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Gauge freedom, quantum measurements, and time-dependent interactions in cavity QED
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The interaction between quantized electromagnetic fields in cavities and natural or artificial atoms has played
a crucial role in developing our understanding of light-matter interactions and quantum technologies. Recently,
new regimes beyond the weak and strong light-matter coupling of cavity-QED have been explored in several
settings, wherein the light-matter coupling rate becomes comparable to (ultrastrong coupling) or even exceeds
(deep-strong coupling) the photon frequency. These ultrastrong coupling regimes can give rise to new physical
effects and applications, and they challenge our understanding of cavity QED; fundamental issues like the
proper definition of subsystems, their quantum measurements, the structure of light-matter ground states, and the
analysis of time-dependent interactions are subject to gauge ambiguities that lead to even qualitatively distinct
predictions. The resolution of these ambiguities is important for understanding and designing next-generation
quantum devices that can operate in extreme coupling regimes. Here we discuss and provide solutions to these
ambiguities by adopting an approach based on operational procedures involving measurements on the individual
light and matter components of the interacting system.
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I. INTRODUCTION

Ultrastrong coupling (USC) between light and matter [1,2]
can be achieved by coupling many dipoles (collectively)
to light, or by using matter systems like superconducting
artificial atoms whose coupling is not bound by the small
size of the fine-structure constant. The largest light-matter
coupling strengths have been measured in experiments with
Landau polaritons in semiconductor systems [3] and in
setups with superconducting quantum circuits [4]. Another
potentially promising route to realize USC with natural
atoms and molecules is by using metal resonators, since the
coupling rates are not bound by diffraction. Single molecules
in plasmonic cavities are starting to enter the USC regime
[5], and two-dimensional transition metal dichalcogenides
(TMDs) coupled to metal particles have already reached
the USC regime [6], even at room temperature. Ultrastrong
plasmon exciton interactions has also been reported with
crystallized films of carbon nanotubes [7]. The physics of
the USC regime can also be accessed by using quantum
simulation approaches [8].
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These very strong interaction regimes are also a test bed
for gauge invariance [9–12]. The issue of gauge invariance,
pointed out as early as 1952 by Lamb [13], has consistently
affected the theoretical predictions in atomic physics and
in nonrelativistic quantum electrodynamics (QED) (see, e.g.,
Refs. [14–17]). Recently, it has been shown that the standard
quantum Rabi model, describing the coupling between a TLS
and a single-mode quantized electromagnetic field, heavily
violates this principle in the presence of ultrastrong light-
matter coupling [9,10]. This issue has been recently solved
by introducing a generalized minimal-coupling replacement
[11,12,18].

Here we investigate the consequences of the restored gauge
invariance of the quantum Rabi model on measurable pre-
dictions. Specifically, (i) we provide example calculations of
gauge-invariant photodetection rates; (ii) we show how the
qubit dispersive readout is modified by its ultrastrong interac-
tion with an electromagnetic resonator; and (iii) we eliminate
gauge ambiguities in the description of virtual excitations and
light-matter entanglement in the ground state of the quantum
Rabi Hamiltonian.

Concerning point (i), we analyze the gauge invariance
of Glauber’s formula [19] for the photodetection probabil-
ity. We focus on the calculation of the emission rate for a
quantum Rabi system prepared in two different low-energy
excited states. According to Glauber’s photodetection theory,
the detection rate for photons polarized along a direction i

is proportional to 〈ψ |Ê (−)
i Ê (+)

i |ψ〉, where Ê
(±)

are the posi-
tive and negative frequency components of the electric-field

2643-1564/2021/3(2)/023079(16) 023079-1 Published by the American Physical Society

https://orcid.org/0000-0003-4478-1948
https://orcid.org/0000-0002-5486-2015
https://orcid.org/0000-0003-3682-7432
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.3.023079&domain=pdf&date_stamp=2021-04-28
https://doi.org/10.1103/PhysRevResearch.3.023079
https://creativecommons.org/licenses/by/4.0/


