural-network layers
that convert outputs from standard feed-forward neural networks to valid descriptions of quantum states. Any
standard feed-forward neural-network architecture can be adapted for quantum state tomography (QST) with
our method. We present further demonstrations of our proposed QST technique with conditional generative
adversarial networks (QST-CGAN) [Ahmed et al., Phys. Rev. Lett. 127, 140502 (2021)]. We motivate our choice
of a learnable loss function within an adversarial framework by demonstrating that the QST-CGAN outperforms,
across a range of scenarios, generative networks trained with standard loss functions. For pure states with additive
or convolutional Gaussian noise, the QST-CGAN is able to adapt to the noise and reconstruct the underlying
state. The QST-CGAN reconstructs states using up to two orders of magnitude fewer iterative steps than iterative
and accelerated projected-gradient-based maximum-likelihood estimation (MLE) methods. We also demonstrate
that the QST-CGAN can reconstruct both pure and mixed states from two orders of magnitude fewer randomly
chosen data points than these MLE methods. Our paper opens possibilities to use state-of-the-art deep-learning

methods for quantum state classification and reconstruction under various types of noise.
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I. INTRODUCTION

Neural networks (NNs) are becoming ubiquitous in var-
ious areas of physics as a successful machine-learning (ML)
technique to solve different tasks [1]. Applications range from
particle physics [2], cosmology [3-5], and many-body quan-
tum matter [6] to material sciences [7], and even to discover
new physics [8,9]. The NNs are used in classification prob-
lems, where the goal is to assign a label to a data sample [10],
and for generative tasks, where new data is created after learn-
ing the underlying data distribution from samples [11,12].
Deep neural networks (DNNs) have shown impressive results
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in image classification [13,14], object detection [15], image
denoising and inpainting [16—18], deconvolution [19], gen-
erating realistic-looking images [20-23], text generation and
translation [24,25], as well as for generating audio [26], video
[27], simulating gaming graphics [28], and writing computer
programs automatically [29]. There are also recent examples
of NN-based machine learning successfully applied to grand
challenges in life sciences, e.g., the AlphaFold algorithm for
protein folding [30,31].

In quantum information and computing [32-37], some of
the problems faced in characterizing and controlling quantum
systems can be translated to tasks in ML. Many of these
problems are data-driven and NN-inspired techniques have
been used to successfully address them, e.g., identifying phase
transitions [38], detecting nonclassicality or entanglement
of quantum states [39-43], design of quantum experiments
[44-47], quantum error correction [48—52], characterizing and
calibrating quantum devices [53,54], and foundational ques-
tions [55]. Moreover, automatic differentiation, a technique
used to train neural networks, has been used for wave function
positivization [56], speeding up quantum optimal control [57],
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and other tasks in real-life experiments such as better state
transfer in the presence of dissipation [58].

For quantum state characterization, even distinguishing
two different quantum states can become challenging. For
example, telling a coherent source of light and a thermal state
apart can be difficult due to the close similarity of their data
in low-photon regimes [41]. Similarly, distinguishing differ-
ent mode superpositions of twisted light [59] in a landmark
experiment necessitated the use of neural networks.

Beyond just identifying properties of the quantum states or
classifying them, reconstructing a full quantum state descrip-
tion presents an even more challenging task, called quantum
state tomography (QST) [60—63]. The challenges arise mainly
due to the exponentially large Hilbert-space dimension re-
quired to fully describe the state [33,64—66]. For example,
k two-level quantum systems (qubits) have a Hilbert space
of dimension N = 2% and require up to N> — 1 real num-
bers to fully determine a density matrix describing the state.
Therefore, QST requires clever data processing to extract
a good representation of a state from noisy data [67-72].
The presence of noise further complicates the problem; for
additive Gaussian noise, one reconstruction method [73] has
computational complexity O(N*).

The success of NNs in other fields has prompted their
application to several quantum state classification and re-
construction tasks. The motivation is that NNs are universal
function approximators [74-76] that can learn maps from
noisy input data to class labels, or act as variational ansétze
for quantum states [77-79]. The variational ansdtze can be
learned from data by minimizing some loss metric between
the predictions from the NN-based model and the data. From
a computational learning perspective, approximately learning
a quantum state has a linear scaling in the number of quantum
bits [80].

In this paper, outlined in Fig. 1, we connect the tasks of
quantum state classification and reconstruction in a general
way to discriminative and generative problems in ML. We
demonstrate the feasibility of using DNNs for classification
and reconstruction, showing how to flexibly adapt them for
different scenarios, e.g., noise or scarce data. Crucial com-
ponents of our methods include incorporating knowledge of
quantum physics and other prior information into the network.

Many previous applications of DNNs for classifying
quantum data [40—42,81,82] consider properties like nonclas-
sicality or entanglement. In these works, more complicated
noise models, beyond simple detection inefficiencies, are not
considered. Since the classification task we tackle seems
rather straightforward for DNNs, we attempt to go beyond
the standard paradigm (training on simulated data, testing on
new data) and demonstrate results with different types of noise
for general states and measurements [see Figs. 1(a)-1(d)].
We also propose an adaptive data-collection method using a
trained DNN to extract interesting patterns in the data and
leverage it for adaptive tomography [see Fig. 1(f)].

In quantum state reconstruction [see Fig. 1(g)], one of the
most popular neural-network approaches is to use restricted
Boltzmann machines (RBMs) to map the underlying Boltz-
mann probability distribution of an RBM to the distribution
of measurement outcomes on a quantum state [77,78,83—85]
[see Fig. 1(h)]. This technique has some shortcomings, e.g.,

difficulties with sampling and lack of straightforward training
for larger models. Recently, there has therefore been proposals
to instead use feed-forward architectures, including recurrent
neural networks (RNNs) and transformers, for QST [86-88].
Unlike RBMs, such neural-network architectures are straight-
forward to train, without any need for sampling steps, using
gradient-based optimization with backpropagation. However,
state-of-the-art results for generative tasks in ML often use
variational autoencoders (VAEs) [11,89] and generative ad-
versarial networks (GANs) [12,90], which only recently are
beginning to be explored for learning quantum states [91-94]
[see Figs. 1(h)-1(1)].

Results on the reconstruction of multiqubit states suggest
several benefits of NN-based reconstruction over standard
techniques [84,95-97]. In Ref. [87], states with up to 90
qubits are reconstructed in simulation. The ideas follow from
Ref. [86], where quantum state reconstruction using gener-
ative models, both RBMs and RNNs is combined with a
tensor-network paradigm. Similarly, in Ref. [98], fully con-
nected DNNs were used for denoising data and dealing
with state-preparation and measurement (SPAM) errors. In
Ref. [97], a CNN was trained on simulated data (with noise)
and proved able to reconstruct two-qubit states directly from
data, outperforming a standard Stokes reconstruction.

However, such demonstrations are usually on simple states,
with limited error models, and/or do not fully ensure that
the reconstructed states are physical. For example, Ref. [87]
considers Greenberger-Horne-Zeilinger (GHZ) states, which
only contain four nonzero elements in the density matrix.
In Refs. [98] and [97], the Hilbert-space dimensions are re-
stricted to six and four, respectively. Even then, techniques
to include prior knowledge, such as the properties of quan-
tum states or background noise, need to be explored. In
Ref. [97], noise is handled by adding it to the simulated
training dataset and properties of a quantum state are enforced
using a similar idea to our proposal in Ref. [99] indepen-
dently. In Ref. [87], where GHZ states are reconstructed using
a Transformer neural network, some reconstructed states
have fidelities exceeding unity, which indicates the lack of
quantum-mechanical constraints on the state description. In an
experimental two-qubit reconstruction with the RBM ansatz,
an improvement was observed when the variational ansatz
was restricted to physical states, but this added costs during
learning [100].

Furthermore, many of the approaches discussed so far
cater specifically to qubit-based tomography. For continuous-
variable (CV) quantum systems, which currently are attracting
much attention for implementation of quantum comput-
ing [101-108], special adaptations are required, as in, e.g.,
Ref. [84], where RBMs were adapted for CV systems, but
required an exhaustive search of all possible configurations
to train. Lastly, the reconstruction techniques usually either
use DNNs to reconstruct a single state where data from one
experiment is enough, or require training datasets [97,98]. We
show in Ref. [99] adaptions that allow the same DNN to both
reconstruct states from scratch or perform single-shot recon-
structions by mapping data to the space of density matrices in
a general way.

Our motivation here is thus to address some of the prob-
lems discussed above and realize a unified framework that can
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FIG. 1. An outline of the topics discussed in this work. (a) The data required for quantum state tomography consists of the frequencies of
measurement outcomes from observables represented as Hermitian operators. The aim is to reconstruct a description of the quantum state—
usually a density matrix or the wave function. (b) Measurements of quasi-probability distributions (Wigner or Husimi Q) reveal interesting
visual features in the data. Similarly, the histograms of measurement statistics, e.g., the photon-number distribution, can have patterns. Such
features and patterns can be used for classification or reconstruction. (c) Several types of noise can corrupt the state or the data. Some types
of noise, e.g., white noise, can be reduced by more data collection. Other types of noise, e.g., state-preparation-and-measurement (SPAM)
noise, are more difficult to handle. (d) Classification tasks attempt to assign a label to data, classifying it according to its properties, e.g., if
it is a Schrodinger-cat state, has Wigner negativity, or is an entangled quantum state. (¢) Neural networks can be trained for classification of
states or their properties. (f) Once it has been trained, analyzing how a neural network determines the class of a state can help to focus on
the most important features in the data. This can be leveraged for adaptive data collection. (g) Reconstruction of quantum states connects to
generative modeling tasks, where the goal is to learn the underlying probability distribution of the data to sample new data from it. In quantum
state reconstruction, we aim to learn an underlying model, usually in the form of a wave function or density matrix that can generate statistics
for any measurement operator. (h) Neural-network methods can be used for estimating or approximating underlying probability densities
explicitly using restricted Boltzmann machines (RBMs) or variational autoencoders (VAEs). Training RBMs is not straightforward due to
sampling requirements. This is resolved in VAEs using a reparameterization trick that allows gradient-based backpropagation for training. (i)
Generative adversarial networks (GANs) provide a density-estimation technique, where we do not explicitly define the density nor require
the reparametrization trick for training. We combine ideas from VAEs and GANs to propose a new quantum state tomography technique
with conditional GANs—the QST-CGAN. Our QST-CGAN method allows for explicit estimation of the density matrix and computation of
measurement statistics using two custom layers—DensityMatrix and Expectation.

in the form of a neural network based on the idea of GANs
[12,20,21]. Our QST-CGAN technique thus combines con-
cepts from VAEs and GANS, as illustrated in Fig. 1(i). In this
paper, we present details of the implementation and results
for noisy reconstruction, reconstruction of mixed states, and
reconstruction from reduced data.

flexibly work with different types of quantum data in various
settings. Our contribution is a general method that allows
the use of neural networks to capture patterns in data and
explicitly generate a density-matrix description as an interme-
diate representation inside the network. This idea is inspired
by developments in density estimation with neural networks

[109], more specifically, the VAE architecture [11], which
learns an underlying complex data distribution using a simple
latent noise space to generate new data. We augment the
latent space to be a full quantum state description (the density
matrix) conditioned on inputs that are both the data samples
and the operators that define the measurements. Using this
conditioning allows us to have a very general technique that
can further handle known noise—we simply add the noise as
an input variable. We consider the role of loss functions for
reconstruction and motivate our idea of using a learnable loss

03

This paper is organized as follows. In Sec. II, we briefly
discuss the quantum state tomography and state discrimina-
tion problems in the context of generative and discriminative
modeling. In order to demonstrate our methods, we consider
optical quantum states as examples. The various types of data
from optical quantum states that will be used throughout the
paper are presented in Sec. III, including possible sources of
noise. In Sec. IV, we describe details of the neural-network
architectures and training methods. In particular, we discuss
the custom layers that we introduce for reconstruction here
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TABLE I. List of abbreviations (in alphabetical order) used in
this paper.

Full name Abbreviation
Accelerated projected gradient APG
Compressed sensing CS
Conditional generative adversarial network CGAN
Continuous variable CvV
Convolutional neural networks CNNs
Deep neural networks DNNs

False positive rate FPR

Generative adversarial networks GANs
Gradient-weighted class activation mapping Grad-CAM
Greenberger-Horne-Zeilinger GHZ

Informationally complete IC

Integral probability metrics IPMs
Iterative maximum-likelihood estimation iMLE
Kullback-Leibler KL
Machine learning ML
Matrix product state MPS
Maximum-likelihood estimation MLE

Neural networks NNs

Positive-operator-valued measures POVMs
Projected gradient descent PGD
Quantum state discrimination QSD

Quantum state tomography QST

Quantum state tomography with conditional QST-CGAN
generative adversarial network

Receiver-operating-characteristic ROC
Recurrent neural networks RNNs
Restricted Boltzmann machines RBMs
State preparation and measurement SPAM
Tensor network TN
True positive rate TPR
Variational autoencoders VAEs

and in Ref. [99]. Then, we present the results for the classifi-
cation task in Sec. V A, where we also analyze the impact of
noise on the classification performance. In Sec. V B, we show
the performance of the QST-CGAN on noisy data and the role
played by various loss functions in the reconstruction. Finally,
we conclude in Sec. VI and discuss, in Sec. VII, further
possibilities and potential for development of the techniques
presented here. In Table I, we list all the abbreviations used
throughout the paper for easy reference.

II. BACKGROUND

In this section, we set the stage for the paper by providing
an overview of the problems of quantum state discrimination
(QSD) and quantum state tomography (QST). We then discuss
generative and discriminative modeling in machine learning,
which is related to these problems. We compare different
neural-network approaches to such modeling to motivate our
choice of methods in this paper for tackling QST and QSD.

A. Quantum state discrimination

The task in QSD is to classify an unknown state p as being
one of a given finite ensemble of states {p;}, from which states

are chosen with probabilities {p;} such that Zi pi = 1[110].
The classification is done by performing measurements on p,
typically positive-operator-valued measures (POVMs) {O;},
designed such that observing the outcome i, which occurs with
probability p; = tr(O;p), corresponds to the state being p;.

The problem of QSD can thus often be rephrased as finding
the optimal measurement for discriminating between the {p;}.
In case the states to be discriminated between are not orthog-
onal, perfect single-shot QSD is not possible. The optimal
measurement should then instead maximize the probability of
guessing the state correctly [111]. Note that the nonorthogo-
nality of quantum states, which prevents perfect QSD, does
not have a classical analog; it cannot be explained by merely
assuming overlapping probability distributions [110,112].