ALESSIO SETTINERI et al. PHYSICAL REVIEW RESEARCH 3, 023079 (2021)

operator. In the Coulomb gauge, Ê is proportional to the field
canonical momentum and can be expanded in terms of photon
operators. In contrast, in the multipolar gauge, the canonical
momentum that can be expanded in terms of photon operators
is not Ê but the displacement field operator D̂ [17]. Conse-
quently, in the multipolar gauge the electric field operator
associated to a cavity mode cannot be expanded in terms of
photon operators only. In the context of the Dicke model,
describing the interaction of several (two-level) atoms with a
single cavity mode, it has been shown that ignoring this issue
can lead to incorrect results [20,21]. This subtlety, originating
from the gauge dependence of the field canonical momentum
(see, e.g., Refs. [14,15,17]), is generally disregarded in the
quantum Rabi model [1], and the usual procedure is to obtain
the system states in the dipole gauge (the multipolar gauge
after the electric-dipole approximation) |ψD〉, and to calculate
the photodetection rate ignoring that in this gauge the electric
field operator is not a canonical momentum. As we show here,
this procedure, when applied to the quantum Rabi model, can
lead to strongly incorrect (and unphysical) predictions.

The qubit dispersive readout, (ii), represents an important
example of quantum-nondemolition measurement. Coupling
a quibit with moderate interaction strength to an out-of-
resonance electromagnetic resonator, it is possible to obtain
information on the qubit state without affecting it too much.
In this case, the situation with respect to point (i) is reversed,
since, in the multipolar gauge the particle momentum is not af-
fected by the interaction, in contrast to to the Coulomb gauge.

Finally, with point (iii), we face gauge ambiguities related
to the presence of ground state excitations. A distinguishing
feature of USC systems is the presence of entangled light
and matter excitations in the ground state, determined by the
counter-rotating terms in the interaction Hamiltonian [22–24].
Indeed, all excited states are also dressed by multiple virtual
excitations [25]. Much research on these systems has dealt
with understanding whether these dressed excitations are real
or virtual and how they can be probed or extracted [1,2]. These
vacuum excitations can be converted into real detectable
ones (see, e.g., Refs. [25–31]). However, the analysis of
these effects is affected by possible ambiguities arising from
the gauge dependence of the system eigenstates [10,11,32].
Specifically, the unitary gauge transformation does not con-
serve virtual excitations, nor light-matter entanglement [32].
Hence, the definition of these key features of the USC regime
is subject to “ambiguities,” so that, as we show here, a max-
imally entangled ground state can become separable in a
different gauge. In particular, we show that the entangled light
and matter excitations in the ground state, that can be observed
(e.g., after a sudden switch-off of the interaction), are those
calculated in the Coulomb gauge. Hence the existence of a
correct quantum Rabi model in the Coulomb gauge is essential
to calculate these quantities.

The analysis of points (i)–(iii) in this paper shows that
the gauge-invariant quantum Rabi model is an essential tool
to provide correct testable predictions not affected by gauge
ambiguities. Although we present numerical results for TLSs
interacting with a single mode electromagnetic resonator, the
concepts and methods developed here are far more general.
For example, they can also be applied to general multilevel
matter systems and multimode resonators.

FIG. 1. Cavity QED setup. Schematic view of a typical cavity
QED system consisting of an atom (depicted as an effective spin)
embedded in an optical cavity. The symbols γ and κ represent the
atom and cavity decay rates, respectively.

II. QUANTUM RABI HAMILTONIANS

In this section, we briefly recall the quantum Rabi model,
focusing on the Hamiltonians in the Coulomb gauge and
dipole gauge, and on the transformations relating the two
different gauges.

Let us consider a simple cavity QED system represented
by a single atom (dipole) coupled to an optical resonator
(see Fig. 1). We start by adopting the Coulomb gauge,
where the particle momentum is coupled only to the trans-
verse part of the vector potential Â. It represents the field
coordinate, while its conjugate momentum is proportional
to the transverse electric field operator. The latter field (as
well as the vector potential) can be expanded in terms
of photon creation and destruction operators: ÊC (r, t ) =∑

k Ek (r)âke−iωkt + H.c., where Ek (r) = √
h̄ωk/2ε0 fk (r) are

the effective mode amplitudes, and H.c. represents Hermi-
tian conjugate. Here, fk (r) are any general “normal modes”
with real eigenfrequencies, ωk , obtained from Maxwell’s
equations for a particular medium. They are normalized and
complete (including also the longitudinal modes, ωk = 0), so
that

∑
k εb(r′)f∗

k (r)fk (r′) = 1δ(r−r′), where εb is the relative
dielectric function of a background dielectric medium. The
system Hamiltonian is

ĤC = 1

2m
[p̂C − qÂ(r)]2 + V (r) +

∑
k

h̄ωkâ†
k âk, (1)

where p̂C and V (r) are the particle’s canonical momentum and
potential.

The quantum Rabi Hamiltonian in the Coulomb gauge, can
be obtained considering a single two-level system (TLS) at
position r0, with (real) dipole moment μ = q〈e|x|g〉, interact-
ing with a single cavity mode [(âk, fk, ωk ) → (â, fc, ωc)]. The
correct (namely, satisfying the gauge principle) quantum Rabi
Hamiltonian [11] strongly differs from the standard quantum
Rabi model, and takes the modified form

ĤC = h̄ωcâ†â + h̄ω0

2
{σ̂z cos [2η(â + â†)]

+ σ̂y sin [2η(â + â†)]}, (2)

where ωcη ≡ g = √
ωc/2h̄ε0 μ · fc(r0), and σ̂ j are the usual

Pauli operators. Very recently, this result has been obtained
by using a different approach based on the implementation of
the gauge principle in TLSs [18]; this alternative procedure
can be regarded as the two-site version of the general method
used to implement the gauge principle in lattice gauge theories
[33,34]. In quantum field theory, the coupling of particles with
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the electromagnetic field is introduced to guarantee that the
theory is invariant under a local (in space and time) phase
transformation of the particle’s wave function. The changes
in the particle’s equation of motion (or in the action) are
compensated by introducing a coupling with the field, by the
so-called minimal coupling replacement. When the particle’s
wave function undergoes such a local phase change, the field
transforms according to a gauge transformation, so that the ac-
tion of the total system remains unchanged. It has been shown
that approximations such as the truncation of the Hilbert space
for the matter system can cause a violation of the gauge
principle, thus breaking gauge invariance. Such a breaking is
particularly dramatic when the matter system is truncated to
only two quantum states (quantum Rabi model), and the light-
matter coupling is very strong (USC). The method developed
in Ref. [11], leading to Eq. (2) provides one resolution to this
issue.

In cavity QED, the multipolar gauge followed by the dipole
approximation (dipole gauge) represents a convenient and
widely used choice. A generic system operator in the multi-
polar gauge, ÔM , is related to the corresponding operator in
the Coulomb gauge ÔC by a suitable unitary Power-Zienau-
Woolley (PZW) transformation [17,35]: ÔM = T̂ ÔCT̂ † (see
Appendix A). It turns out that in the multipolar gauge,
while the field coordinate remains unchanged, its conjugate
momentum is �̂M = −ε0εb(r)ÊM − P̂ = −D̂M , where P̂ is
the electric polarization and D̂M is the displacement field
[14,36,37], which can be directly expanded in terms of photon
operators, using

F̂M (r, t ) ≡ D̂M (r, t )

ε0εb(r)
= i

∑
k

√
h̄ωk

2ε0
fk (r)âk (t ) + H.c., (3)

where F̂M is the effective electric field that atomic dipoles
couple to [37]. For a single dipole at position r0, the in-
teraction Hamiltonian is HI = −qx · F̂(r0) + (qx)2/ε0εb(r0).
Considering a single TLS, we obtain

F̂D(r) = ÊD(r) + μ

ε0εb(r0)
δ(r − r0) σ̂x, (4)

where ÊD(r) is the electric field operator in the dipole gauge.
We note that for spatial locations away from the dipole (r 	=
r0), then F̂D and ÊD are equivalent. Next, we rewrite ÊD(r) in
a way that makes each mode contribution clear:

ÊD(r, t ) = i
∑

k

√
h̄ωk

2ε0
fk (r)âk (t ) + H.c.