If repeated state preparation and measurement is possible,
adaptive measurement schemes, where new measurements are
chosen based on the results of previous measurements, may be
optimal. In this paper, we will consider such a situation, where
we can make repeated measurements and collect statistics
for various POVMs. However, our aim in this paper is not
to construct highly optimized complex POVMs or adaptive
schemes, but to show that a neural network can learn to
perform QSD well when working with limited measurement
data from standard, simple measurements of complex opti-
cal quantum states. Insights gleaned from the neural-network
performance could then be used to minimize the number of
simple measurements needed in experiments to classify states
with high certainty. Furthermore, rapid state classification
could help find a good starting point and parametrization for
full quantum state reconstruction. Previous work has shown
that neural networks can distinguish thermal and coherent
light sources with few measurements [41]; here, we present
a general framework for applying such techniques to arbitrary
measurements and states. Note that we do not only distinguish
between two types of states, but between many types of states
at the same time.

B. Quantum state tomography

The goal of QST is more ambitious than that of QSD:
to fully characterize an unknown quantum state, usually by
obtaining its density matrix p. A physical density matrix is
Hermitian, positive semidefinite, and has unit trace. In an
N-dimensional Hilbert space, N2 — 1 real numbers have to
be estimated from POVM outcomes to completely determine
a general p. This can be seen clearly from the Cholesky
decomposition

p=T'T, ()

which is extensively used in reconstruction methods to ensure
positivity and Hermiticity. The matrix T is lower-triangular
with complex-valued entries except on the diagonal, where
the entries are real-valued.

The measurement data used for reconstruction of p consists
of single-shot outcomes from POVMs {O;}. By repeating the
measurement on identically prepared quantum states, we can
gather statistics. The frequencies d; of various measurement
outcomes is proportional to the expectation value tr(O;p) and
forms our data d. The reconstruction problem can therefore be
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stated as an inversion problem [113]
d=Apy, @

where the sensing matrix A is given by the choice of measure-
ment operators and oy is the flattened density matrix.

The invertibility of Eq. (2) depends on the set of measure-
ment operators. A set of measurement operators that enables
inversion, and thus allows the complete characterization of the
state, is called informationally complete (IC) [114]. For a state
in an N-dimensional Hilbert space, up to ~N?> POVMs may
be needed for IC (and each measurement needs to be repeated
multiple times to gather the statistics). However, with some
a priori knowledge of the state, e.g., that p is low rank or
that certain elements of p are zero, the measurements can be
cleverly selected and their number reduced.

Reconstructing p from d is thus an estimation prob-
lem, which can be approached in many ways. Common
reconstruction techniques include linear inversion [115,116],
maximum-likelihood estimation (MLE) [62,117-119], and
Bayesian methods [120-122]. Linear inversion, while being
straightforward, can fail due to noise in the data or a high
condition number of A [113] and produce unphysical entries
in the density matrix, e.g., negative diagonal elements [123].
Therefore statistical inference techniques such as MLE or
Bayesian estimation are preferred. Such methods give an es-
timate o’ for the density matrix by optimizing the likelihood
function

L(p'1d) = [ T Le(o'O1™. 3)

In case of continuous-variable outputs, where d; is a real
number, appropriate binning is necessary to apply MLE [124].
Alternatively, the mean squared error between the output and
the expected value can be minimized [73].

Although MLE guarantees a physical p’, it does not pro-
vide any error bars to quantify the uncertainty in the estimate.
Recently, it has also been argued that MLE is not optimal
and is an inadmissible estimator for common metrics such
as fidelity, mean-squared error, and relative entropy [125].
Bayesian methods for QST, on the other hand, can quantify
the uncertainity in the parameters of the density matrix us-
ing a prior probability distribution over different states w (p)
[120,121]. The initial prior w(p) should be uniform, or as
uninformative as possible, and is updated by applying the
Bayes theorem using the likelihood L(p’|d) to give a posterior
wr(p) < L(p|ld)mo(p). The best estimate of the underlying
state is given as the mean over all states p,, defined by the
posterior distribution 77y weighted by the likelihood computed
from observed data:

P =/pnf(p)dp. “4)

Other examples of methods to optimize the likelihood
function and obtain a density matrix estimate include diluted
MLE [123], compressed sensing (CS) [126] and projected
gradient descent [119,127,128]. The CS methods are moti-
vated by simple parameter-counting arguments: we should
only require O(rN) measurements, with r being the (low)
rank of the density matrix [129]. Examples of such low-
rank states, common in experiments, are pure quantum states

corrupted by local noise processes. Recently, other mod-
ifications of CS have been proposed and demonstrated
experimentally for adaptive tomography [130,131], which
only require the a priori information of the density-matrix
dimension (an improvement over CS, which requires an a
priori guess of r).

However, a good ansatz or model for the state can re-
duce the effort for reconstruction. If we consider classes of
quantum states having particular properties or symmetries, we
can write their descriptions with fewer parameters than the
N? — 1 required for a general density matrix. Matrix-product-
state (MPS) [69,132] and tensor-network (TN) tomography
[133,134] are methods that find efficient ansétze for states us-
ing MPSs or TNs, and permutationally invariant tomography
[135,136] exploits permutational symmetries of the density
matrix. Some other improvements assume a noise model, e.g.,
additive gaussian noise [73], and therefore these techniques
are often restricted to specific situations, lacking versatility.

A different formulation from the above techniques
comes from the idea of projected gradient descent (PGD)
[119,127,128]. In such methods, a cost function is constructed
that distinguishes between model-predicted data and the true
data to apply gradient-based optimization to find the best
estimate for the model (the density matrix). The benefit of
the PGD technique is that it quickly converges to the MLE
state in a wider variety of scenarios, even when the problem
is ill-conditioned. The PGD method also sets up this notion of
a cost function, thereby translating the QST problem into an
optimization problem. Here, we made use of a fast MATLAB
implementation of the accelerated projected-gradient method
for MLE (APG-MLE) from Ref. [119]. We adapted this code
to our examples with optical quantum states and used it to
benchmark some of our results.

Neural-network-based reconstruction methods have also
shown significant promise. In such approaches, neural net-
works are either used as an ansatz for the state to obtain
probabilities of measurement outcomes [84,95,96], or to di-
rectly estimate p [97]. However, a general framework to study
quantum state reconstruction using standard feed-forward
neural networks is missing. In this paper, we present a frame-
work that allows any standard neural network to be used for
quantum state discrimination and reconstruction by adapting
the generative and discriminative modeling framework from
machine learning to QSD and QST.

C. Discriminative and generative modeling

Quantum state discrimination and reconstruction can be
related to discriminative and generative tasks in machine
learning. Consider a data space S from which we obtain sam-
ples x of a random variable X. The samples can be classified
as having one of k different labels y. A dataset can thus consist
of a collection of pairs {x, y}.

A discriminative model attempts to predict the class label y
for a data point X/, i.e., finding the correct conditional proba-
bility p(y|x"). We loosely interpret this as identifying whether
a data point belongs to one of k possible data distributions
p data“

A generative model aims to generate new samples x’ that
are similar to the observed data, which is assumed to be
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drawn from a data distribution defined by a probability density
Pdata(X). In general, real-world data distributions can be very
complex, making it a hard problem to model them in a way
that is both easy to compute and expressive enough to capture
subtleties of the data. In Sec. II D, we discuss how deep neural
networks are used to tackle such challenging distributions for
generative and discriminative tasks.

The ideas of discriminative and generative modeling can
be connected to QSD and QST in the following way. First,
we identify the data space S with the space of measurement
outcomes for operators {O;}. The outcomes can be collected
either as single shots or average values; we denote the col-
lected outcomes by d. The expectation value (O;) = tr(O;p)
replaces the classical expectation value

E[X] = /Xpdata(x)dx- &)

Thus p takes the role of a probability density function for the
quantum system. If the data comes from one of k different
quantum states p!*!, we can assign it a label y. Our data set is
then formed by pairs {d, y}.

The discrimination task of assigning one of the k labels
to some observed data d’ is QSD. Reconstruction of p can
be considered a generative modeling task, where we aim to
generate outcomes d’ of new measurement operators {O;}
after having observed some results of POVM measurements.
To fulfill that task, we either need to obtain p directly or
find some parametrization of p that lets us calculate (O}) =
tr(O)p).

Just like complicated classical data distributions pgata,
p can depend on many parameters and be difficult to es-
timate. However, efficient parametrizations of the quantum
state using matrix-product states [69,132], tensor networks
[133,134], or neural networks [77,78,83,84,86—88,97,98,100]
have reduced data and computation costs for quantum-state
reconstruction. In this paper, we provide a general method to
obtain p as the output of neural networks, allowing the con-
version of any neural-network architecture into a generative
model for QST. Our ideas are applicable to any parametriza-
tion of p.

D. Neural networks as discriminative and generative models

Neural networks can approximate any function arbitrarily
well [74]. They can be treated as functions that map an input
Space to a target space:

fO):S—->T, 6)

where 6 are parameters that are learned from training on
(labelled) data samples {x, y}.

To use neural networks for discriminative tasks (classifica-
tion) is fairly straightforward. In this case, the output f(x;6)
of the network is interpreted as the conditional probability
p(y|x) [10]. Then, by constructing a loss function that quan-
tifies the total error of predictions on a training set, we can
optimize the parameters 6 to minimize the classification error.

Using neural networks as generative models is not as
simple as mapping input data to target labels. Since a stan-
dard feed-forward neural network is a deterministic function
f(x;0), it cannot be sampled to generate new data x’. Early

schemes used to circumvent this problem were neural net-
works with stochastic outputs, e.g., restricted Boltzmann
machines (RBMs). Later, deterministic feed-forward neu-
ral networks were adapted to give stochastic outputs for
generative tasks; examples include variational autoencoders
(VAESs) and generative adversarial networks (GANs). Below,
we briefly discuss these methods to motivate our choice of
using the conditional variant of GANs for quantum state
reconstruction, and to show how our architecture also has
connections to the other models.

1. Restricted Boltzmann machines

Restricted Boltzmann machines [137-139] are stochastic
neural networks that can represent arbitrary data distributions.
An RBM consists of visible (v) and hidden (h) units, which
give stochastic binary outputs v, h € {0, 1}. In single evalua-
tions of the RBM, the states of the hidden units /; are updated
to 1 if the probability

plhj = 1|v)=g<b,»+2wi,,-v,»> (7)

is greater than a random number uniformly distributed be-
tween 0 and 1 (sampled in each update step). Here g is the
sigmoid activation function and {b;, w; ;} are parameters de-
termining the interaction between different units. A visible
unit v; is similarly updated depending on the states of the
hidden units and another parameter a;.

The result of updating the RBM units iteratively in this way
from a random initial state is that the states of the visible units
converge to a Boltzmann distribution

p(vi6) e B, ®)

= Z0) -

where Z(6) = Zv’h e EOh0) ig the partition function and the

energy is given by
Evh0)=— > awi— Y bihj— Y vihjwi, (9)
Jj€hidden i,j

ievisible

parametrized by 6 = a, b, w. To train an RBM is to find pa-
rameters 6, which make the probability distribution p(v;0)
mimic the data distribution pg.ta, as measured by some statis-
tical divergence, e.g., the Kullback-Leibler (KL) divergence.
After training, new data points can then be generated by sam-
pling p(v; ). Since standard RBMs only output binary-valued
data, continuous-valued data needs to be handled either in a
binary encoding or by using variants like Gaussian-Bernoulli
RBMs [140].

Although RBMs have been around for a long time, it was
only recently that effective techniques for training them, e.g.,
contrastive divergence [139,141], were found and enabled
them to play a significant role in the initial success of image
processing with deep neural networks. These training meth-
ods have later been successfully applied to QST with RBMs
[142]. However, RBMs are still not straightforward to train
and are less flexible than feed-forward or convolutional neural
networks. In particular, the partition function Z(6) can be dif-
ficult to compute since it involves a sum over an exponential
number of states [143]. Furthermore, the sampling methods
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can have convergence issues for typical high-dimensional
problems. These issues have stimulated the development of
standard feed-forward neural networks converted for genera-
tive modeling.

2. Variational autoencoders

Variational autoencoders are an early example of an adap-
tation of standard feed-forward neural networks to generative
modeling. The idea of VAEs is to generate new data by
sampling from a latent space Z and mapping it to the data
space S,

7 Generator S (10)
The latent space is used to define the data distribution, param-
eterized by 6, as the marginal of a joint distribution py(X, z)
over the data and latent variables [11,89,144]:

po(X) = /pe(x, z)dz. 1)

The latent variable model py(x, z) can be specified by using
some prior noise distribution p.(z), assuming the following
factorization representing an infinite mixture model:

po(X) = /Pz(l)pe(XIZ)dZ- 12)

In VAEs, a neural network g acts as a stochastic decoder to
map the latent space to data:

po(x|z) = p[S|ge(2)]. 13)

Even if the factors in Eq. (12) are simple, e.g., Gaussians, their
mixture can be very expressive and thus capture complex data
distributions.

However, the marginal py(x) is typically intractable due
to the integral in Eq. (11). Finding 6 by some gradient-based
optimization is thus not feasible. The intractable nature of the
marginal stems from the intractability of the posterior

Do(X,Z)
po(x)

In VAEs, this posterior is approximated using a stochastic
encoding in an encoder neural network e, parameterized by
¢, that maps the data space to the latent space:

Po(2[X) =~ q4(z|X) = p[Z]es(x)]. 5)

The VAE architecture thus closely resembles that of an
autoencoder—a neural network that finds a compressed rep-
resentation of data by encoding it in a latent space and
reconstructing it back from there,

Po(Z|X) = (14)

encoding decoding

S Z X. (16)

In general, VAEs assume ¢4(z|x) and pg(x|z) to be Gaus-
sians specified by gg and e,;. The encoder network processes
an input x to give the mean and covariance for a multidimen-
sional Gaussian, which is sampled to obtain latent vectors z.
The decoder then generates new data x’ from another multidi-
mensional Gaussian with the mean and covariance determined
by the sampled noise vector.

To obtain the parameters (6, ¢), we want to maximize
In(py(x)), but since it is intractable, the variational approach

maximizes the evidence lower bound or minimizes the loss

Exposa |~ Eagotaio I0(po (X]2)) + KL(qs (2[%), p, (2))].

a7
However, training such a variational model comes with its
own challenges due to the stochastic nature of the encoder
and decoder. Even using a reparametrization trick making
backpropagation-based training work on VAEs, several crit-
ical issues leave VAEs susceptible to generate samples that
do not match the data distribution well. In image-generation
tasks, this leads to blurry images as the Gaussian mixtures,
used for their simplicity, are not the best for representing
natural data distributions.