− 1

2ε0

[∑
k

f∗
k (r)fk (r0) + f∗

k (r0)fk (r)

]
· μ σ̂x.

(5)

We now consider the single-mode limit, which is typically
assumed in models such as the quantum Rabi model, where
a single-mode cavity is the dominant mode of interest (see
Appendix A):

ÊD(r, t ) = i

√
h̄ωc

2ε0
fc(r)â′(t ) + H.c., (6)

where â′(t ) = â(t ) + iησ̂x(t ) (see Ref. [11]). We observe that
the operators â′ and â′† obey the same commutation relations
of the bosonic operators â and â†. The total Hamiltonian
(throughout the paper we use the calligraphic font for oper-
ators projected in a two level space) in the dipole gauge is

ĤD = Ĥfree + V̂D, (7)

where Ĥfree = h̄ωcâ†â + h̄ω0
2 σ̂z, ω0 is the transition frequency

of the TLS, and the interaction Hamiltonian is

V̂D = iηh̄ωc(â† − â)σ̂x. (8)

The two gauges are related by the transformation ĤD =
T̂ ĤC T̂ †, where T̂ = exp(iF̂ ) with F̂ = −ησ̂x(â + â†) (see
Appendix A).

III. PHOTODETECTION

Gauge ambiguities may affect the calculation of pho-
todetection probabilities. As anticipated in Sec. I, this issue
originates from the gauge dependence of the field’s canon-
ical momentum (see, e.g., Refs. [14,15,17]). Reference [11]
pointed out the gauge dependence of the photon creation and
annihilation operators, without quantifying the impact of such
dependence on photodetection rates. In this section, we face
this problem by considering two different approaches. We
first start from analyzing the gauge invariance of Glauber’s
formula for the photodetection probability. Then, we analyze a
specific model of photodetectors: frequency-tunable two-level
sensors; they constitute a powerful computational tool for cal-
culating normal-order field correlation functions. Moreover,
we clarify the origin of the gauge issues and how to fix then,
by exploring gauge transformations of the whole quantum
system consisting of an USC system plus one or more sensors
(which can act as point detectors).

A. Gauge invariance of photodetection probabilities

The photon rate that can be measured from a pointlike
detector in the resonator, at the position r and at a given time
t , is proportional to [19]

〈Ê(−)(r, t ) · Ê(+)(r, t )〉, (9)

where Ê(+) and Ê(−) are the positive and negative fre-
quency components of the electric-field operator, with Ê(−) =
[Ê(+)]†. In the Coulomb gauge, the electric-field operator Ê
is proportional to the field canonical momentum and can be
expanded in terms of photon operators. However, in the multi-
polar gauge, the canonical momentum that can be expanded in
terms of photon operators is not Ê but the displacement oper-
ator D̂ (as mentioned earlier). Also note that, in the absence of
interactions, or when the rotating-wave approximation can be
applied to the interaction Hamiltonian, the positive-frequency
operator only contains photon destruction operators. However,
when the rotating-wave approximation cannot be applied, this
direct correspondence does not hold [38]. By using standard
input-output theory, analogous results for the rate of emitted
photons can be obtained for a detector placed outside the
cavity [28,39].

Considering a single-mode resonator coupled to a TLS
(quantum Rabi model), assuming that the system is prepared

023079-3



ALESSIO SETTINERI et al. PHYSICAL REVIEW RESEARCH 3, 023079 (2021)

initially in a specific energy eigenstate | jC〉, and using Eq. (9),
then the resulting detection rate in the Coulomb gauge is
proportional to

W =
∑
k< j

|〈kC |P̂| jC〉|2, (10)

where

P̂ = i(â − â†), (11)

and we ordered the eigenstates so that j > k for eigenfrequen-
cies ω j > ωk . If a tunable narrow-band detector is employed,
a single transition can be selected, so that the detection rate
for a frequency ω = ω j,k ≡ ω j − ωk is proportional to

Wj,k = |〈kC |P̂| jC〉|2. (12)

In contrast, in the dipole gauge, we obtain

Wj,k = |〈kD|i(â − â†) − 2ησ̂x| jD〉|2. (13)

The gauge principle, as well as the theory of unitary
transformations, ensures that Eqs. (12) and (13) provide the
same result [11]. In constrast, the usual procedure, consist-
ing in using the dipole gauge without changing accordingly
the field operator (see, e.g., Refs. [1,2]): W ′

j,k = |〈kD|i(â −
â†)| jD〉|2 , provides wrong results. When the normalized cou-
pling strength η 
 1, the error can be small. However, when
η is non-negligible, W and W ′ can provide very different
predictions, as shown explicitly in Fig. 2. Figure 2(a) displays
the energy differences between the lowest excited levels and
the ground energy level of the quantum Rabi Hamiltonian ĤC

(or ĤD) for the case of zero cavity-atom detuning (ωc = ω0).
Here we indicate the dressed ground state as |0̃〉, and the
excited states as |ñ±〉 on the basis of the usual notation for the
Jaynes-Cummings (JC) eigenstates |n±〉 (see, e.g., Ref. [40]).
Figure 2(b) shows that, except for negligible couplings (where
W1̃±,0̃ = W ′

1̃±,0̃
= 0.5), W1̃±,0̃ and W ′

1̃±,0̃
display different re-

sults. The differences are evident already for η ∼ 0.1.
It is interesting to point out some noteworthy features of

this comparison. First, we observe that W1̃+,0̃ > W1̃−,0̃ for all
the values of η, and finally, for increasing η, W1̃−,0̃ → 0. These
results originate from the dependence on η of the correspond-
ing transition frequencies ω1̃±,0̃. Specifically, photodetection
is an energy absorbing process, whose rate is proportional to
the intensity, which in turn is proportional to the energy of
the absorbed photons. Hence, ω1̃+,0̃ > ω1̃−,0̃ implies W1̃+,0̃ >

W1̃−,0̃. For the same reason, when ω1̃−,0̃ → 0, there is no
energy to be absorbed, and W1̃−,0̃ → 0. On the contrary, W ′

1̃±,0̃
displays the opposite (unphysical) behavior.

Finally, we remark that, very recently, it has been shown
[41] that the detection rate Wj,k in Eq. (12) provides very dif-
ferent results with respect to Xj,k = |〈kC |Q̂|kC〉|2, which is the
corresponding quantity obtained using a different quadrature:
Q̂ = â + â†. The form of this interaction also affects the ob-
servables calculated in a quantum master equation approach,
such as the cavity emitted spectrum of a pump-driven quantum
Rabi model [42].
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FIG. 2. Quantum Rabi model. (a) Normalized energy levels dif-
ferences between the lowest excited levels and the ground energy
level of the quantum Rabi Hamiltonian ĤC for the case of zero
detuning (ωc = ω0) as a function of the normalized coupling strength
η; (b) modulus squared of the transition matrix elements of the
electric-field operator, W1̃±,0̃, accounting for the transitions between
the two lowest excited levels and the ground state of the quantum
Rabi Hamiltonian, vs η. For comparison, the panel also reports the
wrong matrix elements W ′

1̃±,0̃
(see text).

B. Two-level sensors

It has been shown [43] that normal-order correlation func-
tions, which describe the detection of photons according to
Glauber’s theory, can be calculated considering frequency-
tunable two-level sensors in the limit of their vanishing
coupling with the field. The rate at which the sensor’s popu-
lation grows corresponds to the photodetection rate. If two or
more sensors are included, their joint excitation rates provides
information on normal-order multiphoton correlations.

This procedure can also be applied when the electromag-
netic field interacts strongly with a matter system so that the
counter-rotating terms in the interaction Hamiltonians can-
not be neglected. Let us consider a simple USC system that
consists of an electromagnetic single-mode resonator strongly
interacting with a TLS with normalized coupling strength η.
Then we also consider a two-level sensor interacting with
the resonator with vanishing coupling ηs 
 η. The standard
cavity-sensor interaction Hamiltonian in the dipole gauge is
written as [43]

V̂ ′
dg = −ih̄ωcηs(â − â†)σ̂ s

x . (14)
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If the USC system is prepared in a state | j〉 and the sensor
has a resonance frequency ωs = ω jl (l < j), by applying the
Fermi golden rule, then the excitation rate of the sensor is
proportional to

|〈lD|P̂| jD〉|2, (15)

where | jD〉 is a system eigenstate in the dipole gauge and P̂ =
i(â − â†). This result, however, is different from what can be
obtained within the Coulomb gauge: Wl j = |〈lC |P̂| jC〉|2.