3. Generative adversarial networks

Generative adversarial networks [12] and their conditional
variant, conditional GANs (CGANSs) [21], solve the problem
of approximating data distributions in a different way than
RBMs and VAEs. In the GAN framework, a standard feed-
forward neural network G, with parameters 6, generates new
data using noise vectors z:

X = G(z;0). (18)

The network G is trained by letting a second neural network,
the discriminator D, evaluate the outputs from G. Unlike in a
VAE, the second neural network does not map the input space
to the latent space. Instead, the discriminator directly trains
the generator to find the map from the latent noise space to
data.

The discriminator D is a standard classifier network,
parametrized by 6p, that takes an input X’ and outputs a prob-
ability D(x’; 6p) that X’ comes from the data distribution. The
parameters {6g, Op} are optimized in an alternating fashion
until the generator produces outputs that the discriminator
cannot distinguish from samples of the real dataset, i.e., both
X' ~ Pgata and X ~ pgata. In each optimization step, 0p is first
updated to maximize

Ex~poaes I (D(X;0p))] + Ez~p [In(1 — D(G(z;65); 6p))].
(19)
Then, 6 is updated to minimize

Epp [In(1 — D(G(2: 06); 0p))]. (20)

When the training is completed, new samples can be generated
from G using noise vectors z.

A standard GAN can only generate samples randomly ac-
cording to the data distribution. However, we can modify the
inputs to G and D by adding a conditioning variable ¢ to guide
the output. This leads to the CGAN architecture, where

G:1zlc — X, 2D

D : x|¢c — Pr(X ~ pgata)- (22)

The optimization of parameters for the CGAN networks fol-
lows the same procedure as for the GAN, i.e., maximizing
Eq. (19) and minimizing Eq. (20).

The CGAN architecture provides a very flexible method
for modeling complex conditional maps between different
spaces. The flexibility stems from using the discriminator
network, instead of a fixed loss function, as an evaluator of
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the generator performance. Conditional GANs have been used
successfully in many types of generative tasks, e.g., generat-
ing images [145,146], converting edges to images, converting
day to night pictures [21], etc. In this paper, we use CGANs
for QST, but we also borrow ideas from VAEs for this task.

III. DATA

In this section, we define the data that we use for testing
our methods of classification and reconstruction. We consider
eight classes of optical quantum states, which we define in
Sec. IIT A. The data for these states is given by measurements
consisting of applying coherent displacements followed by
sampling of the photon number distribution for the resulting
state, as we explain in Sec. III B. We consider six types of
noise, described in Sec. III C, that can distort the data.

A. Optical quantum states

Optical quantum states are states of photons, i.e., of
bosonic fields. In general, such states live in an infinite-
dimensional Hilbert space, but we can obtain a finite-
dimensional description by introducing a cutoff on the energy
of the state. In the Fock basis for a single bosonic mode, a
harmonic oscillator, the state is written as

N-1
W) =) caln), (23)
n=0

where n represents photon number, N is the size of the
Hilbert space, and ¢, are complex-valued amplitudes such that
> |cal? = 1. Pure and mixed states in this Hilbert space are
represented as N x N density matrices p.

Throughout this paper, we use a Hilbert-space cutoff of
N, = 32, except for some specific examples and demonstra-
tions. We restrict the maximum photon number of the various
states to <16 to avoid artifacts due to truncation once the
displacements are applied to these states.

Below, we define the various types of states used in this pa-
per. The first three are well-known, basic classes of quantum
optical states. The following four are from bosonic codes, i.e.,
states that are designed for quantum error correction. For these
latter states, we adopt the definitions from Ref. [147], where
u = {0, 1} denotes whether the state encodes logical 0 or 1.
Finally, we also use random states as noise for representing
mixed states.

1. Fock states

The Fock states fock are the eigenstates of the Fock basis,

[Vtock) = In). (24)

We consider Fock states with photon number 1 < n < 16.

2. Coherent states

Coherent states coherent are displaced vacuum states,
characterized by the complex displacement amplitude o:

|1l/coherent(a)> = |O(> = D(Ol)|0), (25)

where D(a) = exp(ea’ — a*a) is the displacement operator
and a (a") is the annihilation (creation) operator of the bosonic

mode. The parameter o« gives the position of the state in phase
space. We consider 107® < |a| < 3 to keep the mean photon
number |« |> well below the Hilbert-space cutoff.

3. Thermal states

Thermal states thermal are mixed states where the photon
number distribution follows super-Poissonian statistics:

N—-1

Penernar () = Y p(m)ln) (nl, (26)

n=0
where the probability distribution for the photons is given by

(nt:%) 7)

n)—

p(n) ——

where ny, is the mean photon number. We consider thermal
states with ny, € [0, 16].

4. Num states

Num states are a specific set of bosonic-code states, con-
sisting of superpositions of a few Fock states, numerically
optimized (hence the name num) for quantum error cor-
rection, and characterized by their average photon number
n € {1.562,2.696,2.770, 4.149, 4.336} [147,148]. The logi-
cal states for each code are orthogonal; for 7 = 1.562, they
are

W £20(1.562)) = %[(7 —V1D)210) + (V17 = D2 3)],
(28)
1

[9 = VI)3|1) + (V17 = 3): |4)].

(29)

1=l 562)) =
|yl (1.562)) .

S

5. Binomial states

Binomial states bin are bosonic-code states constructed
from a superposition of Fock states weighted by the binomial
coefficients [147,148]:

N+1

(N + 1>|(S+ Dm). (30)
m

Here the parameter N plays a similar role as « in coherent
states, determining the size of the state. For the parameter S,
we use integers in the range [1,10]. Together with the Hilbert-
space cutoff N, this determines a maximum value for N. We
use 2 < NN/ S+1)— 1.

Vi) = Vo n;)(—l)um

6. Cat states

Cat states cat are bosonic-code states consisting of su-
perpositions of coherent states, with the simplest example
being (Jo) = | — «)) up to a normalization. In general, we can
define cat states, parametrized by an integer S and a complex
displacement «, as projections given by

|Wh) = iH(S+1) ler), 31)
N 13
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where A is a normalization. The projections are on even or
odd Fock states given by

M=) 2mS+D+r2mS+D+rl,  (32)

m=0

with the variable r € {0, 1,2, ...,25 + 1}. The parameter S
corresponds to the number of photon-loss errors that the
code can correct for. A simpler formulation for large «, i.e.,
2| sin(S”?) > 1, is an equal superposition of the 2(S + 1)
coherent states {|aei5nﬁk)}%i+ol around a circle of radius |«|.
Weuse S € {0, 1,2} and || € [1, 3].

7. Gottesmann-Kitaev-Preskill states

Gottesmann-Kitaev-Preskill states gkp are bosonic-code
states defined on a square grid in phase space [108,147,149].
The ideal gkp states can be seen as a superposition of vacuum
states displaced to the points of this grid:

|wgkp(ideal)> = Z D(g@m + M))D(i\/gn2>|0)

ny,n €l
(33)
with the integers n;,n; € {—oo,...,—2,—1,0, 1,2, ..., oo}
forming the grid.
However, a finite gkp state limits the lattice and adds
a Gaussian envelope to make the state normalizable, thus
parametrizing the state with a real parameter A € [0, 1] as

m . —A?|a|? —iRe[a]Im[a]
’ gkp(ﬁnite)) - Z e ¢ lar), (34)
aell(p)

where the complex amplitudes « are calculated from the grid
K(u) = \/?(an +wn)) + iﬁnz with some finite cutoff for
ny, np. We use ny, ny € {—20, 20} and A € [0.2, 0.5].

8. Random states

Random states are mixed states generated using the QuTiP
[150,151] function rand_dm by choosing a density (propor-
tion of nonzero elements) for the density matriX Prandom- LThe
elements of pPryndom are sampled from a uniform distribution,
ensuring that the density matrix is physical (Hermitian, posi-
tive semidefinite, and with unit trace). We choose the density
0.8 for all tasks in this paper and allow p;andom to be full-rank
mixed states.

B. Measurements

Measurements on optical states are usually performed with
a displace-and-measure technique. Applying a coherent dis-
placement of amplitude 8 and measuring the photon number
distribution gives the generalized Q function [152]

0 = u(In)(n|D(=B)pD* (=), (35)

From the generalized Q function we can easily obtain other
quasiprobability distributions describing the state, e.g., the
Husimi Q function (photon field quadratures)

0B) = (1/m)0f (36)

and the Wigner function [153] (photon parity)

W(B) = (2/m) Yy (—1)y'0f. (37)

In Fig. 2, we plot the Qf functions for a binomial state
to illustrate the different types of data. We also show how
combining the various levels of the generalized Q function
leads to the Wigner function.

In this paper, we mostly consider classification and
reconstruction of optical quantum states based on Husimi-
QO-function data, but our methods can also be used with
Wigner-function data (as we show when reconstructing a state
from experimental data in Ref. [99]), generalized-Q-function
data, or data from any other observables.

In Fig. 3, we plot Wigner functions and Hinton plots of the
density matrices for representative examples of all classes of
states defined in Sec. III A above.

C. Noise

Noise is an inevitable factor in most experiments. Thus,
methods for state classification and reconstruction should be
made sufficiently robust against various types of noise. In
this subsection, we define the different types of noise that
we use to test our neural network based classification and
reconstruction.

Noise can enter the problem at different stages. First, the
preparation of the state to be classified or reconstructed could
have errors that lead to a slightly different state, p — Pnoisy
(state-preparation errors). Second, the measurement protocol
could have errors due to calibration such that we are not
measuring exactly what we sought out to measure, {O;} —
{O7™} (measurement errors). Lastly, there can be errors in
the data collection, e.g., errors incurred during amplification
of the signal or photon shot noise, which corrupts the data,
d — dyisy (data errors).

The state-preparation and measurement (SPAM) errors can
be systematic and thus hard to correct. Recently, deep neural
networks have been demonstrated to be effective in learning
such errors and correcting them [98] by training a supervised
model to correct the data dpsy — DNN — d. The neural
network is thus used as a sophisticated filter to denoise exper-
imental data, which can be agnostic to the underlying SPAM
noise. In this paper, during reconstruction, we do not train our
networks to correct SPAM errors; we only deal with specific
errors on a case-by-case basis. But for classification, we show
that the neural network approach is robust against the various
types of SPAM and data errors defined below.

1. Mixed states

In many experiments, thermal and other environmental
noise will affect the quantum state. We model this noise by
considering mixed states [see Fig. 4(a)]

Pmixed = (1 — )P + £ Prandom> (38)

with ¢ € [0, 0.5]. In the classification task, the correct label
for such a mixed state is defined to be that of the class that p
belongs to. In the reconstruction task, the aim would not be to
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FIG. 2. A binomial(S =2,N =5, u = 0) state and data generated from a displace-and-measure calculation using QuTiP [150,151]
within a 200 x 200 grid. (a) The photon occupation probabilities, i.e., the diagonal elements of the density matrix p. (b) A Hinton plot of
p, where blue (red) denotes that the real part of the density-matrix element is positive (negative). The size and the shade of each square
is determined by the absolute value of the density-matrix element. [(c),(d),(e)] The generalized Q function, Q?, for n =0, 1, 2. (f) The
corresponding Wigner function computed using the different Q¢ as (2/7) Y, (—1)"Q?. Note that even when choosing a Hilbert-space cutoff
of 100 for this demonstration, the corners in the Wigner-function plot have spurious nonzero values at large displacements g ~ £5 & 5i. To
mitigate such effects, larger cutoffs are required for states that have a high photon number or we need to restrict the computation to smaller
values of 8. Other methods of computing the Wigner function from p do not suffer such problems even with a cutoff of 16 for this specific
example. QuTiP provides several such implementations and we use one of them, the numerically stable Clenshaw method, to compute Wigner
functions in the rest of the paper.

Therefore, the effect of noise is simply applying a Gaussian
convolution with the variance ng,. Note that such a noise is
also interpreted as detection efficiency error with the reduced
detection efficiency n = 1/(1 + ny,). We consider such noise
during reconstruction tasks by allowing it as an input, which
is easily estimated in experiments, e.g., the detector efficiency
or thermal photons in the amplification channel.

reconstruct p, but to reconstruct ppixed, Since that is the actual
state created in the experiment.

2. Convolution with Gaussian noise during amplification

In a measurement scheme, which uses linear amplification
detectors, one of the effects of noise is modelled by consid-
ering additional bosonic modes coming from the amplifier
channel [154]. The Husimi Q function in the presence of such
linear noise channels [see Fig. 4(b)] is a convolution 3. Photon loss

If the optical quantum state is created in a lossy resonator,

Onoisy(B) = / Pu(B™* — BHO(B), (39)  photons may leak out from this resonator before the measure-

B ment of the state is completed. We model such photon loss

[see Fig. 4(c)] by letting the original state evolve for some

" .
where P,(B") is the Glauber-Sudarshan P function [155] of time 7 according to the master equation

the noise mode. While at optical frequencies the noise mode
is nearly in the vacuum state, such that Qyisy (8') ~ Q(B'), at
microwave frequencies, the noise mode is in a thermal state.
In this case,

p= —%[H, pl+ yLlalp. (1)

where H = fiwa'a is the free resonator Hamiltonian, o is the

1 1BI? resonator frequency, y is the photon loss rate, and L[a]p =
Pu(B) = — (_E : (40) apa’ — 1a'ap — Lpa’a. Similar to the case of mixed states
fock coherent thermal random num binomial cat gkp
5
—~ . ¢ :
Q e il ! $§
£ P by 1
= O = & ¢
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FIG. 3. Representative examples from each class of optical quantum states considered in this paper. In the top row, we plot the Wigner
function for the states, using the same scaling as Fig. 2(f). In the bottom row, we show the values of the density-matrix elements for each
state as Hinton plots similar to Fig. 2(b). We can see that the Wigner functions and density matrices have characteristic patterns that a neural
network can learn and use for classification or reconstruction.
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FIG. 4. The effect of various types of noise on the measurement
data (Husimi Q functions) for the state in Fig. 2. We normalize the
data to [0, 1] by dividing with the maximum value and will use
this color scheme throughout the paper to represent such rescaled
data. (a) Mixed states with ¢ = 0.5 and density 0.8 for prandom-
(b) Convolution with Gaussian noise with ng = 3. (c) Photon loss
with yt such that 50% of the average initial photons have been
lost. (d) Affine transformation with rotation 8 = 100°, shear 2 = 5°,
and Ax = Ap = 1.61 (5 pixels). (e) Additive Gaussian noise with
standard deviation o = 0.2. (f) Pepper noise setting 50% of the data
points to zero.

in Sec. III C 1, in the classification task, the correct label is
defined to be that of the class that p(t = 0) belongs to, while
in the reconstruction task, such a noise is not necessarily an
error as the aim is to reconstruct p(t = 7).

4. Affine transformations

An affine transformation is a geometric transformation that
can be represented as a composition of a linear transforma-
tion and a translation. In two-dimensional (2D) images, it
preserves lines and parallelism, but allows for effects such
as rotations, displacements, reflections, scaling, and shearing.
Our motivation for this type of noise is that such effects
can mimic SPAM errors, e.g., poorly calibrated displacement
pulses, squeezing, and rotations of the state. We therefore
consider rotations, displacements, scaling, and shearing to
distort the training data (2D images of Husimi Q or Wigner
functions), see Fig. 4(d).

If (x, p) represent the position and momentum values in
the phase space, i.e., [Re(8), Im(8)], the affine transformation
(x, p) > (X, P) can be parametrized by the scaling factors
(8, 8y), rotation angle 6, the shear €2, and linear displacements
Ax, Ap as

X = sexcos(0) — sypsin(f + Q) + Ax, 42)

Y = s.xsin(0) + sypcos(@ + Q) + Ap. 43)

We use the TensorFlow [156] implementation for data
augmentation that applies such transformations, with the

values of the parameters randomly selected within a cer-
tain range for each image augmentation: 6 € [0, 180°]; 2 €
[0, 5°]; (Ax, Ap) € [—2, 2] such that the pixels of the images
are shifted up to 20% of the image size. The range for scaling
the image (zoom) is set to 0.2 to allow shrinking or expanding
the images within a factor [0.8, 1.2] of the original size. We
also allow the images to be flipped horizontally and vertically.
The data augmentation described here is only used in the
classification task.

5. Additive Gaussian noise

Measuring the expectation value of a quantum observable
often requires repeated measurements to find the average
value with good precision. Thus, a limited number of mea-
surements will reduce the precision. Moreover, the precision
can also be reduced by binning of measurement results from
nearby points in the phase space. We model these types of
uncertainty in the data by adding randomly sampled values
from a Gaussian distribution A with zero mean and standard
deviation o to each data point as

dnoisy =d+ N(O, o). (44)

See Fig. 4(e) for an example.

6. Pepper noise

Salt-and-pepper noise represents a corruption of data
where the signal changes drastically at a few points. We use
pepper noise [see Fig. 4(f)] to represent dead pixels or missing
data by selecting a random proportion of data points and
setting them to zero.

IV. METHODS

In this section, we present the details of how we use deep
neural networks for the two tasks—classification (quantum-
state discrimination) and reconstruction (obtaining the density
matrix) using the data discussed in Sec. III. Three different
neural-network architectures are considered: Classifier,
Generator, and Discriminator. We provide the methods
and parameters for training and evaluation of the networks that
we have used to obtain our results in this paper (Sec. V) and
in Ref. [99].

The selection of the neural-network architecture [157],
optimizers [158,159], and other non-trainable hyperparame-
ters is a challenging task called hyperparameter tuning [160].
In our paper, we have not used any specific methods for
hyperparameter tuning. Instead, we choose our network archi-
tectures and hyperparameters inspired by existing successful
implementations from the machine-learning community and
manually tweaked them ourselves by trying different combi-
nations.

A. Classification

The problem of quantum state discrimination can be
considered as a classification task, a task for which
deep neural networks have shown impressive results.
The input data d consists of observed frequencies for
some measurement, which is related to the probabilities
of outcomes of observables. The output is a label €
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{fock, coherent, thermal, cat, bin, num, gkp}. The neu-
ral network we use for the classification is a standard
convolutional neural network, which we train by minimizing
cross-entropy loss using backpropagation.

1. Input and output data

Since we consider optical quantum states, the data, e.g., the
Husimi Q or Wigner function of the state, can be rearranged
into an image on a grid determined by the real and imaginary
parts of the displacements 8. Our training dataset is gener-
ated by randomly constructing states from the seven classes
discussed in Secs. IIT A 1-IIT A 7, adding noise in the form of
random mixed states (see Secs. [II A8 and IIIC 1) and then
calculating the Husimi Q functions of the resulting states for
the fixed set of 8 values evenly spaced in a 32 x 32 grid with
B el[-5,5]

We use 43 762 states for training and 8670 states for
testing. The input values are normalized to the range [0, 1] by
dividing each data instance with the maximum value. In the
training phase, affine transformations (see Sec. [IIC4) and
additive Gaussian noise (see Sec. IIIC5) with o randomly
selected between [0, 0.05] are applied to the data. The addi-
tion of noise has a dual purpose—preventing overfitting and
mimicking the effects of measurement noise. In the testing
phase, we consider the impact of different types of noise
separately.

The output labels are encoded in a 7-dimensional vector
using a one-hot encoding, {#;} with #;, € {0, 1} and #; = 1 de-
notes that the input state has been labeled as belonging to the
class i.

Note that the full generalized Q function (see Sec. III B)
could be represented as a multichannel image n x n x N,
where n x n is the grid of 8 values and N, is the photon-
number cutoff. Similarly, we can just input the flattened data
vector d for other types of measurements that cannot be seen
as an image. However, for data in such form, using convo-
lutional layers in the neural network would not make much
sense, since there may not be any spatial correlations in the
data.

2. Network architecture

The Classifier network, illustrated in Fig. 5 and detailed
in Table II, is a convolutional neural network (CNN). Its first
six layers consists of blocks of convolution [162] layers that
extract geometric features from the input image. After the first
six layers, the output is flattened and fed through two fully
connected layers that output a 7-dimensional vector for each
input image.

We use the activation function “LeakyReL.U” [163] for all
layers except the final output. The final output layer has 7
neurons, with outputs {y;}, one for each class. We apply a
softmax activation to these outputs,

exp(y;)
Zj v’

to normalize the outputs such that they can be interpreted as
the probability of the input data belonging to one of the seven
classes. We assign the predicted label for the input state to the
output that has the highest probability.

softmax(y); = 45)

Convolutional

>

coherent

thermal

cat

binomial

num
gkp

FIG. 5. Sketch of the Classifier network, which classifies op-
tical quantum states from Husimi Q data (input image on the left).
The blocks represents convolution operations, where filters (exempli-
fied by boxes connecting one layer to another) extract features from
the image. We use six such convolutional layers in our architecture
(we only show three here). The extracted features are fed to the
first of three fully connected layers. The outputs of the last layer
are converted to a classification label. For the parameters used, see
Table II.

3. Training

The parameters of the Classifier network are trained
by minimizing the average cross-entropy loss between the
predicted probabilities softmax(y;) in Eq. (45) and the one-hot
encoded target labels ¢;, defined as

cross-entropy(t,y) = — Z t; In [softmax(y);]. 46)

We use the gradient-based optimizer Adam [11] with a learn-
ing rate [ = 0.0002 and exponential decay rates for first and
second moment estimates, m; = 0.5, my = 0.5, to minimize
the cross-entropy loss.

TABLE II. Definitions, shapes, and number of trainable param-
eters for the layers of the Classifier network. We denote the
convolution layers as Conv2D(f, k,s) where f, k, and s repre-
sent the filter size, kernel size, and strides, respectively. After each
convolution layer and the first dense layer, the activation function
LeakyReLU is used. A full implementation of the code as a Tensor-
Flow model can be found in Ref. [161].

Layer Output shape No. of Parameters
Conv2D (32,3, 1) 30, 30, 32 288
Conv2D (32,3, 1) 28, 28, 32 9216
Conv2D (32,5, 2) 14, 14,32 9216
Conv2D (64,3, 1) 12,12, 64 18432
Conv2D (64, 3, 1) 10, 10, 64 36 864
Conv2D (64, 5, 2) 5,5,64 36 864
Dense 512 524 800
Dense 256 131 328
Dense, output y; 7 1799
Total parameters 768 807
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FIG. 6. Sketch of the Generator G and Discriminator D neural networks adapted for quantum state reconstruction. The two inputs to
G are the measurement statistics d and the observables {O;}. The input d is taken as a flattened vector, which is reshaped to a 16 x 16 x 2
matrix after the first layer of G. Then, after successive transpose convolution operations, we obtain a 32 x 32 x 2 matrix. This intermediate
output is converted into a lower-triangular matrix with real elements on the diagonal to obtain a Cholesky decomposition form, 7, that can
yield a valid density-matrix representation pg. The expectation values of the observables are then computed using the Born rule tr(O;p¢). In
the last layer, any known source of noise is added to the outputs. The inputs to D are a concatenation of d with either the generated data from
G or d itself. The output is interpreted as a similarity score between the inputs (the score is ~1 if they match, i.e., for inputs ~d). The weights
of the two networks, 6 and ), are updated alternatingly to minimize their respective loss functions. For the details of all the parameters, see

Table III and Table IV.

During training, we apply the dropout regularization tech-
nique [164], where the output of a random fraction of neurons
is ignored at each step of optimization, to prevent overfitting.
We use 40% dropout after the second, fourth, and sixth con-
volutional layers, and after the first dense layer. To further
prevent overfitting, we also add a small (additive) Gaussian
noise (o = 0.005, see Sec. III C5) after the second and fourth
convolutional layers.

B. Reconstruction

We now show how a standard neural network can be used
to reconstruct the density matrix p of a quantum state by
adding custom layers to a generative model. The standard
formulation of a generative model with feed-forward neural
networks (see Sec. IID3) is a map between a latent space
and the data space. Our data d consists of single shots or
average values of measurement outcomes for operators {O;}.
We construct a Generator network parametrized by weights
0, that first estimates a density matrix pg. We then use a
custom Expectation layer that can generate the statistics for
new measurements d’(d/ = tr(O;pg):

Expectation

tr(O'pg)

Generator

{d, {O:}} caonae, Po

{d}. 47
The Generator-network formulation, depicted in Fig. 6, re-
sembles a VAE (see Sec. II D 2), but rather than modeling the
data distribution using a parametrization with a mixture of
Gaussians, we instead use the straightforward parametrization
given by the estimated density matrix itself, pg. The mapping

between the latent space of measurement operators {O;} and
the outcomes is simply tr(O;pg), which is the data generation
map.

TABLE III. Definitions, shapes, and number of trainable pa-
rameters for the layers of the Generator network. We denote the
transpose convolution layers as Conv2D-T(f, k, s) where f, k, and
s represent the filter size, kernel size, and strides respectively. Af-
ter the first dense layer and the first three Conv2D-T layers, the
activation function LeakyReLU is used. Instance normalization is
used between the first two Conv2D-T layers. The output from the
last Conv2D-T layer passes through two custom neural network
layers: a DensityMatrix layer generating pg, and an Expectation layer
generating expectation values. A full implementation of the code as
a TensorFlow model can be found in Ref. [161].

Layer Output shape No. of Parameters
Dense 512 524 288
Reshape 16, 16,2 0
Conv2D-T (64, 4, 2) 32,32, 64 2048
Instance normalization 32,32, 64 128
Conv2D-T (64, 4, 1) 32,32, 64 65 536
Instance normalization 32,32, 64 128
Conv2D-T (32,4, 1) 32,32,32 32768
Conv2D-T (2,4, 1) 32,32,2 1024
DensityMatrix 32,32 0
Expectation 4096 0
Total parameters 625 920
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TABLE IV. Definitions, shapes, and number of trainable param-
eters for the layers of the Discriminator network. The activation
function LeakyReLU is used for all layers except the final output
layer. A full implementation of the code as a TensorFlow model can
be found in Ref. [161].

Layer Output shape No. of Parameters
Concatenate 2048 0
Dense 128 1048 704
Dense 128 16 512
Dense 64 8256
Dense 64 4160
Total parameters 1077 632

Below, we define the input and output data for the
Generator network. Then, we show the details of the net-
work architecture with our customized layers that regularize
the intermediate output pg to a valid density matrix and
generates the correct output. Finally, we discuss the training
methods used to optimize the parameters of the Generator
network. The first training method focuses on minimizing
the least-squares and cross-entropy loss between the expected
output and generated output. The second method learns a
more sophisticated loss function in the form a second, train-
able neural network, a Discriminator, also illustrated in
Fig. 6. This second training method is inspired by the idea of
CGANS s [12,21], which we use for quantum state tomography
(QST-CGAN) [99].

1. Input and output data

The input data for reconstruction are the measurement
statistics d and the operators {O;} that were measured. Similar
to the classification task, we consider the Husimi Q function
in a 32 x 32 grid with 8 € [—5, 5]. The measurement opera-
tors O; are 32 x 32 complex-valued matrices. Therefore the
input data for a single reconstruction is a combination of the
flattened data vector d (1 x 1024) and the set of operators
{O;} (1 x 1024 x 32 x 32). Note that it is easy to change
the parameters in the data or the neural-network architecture
to allow arbitrary phase-space grid sizes and Hilbert-space
cutoffs; the fact that they are both set to 32 in most examples
here does not have any special significance.

The training data for a single reconstruction thus requires
only these 1024 data points (real-valued numbers) and the
1024 operators (complex-valued matrices) as the input for
each reconstruction. We consider noise on a case-by-case
basis during training (described in Sec. IV B 3 below).

The output of the neural network is a (1 x 1024) vec-
tor representing the expectation values for the measurements
{O;}. Inside the Generator, the full density matrix of the
state is estimated as a 1 x 32 x 32 complex-valued matrix pg
determined by the outputs of an intermediate DensityMatrix
layer.

In this way, we allow for a flexible architecture, which can
reconstruct a single state with inputs shaped as (1 x 1024, 1 x
1024 x 32 x 32) for (d, {O;}) or allow multiple states as the
input simply by concatenating the inputs. For example, to
reconstruct 10 states simultaneously with 1024 measurements

each, we simply feed the network a batch of data points as
(10 x 1024, 10 x 1024 x 32 x 32).