It is instructive to find the origin of such gauge ambiguity
and to solve it. Actually, in the dipole gauge, the interaction
energy between the field and the sensor is − ∫

d3r Ê · P̂s,
where P̂s = μσ̂ s

x is the sensor polarization. Using the relation
Ê = (D̂ − P̂)/ε0 (we here assume εb(r) = 1), the total Hamil-
tonian in the dipole gauge can be written as

Ĥdg = ĤUSC
dg + Ĥs + V̂ s

dg, (16)

where ĤUSC
dg is the system Hamiltonian in the absence of the

sensor, Ĥs = (h̄ωs/2)σ̂ s
z , and

V̂ s
dg = − 1

ε0

∫
d3rD̂ · μ σ̂ s

x + 1

ε0

∫
d3rP̂2, (17)

where

P̂ = μσ̂x + μsσ̂
s
x , (18)

is the total polarization. By expanding D̂ in terms of the
photon operators, and using the relationship

1

2

∑
k

[f∗
k (r)fk (r′) + f∗

k (r′)fk (r)] = 1δ(r−r′), (19)

and after neglecting the terms proportional to the qubits iden-
tities, we obtain

V̂ s
dg =

∑
k

h̄ωkη
s
k[i(â†

k − âk ) + 2ηk σ̂x]σ̂ s
x . (20)

In the single-mode limit, this simplifies to

V̂ s
dg = h̄ωcη

s[i(â† − â) + 2ησ̂x]σ̂ s
x . (21)

Equation (21) differs from Eq. (14) only for the field-
induced qubit-sensor interaction term, arising from the
self-polarization terms in the dipole-gauge light-matter inter-
action Hamiltonian [44]. However, it is precisely this term that
ensures gauge invariance: applying the Fermi golden rule,
by using Eq. (21), instead of Eq. (14), we obtain the gauge

invariant result

|〈lD|P̂ − 2ησ̂x| jD〉|2 = |〈lC |P̂| jC〉|2 ≡ Wl j . (22)

IV. READOUT OF A STRONGLY COUPLED QUBIT

While in the Coulomb gauge, the atom momentum is af-
fected by the coupling with the field [17] [mẋ = p̂C − qÂ(x)],
in the dipole gauge it is interaction-independent: mẋ = p̂D.
This feature can give rise to ambiguities in the definition of
the physical properties of an atom interacting with a field
[16]. Moreover, an unambiguous separation between light and
matter systems becomes problematic with increasing coupling
strength. Again, we address this problem by adopting an
operational approach based on what is actually measured.
In cavity and circuit QED, quantum-non-demolition mea-
surements are widely used [45–50]. Specifically, a quantum-
non-demolition-like readout of the qubit can be realized by
coupling it, with a moderate coupling strength, to a resonator
mode b with a detuned resonance frequency ωb 	= ω0 (disper-
sive regime). The readout can be accomplished by detecting
the dispersive qubit state-dependent shift of the resonator fre-
quency: ωb → ωb + χ〈σ̂z〉, where χ = ω2

bη
2
b/(ω0 − ω) (see

Fig. 3) [48,51–53]. If the qubit is coupled very strongly to a
second field mode a, this readout scheme can provide interest-
ing information on how the qubit state is affected by the USC
regime. However, the expectation value 〈σ̂z〉 for a qubit in the
USC regime is ambiguous when the coupling becomes suffi-
ciently strong. Specifically, since 〈ψC |σ̂z|ψC〉 	= 〈ψD|σ̂z|ψD〉,
the question arises which one of these two quantities is actu-
ally detected.