In this paper, we only consider single reconstructions, so
our inputs will always be of the shape 1 x n for the data d
and 1 x n x N, x N, for the measurements, where n is the
number of measurement settings and N, is the Hilbert-space
cutoff. Note that we allowed the most general description of
the measurement setting in the inputs as the full operator de-
scriptions {O;}. We could also use alternative ways to specify
the measurement settings, e.g., a set of complex displacements
Bi, and redefine our Expectation layer to use those 8 values. In
the case of qubit tomography, these measurement settings can
be replaced with a set of single-qubit measurement operators
suchas [Z,X,X,Z,...].

2. Network architecture

Our Generator network G is a modified version of the
standard G(z;0) formulation (see Sec. IID 3), where we first
consider the conditional form G(z|(d, {O;});0). The condi-
tioning variable is our data and the measurement settings,
represented as a vector and a set of matrix operators, respec-
tively. Then, inspired by the pix2pix architecture [21], we
remove the random noise z and just consider the data and
measurement operators as inputs to define G(d, {O;};0) as the
Generator.

The full architecture, detailed in Table III and depicted
in Fig. 6, begins with a fully connected dense layer, which
receives the flattened data vector d as input. The output of
this layer is reshaped to a 16 x 16 x 2 tensor. This layer
converts the input into a matrix with two channels that can be
upsampled into the density matrix. The next layers are three
blocks of two-dimensional transpose convolution operations
(Conv2D-T) and instance normalizations [165] such that the
final output is moulded to an estimate of the density matrix
pg- All the layers described so far use LeakyReLU activation,
except the final Conv2D-T layer, whose outputs are fed to a
custom DensityMatrix layer.

The DensityMatrix layer converts the output of the final
Conv2D-T layer to a valid density matrix. This output is two
matrices (32 x 32 x 2), which are combined into one 32 x 32
complex-valued matrix, 7. The upper triangular part of T
and the imaginary part of the diagonal are set to zero to obtain
the Cholesky decomposition of a Hermitian matrix [Eq. (1)].
Finally, we divide the resulting matrix by its trace to obtain
a valid density matrix. Therefore, the custom DensityMatrix
layer can convert the real-valued outputs of any standard neu-
ral network to a Hermitian, positive-semidefinite matrix with
unit trace.

The final layer is another custom one, called Expectation.
It takes as input {O;} during training (the other part of the
input to the Generator) and outputs the expected values for
measurement outcomes for each component of d’ as

dz/ = tI'(Oi,O(;). (48)

The last two layers, DensityMatrix and Expectation, do not
contain any trainable parameters.

The Discriminator network used to train the generator
is detailed in Table IV. This network receives two inputs:
the data d and the generated statistics d’, and begins by
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concatenating the two. The concatenated input is then passed
through four dense layers, with the final layer having 64 neu-
rons. All the layers of the discriminator use the LeakyReLU
activation, except the final layer, whose outputs are interpreted
as a measure of the similarity between d’ and d. Note that
the dimensions, or even the shape, of the final output layer
can be arbitrary. The outputs simply need to be interpret as
a similarity score between d and d’, which should be ~1 if
d ~ d’ and ~0 otherwise. We were inspired by the PatchGAN
idea [21] for our Discriminator that motivates penalties at
the scale of patches in the input. We have also concurrently
found during the course of our work, that similar ideas were
effectively demonstrated for x-ray tomography with promis-
ing results for denoising [166].

3. Training

The training for reconstruction can be done in two ways—
either we reconstruct a single state or we reconstruct a set of
different states using the same Generator network. This flex-
ibility comes from our formulation of the Generator network
and reshaping of the data to find a map from data space to
the set of density matrices. In this paper, we only show how
to perform single reconstructions, but in Ref. [99], we show
how the same Generator network can perform single-shot
reconstructions for many different states.

For each reconstruction in this paper, we only consider
a single state p and the data from measurements of several
operators on p as the inputs and outputs (see Sec. IVB 1).
We train the Generator network to minimize a loss metric
that gives some measure of how the reconstructed statistics d’,
calculated from an underlying pg, differ from the data d. If d;
are the frequencies of measurements O; and d; = tr(O; pg) are
the computed probabilities from the generated density matrix,
then maximizing the log-likelihood in Eq. (3) amounts to min-
imizing the cross-entropy loss between observed frequencies
dandd”:

cross-entropy(d, d') = — Z d; In[tr(O; pg)]. 49)

L

However, the cross-entropy loss assumes discrete-valued data,
i.e., single-shot outputs of POVMs, whereas in many cases we
may be looking at continuous-variable outputs instead.

If we consider the data to be the expectation values of some
continuous-valued observable, e.g., the homodyne current,
metrics such as the mean squared error

L2, d) = é > —d)Y, (50)

where ¢ is the number of data points, are more suitable. For
such continuous-valued data, the error in measurement can
be assumed normally distributed with variance o>. Under this
assumption, minimizing the L2 loss maximizes the likelihood

exp (_M> . 5D

20i2

L =]] -

i 2mo;

where we consider the mean for each measurement outcome
as the expectation value u; = tr(p’ M) for some observable
M.

Speaking more generally, the loss function uses some
metric to measure the distance between two probability distri-
butions P and Q. Such metrics can be divided into two major
classes: ¢ divergences and integral probability metrics (IPMs)
[167,168]. The first are of the form

oP
Dy(PI|Q) = / ¢(@) dQ (52)

where ¢ is some convex function ¢ : R>9 — R>o, while the

latter are defined as
/gdp—fng', (53)

where the class of functions G parametrizes some notion of
distance.

In the deep-learning community, the study of such metrics
in generative modeling is an area of active research [169,170].
It has been shown that the choice of loss function can greatly
impact the quality of image reconstruction [171]. There are
several recent attempts to gain better understanding of the role
of different loss functions in GAN performance, e.g., using the
Wasserstein metric [169] or IPMs [172].

Since the best choice of loss function is far from clear,
we train the Generator network to minimize several differ-
ent loss functions between predicted Husimi Q values and
observed data. We first use the well-known L1, L2, and cross-
entropy loss functions, as well as the KL divergence. The
latter two are closely related, and belong to the class of ¢-
divergences. The L1 loss is both a ¢-divergence and an IPM.

Beyond these well-known loss functions, GANs allow
for more complex loss functions to be learned. In our
QST-CGAN architecture, we train the Generator using the
Discriminator network combined with L1 loss, to mini-
mize

Dpm(P, Q) = sup
geg

In[1 - D, G(d, {O;};05);0p)]
+A1[G(d, {O;}; 06) — d, 54

with the L1 loss coefficient A;; € {0, 1, 10, 100}. The dis-
criminator loss function maximizes Eq. (19) by minimizing

— In[D(, d;6p)] —In[1 — D(d, d’;6p)]
+ MaEL[(AD(X; 0p)|]2 — 1)1, (55)

where the last term is a gradient penalty [173] with weight
Aa = 10. We combined the inputs to the Discriminator as
the vector x.

Therefore, in each training iteration, we alternatively
update the generator and discriminator weights using back-
propagation with the help of some gradient-based optimizer.
Since the choice of hyperparameters, e.g., optimizer or learn-
ing rate, can significantly affect the rate of convergence, we
try to find settings that enable a fast convergence for all loss
functions. To make a fair comparison, we keep the same
parameters for optimization for all loss functions. We use
the Adam optimizer with the exponential decay rates for first
and second moment estimates as m; = 0.5, mp, = 0.5. We also
use an exponentially decaying learning rate as a function of
iteration number i,

1(i) = I,C+ (56)
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with initial learning rate /y = 0.0002, decay constant C =
0.96, and s = 1000 steps.

V. RESULTS

In this section, we characterize the performance of our
Classifier and Generator networks in various settings.
We first check the performance of the Classifier network,
including some types of noise, in Sec. VA 1. We then study,
in Secs. VA2 and V A3, the impact of photon loss and
additive Gaussian noise on classification performance. Fi-
nally, in Sec. V A4, we analyze, which parts of the data the
Classifier bases its decision on. This provides information
that can help reduce the number of measurements needed in
an experiment or guide an adaptive scheme for tomography.

For reconstruction, we first investigate, in Sec. VB,
the result of using different loss functions, including the
Discriminator network, to train the Generator network.
We compare the performance of the Generator against
maximum-likelihood-based  reconstruction algorithms—
iterative MLE (iMLE) [174] and the “superfast” APG-MLE
[119] (see Sec. IIB)—under additive Gaussian noise in
Sec. VB 2. In Sec. VB3, we show how to tackle Gaussian
convolution noise. Then, we show the results of reconstruction
for mixed states in Sec. VB4 and finally, in Sec. VBS5,
demonstrate how few data points are needed for the network
to reconstruct a state well.

A. Classification
1. Confusion matrix

The performance of the Classifier network on a test
set is shown as a confusion matrix in Fig. 7(a). The test set
consists of ~1200 different instances of each of the seven
classes in Secs. III A 1-III A 7, with noise in the form of state
mixing (see Sec. III C 1) applied with ¢ € [0, 0.5] and density
0.8.

The accuracy of the classification (number of correct clas-
sifications divided by the total number of classifications) on
the whole test set is 98.6% . For a validation set with the same
states as the test set, but where we have added noise in the
form of affine transformations (see Sec. III C4) and additive
Gaussian (see Sec. [IIC4 with ¢ € [0, 0.05]) on top of the
state-mixing noise, the accuracy of the Classifier remains
very high, 97.7% .

It is clear from the confusion matrix in Fig. 7(a) that the
class which presents challenges for the network is cat. All
other classes are correctly identified in virtually every case,
but the cat states are misclassified in about 9% of the cases.
In these cases, the network misidentifies the cat states as all
other classes except thermal, with the most common misla-
bellings being coherent, fock, and binomial. The reverse
misidentification, where a state is misclassified as cat, occurs
for about 1% of the binomial states.

A few examples of misclassifications are shown in
Fig. 7(b), where we consider pure cat states with low values
of «. These examples demonstrate that there are parameters
for which states from different classes are very similar. For
example, a cat(a = 4,5 = 0) state p and a binomial(S§ =

(a)
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fock 0 0 0 0 0
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— thermal
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Z
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FIG. 7. Performance of the Classifier. (a) Confusion matrix
demonstrating the performance of the Classifier on a test dataset
containing 8760 states (~1200 different instances of each class). The
prediction counts are normalized to show the true labels versus the
predictions made by the Classifier. (b) Husimi Q functions for
three examples of pure cat states that the Classifier does not
classify correctly. For each state, the incorrectly assigned label is
shown. The states are, from left to right, cat(e =1,S=1,u =
1), cat(¢ =2,5S=3,u=0), and cat(e¢ = 1,5 =3, u = 0). For
certain parameters, different states have a high overlap in fidelities
and the measurement data, making classification challenging. The
Classifier tries to find the best label according to relevant patterns
in the data.

1, N = 16) state p’ have a fidelity

2
F(p. p') = [te(,/ PP/ /)] (57)

greater than 0.99. Note that the fidelity F reduces to the
squared overlap [(¥|y'))* for pure states. Similarly, the fi-
delity of cat(e¢ =3,5 =4) and fock(10) is greater than
0.996. It is thus not surprising that the network found some
states hard to classify. A human quantum physicist would
likely have made the same misclassifications from the data
in Fig. 7(b).

2. Recognizing cat states with photon loss

We now investigate the performance of the Classifier
network in the presence of photon loss (see Sec. IIIC 3).
In Fig. 8(a), we show how well the Classifier manages
to recognize a set of cat(w, S = 0) states, with © =0 and
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FIG. 8. Classifier performance for cat states with pho-
ton loss. (a) Softmax probabilities (solid lines) predicted by the
Classifier for the labels of the seven classes. The shaded regions
show one standard deviation from the mean. The dataset consists of
100 cat states (Ja| € [2, 3], S = 0, u = 0) with photon loss, quanti-
fied by the proportion of photons lost drn/n starting from the initial
mean photon number ny. (b) Husimi Q functions for one of the
cat states in the dataset with, from left to right, 0 %, 20 %, and
100 % of photons lost with respective fidelities 0.76 and 0.19 for
the states with photon loss. It is not straightforward to assert from
just the Husimi-Q data when a cat state stops being a “cat” as
it still possesses cat-like features (two coherent blobs) even after
losing 20 % of the initial photons. (c) The photon-number occupation
probabilities for the states in (b). Note that the occupation probability
for the vacuum state is ~1 in the right panel, but we set the limits of
the y axis to 0.5 for better distinguishability.

|| € [2, 3], as more and more photons are lost. Before any
photons are lost, the softmax probabilities for different labels
show that the Classifier assigns the highest probability to
the label cat. After ~70 % of the photons have been lost, the
probability of the state being classified as a cat decreases and
the labels coherent and binomial become equally probable.
It is an interesting question whether these probabilities reflect
the characteristics of the state in such a way that it could be
used as a starting point for reconstruction. When almost all the
photons are lost, the classification label is always coherent.

Even though we did not include any photon-loss noise dur-
ing the training phase, the Classifier is still able to identify
cat states after many photons have been lost. It should be
noted that once photons have been lost, it is not certain that
the state can be considered a cat state anymore. A distinctive
feature of cat states is the interference between the coherent
states making up the superposition state. This interference
results in zero probability of odd photon numbers in the state
[see the left panel in Fig. 8(c)]. Once photon loss starts acting
on the state, these occupation probabilities become nonzero
[see the middle panel in Fig. 8(c)], but the Classifier net-
work can still identify general features leading it to classify
the data with the label cat. However, once more photons have
been lost, the state ceases to be a cat state and is classified as
a coherent state.

We note that the results presented here for classification
under photon loss may be different if the network is trained on
data in the form of Wigner functions (see Sec. Il B) instead
of Husimi Q functions. The Wigner function for cat states
has characteristic interference fringes, some with negative val-
ues, between the coherent-state blobs. These features are not
clearly seen in the Husimi Q function; it only takes very small
nonzero values (~10~*) between the two coherent blobs in a
cat(a = 2,5 =0, u = 0) state. Another approach to identify
the lossy cat states better would be to train a classifier to
distinguish cat states and mixtures of coherent states from the
Husimi Q function. Just like the Classifier, this does not
require explicitly specifying criteria fr what is or is not a cat,
but works in the spirit of “Software 2.0” [175]— replacing
explicit programming with learning from data.

3. Classification in the presence of additive Gaussian noise

Next, we test the performance of the Classifier in
the presence of additive Gaussian noise. As explained in
Sec. IIIC5, this type of noise models uncertainty in the data
due to averaging over a limited number of measurements
and binning of data. In Fig. 9(a), we plot the classification
accuracy as a function of the standard deviation o of the added
Gaussian noise (see Sec. III C5). The dataset is the same as
that in Fig. 7, but with the Gaussian noise added. In Fig. 9(b),
we show an example of how the Gaussian noise impacts a cat
state in the dataset.