We start from the Hamiltonian in the Coulomb gauge (1),
limited to include only two quantized normal modes (a and
b). We then project the atomic system in order to consider two
levels only, and assume for the resulting coupling strengths
that ηb 
 ηa. The resulting Hamiltonian in the Coulomb
gauge can be written as [11]

ĤC = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
{σ̂zcos[2ηa(â† + â)

+ 2ηb(b̂† + b̂)] + σ̂ysin[2ηa(â† + â) + 2ηb(b̂† + b̂)]},
(23)

with ηa = ga/ω0 and ηb = gb/ω0. By using the angle trans-
formation formulas, Eq. (23) becomes

ĤC = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
σ̂z{cos[2ηa(â† + â)]cos[2ηb(b̂† + b̂)] − sin[2ηa(â† + â)]sin[2ηb(b̂† + b̂)]}

+ h̄ω0

2
σ̂y{sin[2ηa(â† + â)]cos[2ηb(b̂† + b̂)] + cos[2ηa(â† + â)]sin[2ηb(b̂† + b̂)]}. (24)

Furthermore, since 2ηb(b̂† + b̂) is small, we can also apply the small-angle approximation cos(x) � 1, sin(x) � x, thus obtaining

ĤC � h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
{σ̂zcos[2ηa(â† + â)] + σ̂ysin[2ηa(â† + â)]}

+ h̄ω0ηb(b̂† + b̂){σ̂ycos[2ηa(â† + â)] − σ̂zsin[2ηa(â† + â)]}.
(25)
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FIG. 3. Schematic view of dispersive readout of a two-level atom. The resonance frequency of the readout resonator is conditioned by the
qubit state. Thus, by probing the resonance frequency of the resonator, e.g., by looking at the reflectivity of a readout tone, the qubit state can
be determined. (a) Standard readout scheme of a bare two-level atom. (b) the same scheme for a two-level atom interacting with an additional
resonator in the USC regime.

Introducing the Pauli operators in the Coulomb gauge:

σ̂C
x = T̂ †

a σ̂xT̂a = σ̂x, (26a)

σ̂C
y = T̂ †

a σ̂yT̂a = σ̂ycos[2ηa(â† + â)] − σ̂zsin[2ηa(â† + â)], (26b)

σ̂C
z = T̂ †

a σ̂zT̂a = σ̂zcos[2ηa(â† + â)] + σ̂ysin[2ηa(â† + â)], (26c)

with T̂a = exp[−iηaσ̂x(â + â†)], Eq. (25) can be written in a
more compact form as

ĤC = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
σ̂C

z + ηbh̄ω0(b̂† + b̂)σ̂C
y .

(27)

It is important to note that, despite the σ̂C
i operators also

containing photon operators, their commutation rules remain
unchanged: [σ̂C

i , σ̂C
j ] = 2iεi jk σ̂

C
k .

At the beginning of this section we observed that while in
the dipole gauge the particle’s momentum is not affected by
the light-matter interaction (in this gauge the interaction mod-
ifies the field momentum), in the Coulomb gauge the particle’s
momentum is affected (contrary to the field momentum).
When reducing the full atom model to a two-dimensional
Hilbert space, all this reflects into the gauge properties of the
Pauli operators: while in the dipole gauge the operators σ̂i are
not modified by the interaction, in the Coulomb gauge σ̂C

y and
σ̂C

z results are affected as shown in Eqs. (26b) and (26c).
If the USC system is in the state |ψC〉, starting from the

Hamiltonian in Eq. (27), and applying the standard procedure
for obtaining dispersive shifts [53], we find that the reso-
nance frequency of the readout mode b is affected by the

shift:

χ〈ψC |T̂ †
a σ̂z T̂a|ψC〉 = χ〈ψD|σ̂z|ψD〉.

Hence, we can conclude that the readout shift provides a
measurement of the expectation value of the bare qubit popu-
lation difference, as defined in the dipole gauge. Interestingly,
this measurement is able to provide direct information on the
ground state qubit excitations induced by the interaction with
resonator a.