The accuracy of the predictions from the Classifier
remains high until o & 0.05 and then decreases gradually.
However, even at o = 1, the accuracy is almost 25%, clearly
better than ~1/7, which is what one would obtain for a ran-
dom guess among the seven classes. At these high levels of
noise, the network can still correctly classify up to ~60% of
the fock states, ~30% of the coherent states, and ~55% of
the cat states in the test set. However, at such a high level
of noise, the Classifier almost always predicts the label as
one of fock, coherent, or cat. Hence accuracy is not the
best indicator of performance in all scenarios.

Therefore, in addition to the accuracy, we also quantify
the Classifier performance by considering the receiver-
operating-characteristic (ROC) curve [176,177]. The ROC
curve for a binary classification problem is a plot of the true
positive rate (TPR, the ratio between correctly classified pos-
itive labels and the number of real positive labels) versus the
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FIG. 9. Classifier performance in the presence of additive
Gaussian noise. (a) Accuracy (blue) and area under the ROC curve
(orange) as a function of the level of additive Gaussian noise. The
noise is added to the dataset used in Fig. 7. (b) Effect of additive
Gaussian noise on a cat(oe = 2, S = 0) state. The distortion of the
state starts to become significant between ¢ = 0.05 and o = 0.2,
which is when the accuracy of the Classifier starts to drop below
90%.

false positive rate (FPR, the ratio between false predictions
of positive labels and true predictions of negative labels).
The area under the ROC curve gives an indication of the
discriminative power of the classifier: the area is 1 for perfect
classification and 0.5 for random guesses. For our multiclass
problem, we use the one-vs-rest strategy in Scikit-learn [178]
to calculate the area under the ROC curve. The result, aver-
aged over all classes, is shown in Fig. 9(a). The area under
the ROC curve shows a behavior similar to the accuracy, but
indicates a somewhat better performance than the latter does.

4. What does the network see?

The Classifier network is a highly nonlinear function
that maps data to a label. In order to find the patterns in
the data that the network uses to determine the label, we ap-
ply gradient-weighted class activation mapping (Grad-CAM)
[179]. The Grad-CAM method works by fixing a class la-
bel and finding the gradients of the score for this target
class (before the softmax activation) with respect to the last
convolution layer of the network. This is a form of back-
propagation that allows us to construct a heatmap of numbers
showing, which pixels of the input image influence the output
the most.

In Fig. 10(a), we show three examples of noisy input data,
from which we calculate Grad-CAM heatmaps, shown in

Noisy input
5 1
Q
g H H N
-5 0
53 Re(f) 2 Re(@ 3
(b) Grad-CAM heatmaps
, , . 1
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0

Heatmaps (> 0.9) on data
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FIG. 10. Using Grad-CAM to highlight the regions of the input
data that the Classifier considers most important for predicting a
label. (a) Input data for three states (from left to right: binomial,
num, and gkp) with affine transformations and a constant additive
Gaussian noise (o = 0.2) for all values of 8 after normalizing the
data to the interval [0, 1]. (b) Heatmaps, normalized to the interval
[0, 1], constructed with Grad-CAM from the data in (a), showing
which parts of the data the Classifier focusses on. (c) The areas of
the data (without the additive Gaussian noise) that appear in the focus
when we only show the regions for which the Grad-CAM signals
exceed 0.9.

Fig. 10(b). These heatmaps are then used in Fig. 10(b) to show
the parts of the noise-free input data that contribute the most
to the classification. Affine transformations (see Sec. IIIC4)
and additive Gaussian noise (see Sec. IIIC5) with o = 0.2
have been applied to the input data to simulate an experiment
with SPAM errors and little averaging. We chose to only
show the parts of the data where the heatmap has high values
(exceeding 0.9), to demonstrate that, even in the presence of
significant noise, the Classifier makes its decision based
on the data in the regions that contain the important pat-
terns characterizing the state. A nonmachine-learning way to
achieve similar results would be to hand-craft an algorithm
that can clean noisy data and detect the regions with a high sig-
nal using some boundary-finding algorithm. However, instead
of hand-crafting solutions for each type of state and noise, our
trained Classifier can easily adapt to a variety of different
scenarios.

The Grad-CAM results suggest an interesting possibility
for adaptive tomography: using Grad-CAM during the data
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collection in an experiment to identify regions that are impor-
tant and then sample from these regions more that from other
places. In this way, our Classifier network can identify
specific POVMs (defined by displacements §) that give the
most useful data for discriminating optical quantum states.

B. Reconstruction
1. Impact of loss metric

We first investigate how the choice of loss function af-
fects the performance of our neural-network reconstruction
method. In Fig. 11, we compare the impact of different loss
metrics used to train the Generator network. For each loss
function, we train the network using the same data. We show
the reconstruction fidelity for data from a binomial state
reconstructed with six different methods (see Sec. IV B 3).
In Fig. 11(a), we show results for the QST-CGAN with
various weights Ap; of the L1 loss term in Eq. (54). For
all values of Ap;, including Ap; = 0, corresponding to pure
Discriminator loss, the reconstruction fidelity converges
to unity. The convergence is faster with L1 loss added than
without it, but a large weight on the L1 part of the loss
function leads to worse performance than a moderate weight.
The best performance is seen for Ap; = 1, when the network
converges to the correct reconstruction in a little more than
100 iterations, i.e., 100 updates of our estimate for the density
matrix.

The MLE methods, shown in Fig. 11(b), also converge
to unit fidelity, but do so using two orders of magnitude
more iterations than the best QST-CGAN. However, note that
the specific MLE implementation can affect the actual time
needed for each iterative step and therefore the total recon-
struction time. Similarly, the neural-network architectures will
affect the actual training time. Therefore we only compare the
fidelities for intermediate states each time any method updates
the density-matrix estimate.

In Figs. 11(c)-11(f), we plot the results of training the
Generator using the cross-entropy, KL-divergence, L1, and
L2 loss functions, respectively. In all cases, the reconstruction
fidelity converges to close to unity. The Generator trained
with cross-entropy loss [Fig. 11(c)] displays the fastest con-
vergence, on par with the best QST-CGAN. Training with
KL-divergence loss [Fig. 11(d)] gives almost as good results.
The L1 [Fig. 11(e)] and L2 [Fig. 11(f)] loss functions result
in slower convergence, but still perform better than iMLE for
the example considered here. We note that the L1 and L2
loss functions lead to a wider distribution of the number of
iterations required for convergence for the same data than any
of the other methods.

To ensure that the results in Fig. 11 were not particular to
the state used as input data there, we also show the results
of reconstruction of a cat state in Fig. 12. The results in Fig.
12(a) are similar to those in Fig. 11(a): the QST-CGAN always
converges to unit fidelity, and it does so the fastest when L1
loss is added to the Discriminator loss with weight Ap; =
1. The main difference to Fig. 11(a) is that the convergence
with pure Discriminator loss is considerably faster in Fig.
12(a) and is almost as fast as when L1 loss is added. Just as in
Fig. 11, the iMLE method, shown in Fig. 12(b), converges to
unit fidelity about two orders of magnitude slower than the

best QST-CGAN. The APG-MLE method from Ref. [119]
is faster than our iMLE implementation, but requires more
iterations to converge for this example.

The plots in Figs. 12(c)-12(f) show the results of training
the Generator using the cross entropy, KL-divergence, L1,
and L2 loss functions, respectively. Whereas these methods all
eventually lead to close to unit fidelities for the reconstruction
in Fig. 11, here they all sometimes fail and end up in a state
giving reconstruction fidelity zero instead. In the cases where
they do end up at unit fidelity, the convergence is approxi-
mately as fast as in Fig. 11, perhaps somewhat faster for the
L2 loss in Fig. 12(f).

In the cases where the standard loss functions lead the
Generator to reconstruct a state with fidelity zero, the re-
constructed state is a cat state, shown in the inset of Fig.
12(d), orthogonal to the cat state, shown in the inset of Fig.
12(b), that provides the data. The two cat states have the
same « and virtually indistinguishable Husimi Q functions.
The only difference between the two is that the correct state
has nonzero values in a narrow line along Im(8) = 0 between
the two prominent lobes in the Husimi Q function, while
the orthogonal state has nonzero values at two narrow lines
along Im(B8) ~ £0.5 instead. The differences between the two
states are more clearly seen if one plots their Wigner functions
instead. We consider reconstruction from Wigner-function
samples in Sec. V B 4 and from experimental data in Ref. [99].

For the KL divergence in Fig. 12(d) and the L1 loss in Fig.
12(e), the Generator network seems to start moving towards
one of the two cat states and then eventually converge to that
state. However, for the L2 loss in Fig. 12(e), there are some
runs where the Generator network reconstructs an orthogo-
nal state (with very low fidelity to the target), but then corrects
and jumps to the correct state within a few iterations. In the
specific case of a cat state, the orthogonal state is reached
by applying the photon annihilation operator a to the correct
state. It remains to be explored if the Generator network
learns to represent quantum states in a way that it can apply
such nontrivial quantum operations to find the correct state
from an initially incorrect prediction.

In our attempts to tune the hyperparameters of the training,
we have noticed that higher values of the parameters m; and
my for the Adam optimizer removes the behavior seen in
Figs. 12(c)—12(f). Instead, for these values the Generator
always finds the correct state and not its orthogonal coun-
terpart, similar to how the QST-CGAN in Fig. 12(a) always
converges to the correct state. Another way to achieve this
convergence could be sampling more around Re(8) to focus
on the data that distinguishes the two cat states. In any case,
it is noteworthy that the Generator network could possibly
apply nontrivial steps to quickly reconstruct the state while the
iMLE converges in small steady steps.

To summarize the results in Figs. 11 and 12, the main
finding is that the best QST-CGAN reaches unit fidelity orders
of magnitude faster than MLE methods. The QST-CGAN
performs best when its loss function is an approximately equal
mix of L1 loss and the trained Discriminator loss. Further
tuning of hyperparameters leads to even better performance in
some cases. Among the standard loss functions, cross-entropy
loss and KL divergence lead to somewhat better performance
for the Generator network than did L1 and L2 loss. However,
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FIG. 11. The effect of the loss function on reconstruction of p using the Generator. We use the data from the Husimi Q function of
a binomial(S =2, N =4, u = 0) state [inset in panel (d)] in a 32 x 32 grid and repeat the reconstruction with random initializations of
the network weights and starting estimate of p for iMLE. In each iteration, the weights of the Generator or Discriminator networks are
updated using a single step of the Adam optimizer. The learning-rate schedule and optimization hyperparameters are set to the same values
(see Sec. IV B 3) for all loss functions in order to achieve a fair comparison. However, further tuning of the parameters for each type of loss
function could possibly give better results. (a) The reconstruction fidelity as a function of iterations for QST-CGAN with various weights of the
L1 loss set by the A;; parameter [see Eq. (54)]. In each of a total of 30 runs, the weights of the Generator and Discriminator are randomly
initialized. The solid lines show the mean and the shaded regions shows one standard deviation from the mean. (b) The performance of MLE
methods on the same data. We repeat the reconstruction 30 times and show the mean fidelity (solid-blue line) and one standard deviation
from the mean (shaded region) for iMLE. For the APG-MLE (dashed-black line), we use the default initialization scheme (“bootstrap”)
from Ref. [119], which initializes the starting density matrix via conjugate gradients using a line search. The plot for APG-MLE shows
the improvement of fidelity including the steps during the initialization scheme. There is no deviation from the mean for APG-MLE, since
there is no explicit randomization involved in the reconstruction. [(c),(d),(e),(f)] Reconstruction fidelities using standard loss functions for the
Generator: cross-entropy [see Eq. (49)], KL divergence, L1, and L2 [see Eq. (50)]. We show all 30 runs for each loss function with the dashed

line showing the mean.
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FIG. 12. The effect of the loss function on reconstruction of a cat(ae = 2,5 = 0, u = 0) state from Husimi-Q-function data [inset in
panel (b)]. All hyperparameters, number of runs, and meanings of solid lines and the shaded regions in the plots are the same as for Fig. 11.
(a) Performance of the QST-CGAN with various weights of the L1 loss. (b) Reconstruction fidelities for MLE methods on the same data.
[(c)—(f)] Reconstruction performance with standard loss functions. The inset in (d) shows the Husimi Q function of a cat state orthogonal to
the one in the inset in (b), which was used to produce the data. The state in (d) is constructed by applying the photon annihilation operator a to

the original state in (b).

as we will see in the following subsections, there are other
situations, e.g., when the reconstruction is performed in the
presence of noise, where these losses give better performance
and where a different value for A;; may be more suitable
for the QST-CGAN. The fact that different situations seem
to require different loss functions is an important argument in
favour of the flexibility of the Discriminator loss, which
can adapt to the situation, allowing the QST-CGAN to per-
form well in a more general setting.

2. Reconstruction in the presence of additive Gaussian noise

We now compare how different loss functions affect the
neural-network performance in the presence of additive Gaus-
sian noise (see Sec. III C5). In Fig. 13, we show representative
results of reconstructing a binomial state from Husimi-Q-
function data where Gaussian noise has been added. For each
B in the Husimi Q function of the state, we add a random value
sampled from a zero-mean Gaussian with standard deviation
o = 0.05. Before adding the noise, we rescale the data to the
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FIG. 13. Reconstruction of a binomial(S = 2, N = 4, u = 0) state in the presence of additive Gaussian noise. (a) The Husimi Q function
of the state after addition of Gaussian noise at each 8. The random noise is drawn from a standard normal distribution with o = 0.05 and added
after the data has been normalized to the range [0, 1]. [(b)—(f)] Reconstructed Husimi Q functions, without noise added by the GaussianNoise
layer, using standard loss functions for the Generator: L1, cross entropy, L2, and KL divergence, respectively. (d) Reconstructed Husimi Q
function using APG-MLE. [(g)—(i)] Reconstructed Husimi Q functions using our QST-CGAN with three different weights of the L1 loss set by
AL1- (j) Photon-number occupation probabilities for the data without noise added. [(k)—(r)] Photon-number occupation probabilities extracted
from the reconstructed density matrices corresponding to the Husimi Q functions in (b), (c), (d), (e), (), (g), (h), and (i), respectively. In
all reconstructions using neural networks, the hyperparameters for learning were kept the same. For each method, including APG-MLE, the

calculations were stopped after 10 000 iterations.

range [0, 1] by dividing it with the maximum value of the
Husimi Q function.

To enable the neural network to learn the state underlying
the noisy data, we augment the Generator output with the
known noise by introducing a GaussianNoise layer. This layer
applies the same type of noise to the reconstructed data by
sampling from a Gaussian with o = 0.05 at each gradient-
descent step of the Adam optimization. Note that at each
step the noise added has the same variance, but differs due
to the random sampling. The application of this method in
practice requires knowing the type of noise, and its variance,
in the experimental setup, but we believe this is feasible to
extract.

It might also be possible to simply let the neural net-
work learn the noise. However, applying backpropagation
techniques for training requires calculation of gradients with
respect to the parameters. The automatic differentiation meth-
ods usually employed for gradient calculation in neural
networks are not straightforward to apply when such stochas-
tic noise layers are present in the networks. Nevertheless,
methods such as the reparametrization trick [11] can still make

it possible to learn the noise. However, we have not explored
this possibility further in this paper.

Looking at the reconstructed Husimi @ functions in
Figs. 13(b)-13(i), it appears that the Generator with L1 or
L2 loss and the QST-CGAN with Ay ; = {0, 1, 10} outperform
the Generator with cross entropy or KL divergence loss, and
clearly outperform the APG-MLE implementation. However,
a small difference in the appearance of the Husimi Q function
does not necessarily mean that two states are similar (com-
pare the orthogonal states depicted in the insets of Fig. 12).
We therefore plot, in Figs. 13(j)-13(r), the photon-number
occupation probabilities corresponding to the noiseless data
and the reconstructions in Figs. 13(b)-13(i). The noiseless
data has nonzero probabilities for 0, 3, 6, and 9 photons.
This is only reproduced well by the Generator with L1 or
L2 loss and the QST-CGAN with A;; = 1. The QST-CGAN
with Ap; = 1 also reproduces the equal probabilities of 6
and 9 photons in the data better than the QST-CGAN with
AL = {0, 10}.

To further investigate how different loss functions affect
the neural-network performance in the presence of additive
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FIG. 14. The effect of the loss function on reconstruction of the binomial state in Fig. 13 with 30 different realizations of the additive
Gaussian noise. We show all runs for each loss function. The injected noise has the same variance o = 0.05 in each run, but is sampled anew
for each run. [(a)—(c)] Reconstruction fidelity for the QST-CGAN with various weights of the L1 loss. (d) Reconstruction fidelity for MLE
methods. [(e)—(h)] Reconstruction fidelity obtained by training the Generator using standard loss functions: cross entropy, KL divergence,
L1, and L2. In all the neural-network-based reconstructions, we use the same hyperparameters for training in order to have a fair comparison.

Gaussian noise, we plot, in Fig. 14, how the reconstruction
fidelity develops, for all reconstruction methods, as a function
of the number of iterations for 30 different realizations of the
noise in the data (the same binomial state as in Fig. 13). The
average reconstruction fidelities and standard deviations are

summarized in Table V, where we exclude the reconstructions
when the state converges to an orthogonal state [see, e.g.,
Fig. 14(c) for Ap; = 10]. Note that we have not tuned the
hyperparameters for training, which can lead to improvements
for all methods.
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TABLE V. Mean and standard deviations for fidelities F' reached
for reconstruction of the binomial state in Fig. 13 in the presence of
additive Gaussian noise (o = 0.05). We consider 30 different sets
of noise for each type of loss function. The full trajectories for
the fidelities, as each method iteratively updates the estimate of the
density matrix, are shown in Fig. 14.

Loss Mean F Std (F)
QST-CGAN (A =0) 0.85 0.24
QST-CGAN (A = 1) 0.95 0.05
QST-CGAN (A, = 10) 0.93 0.07
Cross entropy 0.65 0.15
KL-Divergence 0.76 0.06
L1 0.81 0.14
L2 0.87 0.05
APG-MLE 0.76 0.07

However, it is clear from Fig. 14 that the average recon-
struction fidelities alone do not give a complete picture of
the performance. Looking at the best runs for each method,
we see that the QST-CGAN:Ss, the iMLE, and the Generator
with L1 or L2 loss all are able to reach fidelities very close to
1, while the Generator with cross entropy or KL-divergence
loss never ends up above fidelity 0.9. Looking at the spread of
results, we see that the iMLE is very unstable, while the QST-
CGAN and the Generator with L1 loss have a small number
of runs ending up at a very low fidelity. The Generator with
L2 loss appears to produce high-fidelity reconstructions with
the greatest consistency. We note that the remaining instability
in the QST-CGAN performance likely could be remedied by
regularization, e.g., higher L1 or L2 penalties on the weights
of the neural network. However, to make comparisons fair
across the paper, we opted for not changing any such hyper-
parameters.

Finally, we can compare how fast the different methods
reach high reconstruction fidelity. Here, we see the same trend
in Fig. 14 as in Figs. 11 and 12: the QST-CGAN is faster than
the Generator trained with standard loss functions, and the
fastest QST-CGAN is the one with Ap; = 1.

To summarize the results in Figs. 13 and 14, the QST-
CGAN and the Generator trained with L1 or L2 loss
outshone the other methods when reconstructing a state in
the presence of additive Gaussian noise. For the Generator
trained with standard loss functions, the results were thus
different from the noiseless case in Sec. VB 1, when train-
ing with cross entropy or KL-divergence loss gave better
results. When comparing the best QST-CGAN, the one trained
with Ay = 1, to the best Generator trained with standard
loss functions, the one trained with L2 loss, we find similar
performance in terms of reconstruction fidelities, but the QST-
CGAN is faster to reach a good reconstruction.

The errors in reconstruction using the cross entropy and
KL-divergence loss are expected, because these loss func-
tions, similar to iMLE, assume the incorrect likelihood
[Eq. (3)] for the data, which does not include the Gaussian
error model of Eq. (51). The QST-CGAN reconstruction per-
forms better than these methods since it has the flexibility to
learn an appropriate loss function. We only provide the overall

objective of making the reconstructed statistics similar to the
data.

The reason for the good performance using the L2 loss can
be further understood from arguments presented in a recent
work on image denoising—~Noise2Noise [180]. There, the au-
thors note that the expectation value for the loss function when
using L2 loss remains unchanged if the targets are replaced by
random numbers distributed such that their expectation value
matches the target. The crucial insight is that “the training
targets of a neural network can be corrupted with zero-mean
noise without changing what the network learns”. Similarly,
the L1 loss recovers the median values of the targets and is
thus not affected by outliers.

As a final remark, we note that an important factor to
consider is that fidelity may not be the best metric to compare
results, since sometimes completely random quantum states
can have a high fidelity with a desired state [181]. Moreover,
for continuous-variable quantum states such as the optical
states considered here, several states with high overlap can
have very different characteristics [181,182].

3. Reconstruction in the presence of Gaussian convolution noise

The additive Gaussian noise discussed in the preceding
section models statistical errors due to a low signal-to-noise
ratio. Such noise can be reduced (averaged out) by taking
more measurements. However, in many cases we have other
types of noise that can corrupt the data. Removing such noise
in the context of image processing constitutes an inverse
problem that is often difficult or ill-posed and requires reg-
ularization techniques [183].

We now show how to deal with one such type of noise:
Gaussian convolution noise (see Sec. III C 2) due to a linear
amplification channel [154]. In such a setup, a background
noise, which usually is easy to estimate, corrupts our signal
via a convolution operation. Similar to Sec. V B 2, we consider
this known background noise as an input to the Generator
and augment the Generator with a GaussianConv layer such
that the Generator output is convoluted with the noise in the
same way as the data. This noise layer is not learned, but fixed
to the predetermined background noise. The addition of the
noise layer forces the Generator network to learn a density
matrix p’ that can generate similar statistics as the data after
convolution with the background noise.

In Fig. 15(a), we show the results of reconstructing a
single-photon Fock state from the Husimi-Q-function data
after convolution with a background noise arising due to the
amplification channel being in a thermal state. In the simu-
lations considered in preceding sections, we used a 32 x 32
grid of measurements. However, this coarse grid led to numer-
ical aberrations in the convolution operation. For the present
section, we therefore considered an 81 x 81 grid instead. The
results show that the underlying single-photon state is recon-
structed perfectly with unit fidelity by a QST-CGAN with
ApL1 = 10 despite the presence of significant noise.

However, since the inverse problem can be ill-posed, it is
also possible to obtain a result that reconstructs the data well
without getting the underlying state right. In Fig. 15(b), we
show the one such reconstruction using a binomial state in
the presence of the same Gaussian convolution noise as in
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FIG. 15. Reconstruction in the presence of Gaussian convolution noise. We assume that the noisy amplification channel has a thermal
noise with ny, = 5 photons (see Sec. III C 2). This noise is convoluted with the data from the Husimi Q function in (a) a fock(n = 1) state
and (b) a binomial(§ =2, N = 4) state. We had to use an 81 x 81 grid for the data since we noticed that the convolution operation leads
to effects such as loss of radial symmetry in (a) when using a grid of 32 x 32. The image obtained by subtracting the background from the
convoluted data shows the symmetries of the state. We show the reconstruction of the underlying states in by the QST-CGAN (AL, = 10)
where the Generator output is convoluted with the same background noise. We recover the underlying state from the DensityMatrix layer of
the Generator. Note that even though the convoluted outputs and subtracted counts match the data well in both cases, the fidelity between the
underlying reconstructed state itself and the true underlying state is 1 for (a), but only 0.45 in (b).

Fig. 15(a). The reconstructed density matrix gives rise to mea-
surement statistics that match the measured (simulated) data
exactly. However, the state itself is incorrect with a fidelity of
just 0.45. We note that the symmetries of the state are captured
in the reconstruction, but due to the convolution operation, the
information of the exact state is lost and the inversion is not
unique.

4. Reconstruction of mixed states

So far, we have only considered pure quantum states, where
the density matrix has rank r = 1. However, in real experi-
ments, we will almost always be dealing with mixed states.
Such states may be harder for a neural network to handle,
since they do not admit as compact a representation as a pure
state, which can be written p = |)(y¥|. In this section, we
therefore discuss how the QST-CGAN method performs for
mixed states with rank r > 1.

In a realistic experiment, it is reasonable to assume that
the mixed state will have a dominant part, e.g., a target state,
which decoheres due to photon loss. Figure 16 shows results
for the QST-CGAN reconstruction on a mixed state with a cat
state (the same state as in Fig. 12) being the dominant compo-
nent. The figure shows that the QST-CGAN can reconstruct
such a mixed state easily for ranks up to r =4 with close
to unit fidelity (=.99). For ranks 1 and 2, the QST-CGAN
method converges almost two orders of magnitude faster than
iMLE. As the rank increases, both QST-CGAN and iMLE
show a slower convergence. Although we did not run the
iMLE for enough iterations to be certain, the increase in the
number of iterations required for convergence appears to be
greater for iMLE than for the QST-CGAN. Similar trends are
seen for the APG-MLE method.

To explore further for higher ranks, we consider in Fig. 17
the reconstruction of a full-ranked (r = 32) thermal state
with a mean photon number ny, = 1. Here, the iMLE method
converges very fast, almost instantaneously, while the QST-
CGAN requires several hundred iterations. Although both
methods reconstruct the state with a high fidelity > 0.99,
the photon-number populations of the reconstructed state do
not exactly match the expected super-Poissonian distribution
for thermal states for the higher photon numbers (the tail of
the distribution), neither for iMLE nor for QST-CGAN. The
Husimi Q function of the reconstructed states match well in
Figs. 17(c) and 17(d), but the Wigner functions for the iMLE
and QST-CGAN methods do not match the smooth Wigner
function for the thermal state in Figs. 17(f) and 17(g). How-
ever, changing the input data for reconstruction to the Wigner
function (displaced parity measurements; see Sec. III B) can
lead to a better reconstruction as we discuss in Fig. 18. For
the QST-CGAN, this is as simple as changing the input mea-
surement operators to the Generator from projections on
the coherent state (Husimi Q) to displaced parity operators
(Wigner).

Having explored reconstruction performance for low- and
high-rank density matrices, we next turn to intermediate rank.
In Fig. 18, we consider a random density matrix of rank 11 and
show its reconstruction from both types of input data (Husimi
QO and Wigner). Here, the difference between using the two
types of data becomes clear. With the QST-CGAN method, we
obtain a reconstruction fidelity of 0.8 using Husimi Q function
and ~0.99 when using the Wigner function. In Fig. 18(h), we
can clearly see that details of the Wigner function for the true
state in Fig. 18(e) are not captured when we take Husimi Q as
our data, even though the reconstructed Husimi Q function in
Fig. 18(g) matches perfectly with the data in Fig. 18(d). How-
ever, there are big differences in how different ML models
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FIG. 16. Reconstruction of a mixture p = 0.8cat + [0.2/(r — 1)] >

> fock(n) of cat(a =2, S = 0, u = 0) (the state used in Fig. 12)

T
n=

and fock(n) states, where r > 2 denotes the rank. For r = 1, the state is just cat(« = 2, S = 0, u = 0). The input data is the Husimi Q function
of p measured in a 32 x 32 grid. The solid lines show the mean and the shaded regions show one standard deviation from the mean for the
QST-CGAN (red) and iMLE (blue) over 15 reconstructions for each of ranks r = 1, 2, 3, 4. The dashed black lines show the fidelities for states
given by APG-MLE using the default “bootstrap” initialization. The APG-MLE method does not have any randomization and therefore does
not have a standard deviation from the mean. In each repetition, we use the same data, but start from a different random initial state for IMLE
and random weights for the QST-CGAN. We choose the weight A;; = 1 for the QST-CGAN and keep all other training hyperparameters the
same as used for previous results and described in Sec. IV B 3. The QST-CGAN runs are stopped when they have converged on a reconstructed

state.

perform, within the limitations of the data; there is no silver
bullet. In this particular case, we can argue that the Husimi Q
represents a convolution over the Wigner function [184] and
therefore using it for reconstruction could be ill-posed [183].

5. Data reduction

In Ref. [99], we show that for a particular pure cat state,
the QST-CGAN method requires much fewer data points,
~100, for reconstruction than the iMLE method, which re-
quires more than 10,000. In Ref. [185], it is argued how
homodyne tomography can be IC when the number of in-
dependent quadratures measured is equal to the dimension
N of the density matrix. More specifically, IC requires N
quadratures to be measured, each of which can be discretized
into 2N — 1 bins. Therefore, a full-rank density matrix of
dimension N requires O(N?) measurements in the phase space
for IC. However, for low-rank states the data requirements can
scale as O(rN) [186]. These arguments suggest that for states
described with density matrices of dimension N = 32, thou-
sands of measurements are required for IC when considering
full-rank states. However, for low-rank or rank-1 pure states,

the number of data points for IC could be much smaller (o
32r). Note that the IC limit does not necessarily specify which
measurements are important and give maximum information;
the limit also depends on the density-matrix dimensions,
which we can set to have different cut-offs for optical quantum
states. Our QST-CGAN approach consistently required only
~100 measurements for reconstruction of pure (r = 1) states
using a random set of measurement settings.

In this section, we benchmark the QST-CGAN perfor-
mance further by testing how much data it needs to reconstruct
states of higher rank. In general, a density matrix of size
N x N with full rank r = N is specified by N> — 1 real num-
bers. The number of parameters that needs to be determined
during reconstruction is significantly reduced if the state is
pure or if we have some prior information about the state
[185]. For example, if we know that the state that we are
reconstructing is a thermal state, then even if the density
matrix is full rank (r = N), we only need to estimate a single
parameter, the mean photon number ng,, to reconstruct the
state. Such priors can thus make it easy to reconstruct the
state with data from only a few measurements. Similarly,
the analyticity of the Husimi Q function makes it possible to
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FIG. 17. Reconstruction of a thermal state with mean photon
number ny, = 1. The QST-CGAN method uses the weight Ay, = 1;
all other training hyperparameters are kept the same as for previous
results and described in Sec. IV B 3. (a) The fidelity of the recon-
structed state as a function of the number of iterations for iMLE
(blue) and QST-CGAN (red). [(b)—(d)] Reconstructed data compared
to the data used for obtaining the underlying density matrix. We
use the Husimi Q function measured in a 32 x 32 grid as the input.
[(e)—(g)] Wigner function of the underlying thermal state compared
to the Wigner functions obtained from the reconstructions. The re-
constructed Wigner functions do not match the smooth nature of the
Wigner function obtained from the underlying state.

apply other reconstruction methods, e.g., Lagrange interpo-
lation [187], which sample from the Husimi Q function and
obtain the exact density matrix without requiring any itera-
tions. Similarly, Ref. [188] reconstructed a state description in
the Fock basis using Wigner-function-overlap measurements
and semidefinite programming, requiring less data.

In Fig. 19, we show how reconstructing a rank-4 state from
a random selection of 256 points of the Husimi Q function
fails for iMLE, which gets stuck. The convergence of iMLE
is not guaranteed since there could be steps, which strictly
reduce the likelihood, producing cycles where the method
does not improve its estimate of the density matrix [123]. The
QST-CGAN, on the other hand, reconstructs the state almost
perfectly, as shown in Fig. 19(d). However, the QST-CGAN

requires more than 1000 iterations to converge, which is more
than what was needed when it reconstructed the same state
using all data [see Fig. 16(d)].

In Fig. 20, we show the reconstruction fidelity with QST-
CGAN and iMLE for mixed states of rank r = 2, 3, 4 as the
number of measurements (data points; values of the Husimi Q
function at different g) is reduced. We choose the g values at
random inside the circle || = 5. We note that there could be
better ways to choose points to sample the Husimi Q function,
e.g., the so-called Padua points discussed in Ref. [187].

The QST-CGAN clearly outperforms the iMLE in terms of
the amount of data needed for reconstruction in Fig. 20. The
QST-CGAN reaches fidelity close to unity with somewhat less
than 100 data points, around 100 data points, and a little more
than 100 data points, for states of rank 2, 3, and 4, respectively.

This slow growth in the number of data points needed
appears consistent with previous results showing that recon-
struction of low-rank states in the best case can be done
with o rN data points [129]. Meanwhile, the iMLE cannot
reconstruct p even when given a large number of data points.
However, this is not just due to the lack of information, but
also due to the random selection of the data points themselves.

Although the results here do not establish any bounds on
the minimum number of data points necessary for the QST-
CGAN method to reconstruct a quantum state, they show
that the QST-CGAN approach can perform much better than
conventional reconstruction methods when data is scarce. An
intuitive explanation of this is that since neural networks are
universal function approximators, the Generator network
might learn to find an approximation for the state in terms
of a few parameters, e.g., the mean photon number for a
thermal state, and estimate it better. However, the theoretical
underpinnings of the QST-CGAN performance for few data
points needs to be explored further, which is beyond the scope
of this paper.

VI. CONCLUSION

‘We have shown how deep neural networks can assist in the
characterization of quantum states. The states we considered
here were optical quantum states, including bosonic error
correction codes, but our methods are general and should be
applicable also to systems with qubits.

A. Classification

We first showed how a neural network with convolutional
layers followed by a dense layer can discriminate and classify
several different types of quantum states with near-perfect ac-
curacy. The input to the network was measurement data from
phase-space descriptions of the states. The rare few misclas-
sifications could be explained by the existence of parameter
ranges where states from different classes are extremely simi-
lar and the problem of classification thus becomes ill-defined.

We further demonstrated the robustness of this classifica-
tion method against two prominent noise sources—additive
Gaussian noise and single-photon loss. For the former, the net-
work performance remained almost perfect until the standard
deviation of the added noise reached as high values as 20% of
the largest input data values. For the latter noise, we showed a
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FIG. 18. Reconstruction with a QST-CGAN of a random mixed state of rank 11 from Husimi Q and Wigner functions sampled on a
32 x 32 grid. [(a),(b)] Data used for the reconstruction: the Husimi Q and Wigner functions. (c) Hinton plot (see Fig. 3) of the underlying
density matrix. [(d),(e)] Husimi Q and Wigner functions for a 64 x 64 grid computed from the underlying state to show finer features not
present in the data that is fed to the neural network. [(f)—(h)] Reconstruction results using the Husimi-Q-function data in (a) as input for the
QST-CGAN. [(1),(j),(k)] Reconstruction results using the Wigner-function data in (b) as input for the QST-CGAN.

specific example where the network could identify a cat state
even after it had lost 70% of its initial photons.

By using the Grad-CAM method to extract and visualize
which parts of the input phase space that the neural network
bases its classification decision on, we proposed a simple
adaptive technique for tomography that could significantly
reduce the data-collection time for an experiment. Since the
neural network learns the characteristic features of the states
it is set to classify and can be trained to be robust against
simple noise sources in the data, we can deploy it online at
the initial stages of an experiment for guided data-collection
during tomography.

B. Reconstruction

We next introduced, here and in Ref. [99], a density-
matrix-estimation technique using a combination of ideas
from VAEs and GANSs: the QST-CGAN method. This method
uses custom neural network layers that convert the output of

any standard neural network into valid density matrices using
the Cholesky decomposition. Therefore, we can convert any
neural-network architecture into a variational map from input
data to a density matrix. Following this scheme, we con-
structed a custom Generator network that maps input data
to a density matrix and computes statistics for measurement
operators.

By training the Generator network using gradient-based
methods, we showed that the density matrix for the underlying
state can be easily reconstructed. Instead of using a standard
straight-forward loss function that requires an assumption on
the likelihood for the data, we used a second Discriminator
neural network to help train the Generator. Our choice of
this adversarial training framework was motivated by an anal-
ysis of how standard loss functions, e.g., L2 or KL-divergence
loss, perform for different states and noise in the data. We
found that some of these standard loss functions resulted in
good performance in the absence of noise, while other loss
functions gave better performance in the presence of certain
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FIG. 19. Reconstruction of a rank-4 mixture of cat(a = 2,5 = 0, © = 0) and fock(n) states (the mixture is constructed using the same
formula as in Fig. 16) from input data consisting of 256 points of the Husimi Q function (instead of the full 32 x 32 = 1024 points used in
preceding sections). (a) Reconstruction fidelity of the QST-CGAN (with A;; = 1; red) and iMLE (blue) where we plot all trajectories for 36
different reconstructions and show the mean with dashed lines. In each reconstruction, we randomly selected a set of 8 values from the phase
space and reconstruct the state where the QST-CGAN weights and the initial state for iMLE are reinitialized randomly. [(b)-(d)] Comparison
between the data and the reconstructed Husimi Q function given by iMLE and QST-CGAN for one selection of input data points (white points
in the left panel). [(e)—(g)] Photon-number occupation probabilities from the (reconstructed) density matrices in (b).

types of noise, but none of the loss functions led to a con-
sistently good performance in a general setting. However, we
showed that the QST-CGAN method is flexible and can easily
adapt to different noise, states, or measurement settings. We
ascribe this flexibility to the ability of the Discriminator to
learn a loss function suited to the situation at hand.

We showed that the QST-CGAN-based reconstruction can
be up to two orders of magnitude faster than MLE methods,
counted in the number of iterations required for reconstruc-
tion. Although the actual time for each iteration in the
QST-CGAN can depend on the design of the neural networks,
this presents a significant advantage for data postprocessing
during tomography. We also note that the neural network
based method seems to be performing nontrivial operations
during reconstruction, e.g., applying a quantum operation to
almost instantaneously jump from an orthogonal state to the
correct state. This suggests that the neural networks learn to
represent the state in a way that is well suited for the problem.
Alternatively, the use of the Adam optimization might explain
how the neural network based reconstruction is so fast, in a
similar way as accelerated gradient-based methods [119].

Having first benchmarked the reconstruction of pure states
with no noise, we next considered how the QST-CGAN
method can be augmented further to deal with noise in the
data. We leveraged the flexibility of having a loss function
that combines the Discriminator loss with a simple L1
loss, since our objective is simply to make the generated data
look like the training data. For the case of additive Gaussian
noise of up to 5% of the maximum signal value, our QST-
CGAN method performs denoising and reconstruction much
better than MLE methods without needing any change in
the architecture or loss function. Gaussian convolution noise
corresponding to having a thermal state with mean photon
number n;, = 5 in a linear detection scheme was also tack-
led quite easily. The QST-CGAN only required the expected

background noise as input, which was added as special noise
layers to the Generator network.

Lastly, we showed that the QST-CGAN method clearly
outperforms MLE methods also when reconstructing mixed
states. The QST-CGAN proved superior not only in terms
of how few iterations it needed to reach high reconstruction
fidelity, but also in terms of how little input data it required
to reconstruct the state well. For a cat state, the QST-CGAN
required almost two orders of magnitude fewer data points
than iMLE (as well as an RBM-based reconstruction shown
in Ref. [84]) to achieve high reconstruction fidelity. It has
been demonstrated that the iMLE method can become stuck
in cycles for some choices of input data, but our QST-CGAN
method works well even with random sets of measurements
generating the input data for the examples considered.

In conclusion, by connecting ideas of generative and
discriminative modeling to quantum state classification and
reconstruction, we have attempted to bridge the gap between
deep neural networks and quantum information and comput-
ing. We have shown how some of the latest ideas from deep
learning can be quite easily adapted and applied to quantum-
information tasks with just a few tweaks to incorporate the
rules of quantum physics. This opens up a wealth of possible
applications, as we discuss further below and in Ref. [99].

VII. OUTLOOK

Our paper suggests several practical possibilities in data
analysis of quantum experiments. At the same time, it leads
to questions regarding the limits of using neural networks
for quantum state characterization. It is expected that image-
recognition algorithms will be good at distinguishing different
optical quantum states from their phase-space data. However,
the benefit of using neural networks is their resilience to
known types of noise. If we have to classify a “cat” state, it
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FIG. 20. Reconstruction of a mixture of cat(¢ =2,5 =0, u =
0) and fock(n) states (the mixture is constructed using the same
formula as in Fig. 16) with a reduced number of measurements.
Reconstruction fidelities for ranks r = 2,3, and 4 are shown for
QST-CGAN (red) and iMLE (blue). The solid lines show the mean
and the shaded regions show one standard deviation from the mean.
The fidelity shown is the one reached after a certain convergence
criterion set by a tolerance value. We choose a tolerance such that if
the average fidelity in 100 iterations does not change by 10~ over 5
steps (i.e., 500 iterations) we stop the reconstruction.

is rather easy to see that two lobes and a connecting bridge in
the phase space should be a “cat”. But what if, due to noise,
the phase-space plots are shifted or rotated? An algorithm that
relies on the fixed definition of a cat state will see poor overlap

between the definition and the data, and hence cannot recog-
nize the cat even if all the features are present. The neural
network method, on the other hand, is implicitly taught the
important features that characterize cats and therefore works
even in the presence of systematic or random noise.

In the case of reconstruction, we see that the the QST-
CGAN method is a very powerful alternative to RBMs. We
leverage the universal approximation capabilities of a deep
neural network to have a tractable representation of the state
by explicitly constructing the full density matrix. Standard
loss functions such as fidelity, L1, L2, cross entropy, etc.,
will always have some shortcomings, since they require an
assumption on the underlying likelihood for the data. Instead,
with the CGAN framework, we let the loss metric be implic-
itly defined with the objective of simply making the data look
similar to the generated data. However, we have not explored
the theoretical underpinnings of using such a learned loss
function for reconstruction. This remains to be analysed. Fur-
thermore, we note that automated tuning of the hyperparame-
ters, e.g., learning rates and network architectures, could result
in better performance and thus appears relevant to explore.

The future work that leverages these ideas would go in
two directions, beyond the suggestions for improvements and
tweaks already mentioned in connection with the results. The
first is further theoretical analysis of the techniques. For exam-
ple, it remains to be well understood how the neural network
can reconstruct states using much fewer data points than
maximum-likelihood methods or possibly perform nontrivial
operations during a reconstruction. The second direction is
validation with more experimental data and comparison to
other standard methods for reconstruction. For example, we
have not explored thoroughly how the QST-CGAN method
compares with RBM-based approaches for tomography. This
would be an interesting comparison since much of the work
in QST with machine learning is focused on using RBMs.

Since we ask for the full density matrix during recon-
struction, our method cannot directly scale up for very large
quantum systems. Even if it is straightforward to replace the
density-matrix description with other efficient ansitze, it re-
mains to be answered how to obtain efficient representations
such that one does not use the millions of parameters in the
deep neural network to estimate a few hundred parameters of
the density matrix.

The methods discussed here are ready to be applied to real
experiments such that adaptive, online tomography schemes
can be designed that can deal with noisy data. The techniques
for classification and reconstruction could even be combined:
the result of classifying a state with one neural network could
be used as a good starting point and parametrization for the
training of another network for full quantum state reconstruc-
tion. We foresee that our ideas will lead to better techniques
for quantum state characterization and bring the power of
deep-learning-based tools to the quantum physicist.
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