The dot-dashed curves in Fig. 4 display the qubit excitation
probabilities that can be measured by dispersive readout:

〈iC |T̂ †
a σ̂+σ̂−T̂a|iC〉 = 〈iD|σ̂+σ̂−|iD〉

for the ground state |0̃〉 of the quantum Rabi model and for
the excited state |1̃−〉 (notice that 2σ̂+σ̂− = σ̂z + Î where Î,
is the identity operator in the TLS space). We have also plotted
(solid curves) 〈iC |σ̂+σ̂−|iC〉 for the same states. As shown in
Fig. 4, 〈iD|σ̂+σ̂−|iD〉 strongly differs from 〈iC |σ̂+σ̂−|iC〉. The
latter, although not corresponding to what can measured in a
readout measurement, has a precise physical meaning which
will be described in the next section. An analytical description
of these results in the large-coupling limit is provided in
Appendix C.
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FIG. 4. Readout of a strongly coupled qubit. Qubit excitation
probabilities for the system in its ground state (black curves) and
in the first excited state (red curves), calculated in both the Coulomb
(solid curves) and the dipole (dotted-dashed) gauges as a function of
the normalized coupling strength η. Note that 〈σ̂+σ̂−〉D corresponds
to what is measured via dispersive readout of the qubit (see Sec. IV).
On the contrary, the photon rate released by the qubit after a sudden
switch off of the light-matter interaction is proportional to 〈σ̂+σ̂−〉C

(see Sec. V).

V. LIGHT-MATTER ENTANGLEMENT AND
NONADIABATIC TUNABLE COUPLING

One of the most interesting features of USC systems is the
presence of entangled ground states with virtual excitations
[1,2]. However, since all the energy eigenstates of a cavity
QED system are gauge dependent (e.g., |ψD〉 = T̂ |ψC〉), the
mean number of excitations in the ground state are also gauge
dependent. Moreover, the unitary operator T̂ , enforcing gauge
transformations, does not preserve the atom-field entangle-
ment. Since physical observable quantities cannot be gauge
dependent, the question arises if these ground state properties
have any physical meaning.

It is known that these excitations, e.g., photons in the
ground state, are unable to leave the cavity and can be re-
garded as virtual (see, e.g., Refs. [25,54]). Nevertheless, if the
interaction is suddenly switched off (with switching time T
going to zero), the system quantum state remains unchanged
for regular Hamiltonians [55], and the excitations in the
ground state can then evolve according to the free Hamiltonian
and can thus be released and detected (see, e.g., Ref. [28]).
Of course, detectable subsystem excitations and correlations
have to be gauge invariant, since the results of experiments
cannot depend on the gauge. On this basis, it should be
possible to define gauge invariant excitations and qubit-field
entanglement. A preliminary solution to this problem has been
provided in Ref. [11]. In this section, we discuss this issue in
more depth, providing a detailed analysis, and a solution to
this problem.

It is instructive to analyze these quantities by adopting both
the Coulomb gauge and the dipole gauge. We start with the
Coulomb gauge. We consider the system initially prepared in
its ground state |ψC (t0)〉 = |0̃C〉. At t = t0, the interaction is
abruptly switched off within a time T → 0. This nonadiabatic
switch does not alter the quantum state [55], which at t � t1 =

(t0 + T ) evolves as |ψC (t )〉 = exp [−iĤfree(t − t0)]|ψC (t0)〉.
We can use this state to calculate, e.g., the observable mean
photon number: 〈ψC (t )|â†â|ψC (t )〉, which can be measured
by detecting the output photon flux from the resonator. It is
worth noting that this expectation value can also be calculated
by using the dipole gauge, by applying the unitary transfor-
mation to both the operator and the quantum states:

〈ψC (t )|â†â|ψC (t )〉 = 〈ψD(t )|â′†â′|ψD(t )〉.
The Hamiltonian in the dipole gauge can be obtained from

that in the Coulomb gauge via a unitary transformation which,
in this case becomes time-dependent. It can also be obtained
by considering the corresponding gauge transformation of the
field potentials, taking into account that, during the switch,
the transformation depends explicitly on time. Carrying out
the calculations in the dipole gauge (see also Appendix E),
it can be shown that, even in the presence of a nonadiabatic
switch off of the interaction, there are no gauge ambiguities if
the explicit time dependence of the transformation (or of the
generating function for the gauge transformation) is properly
taken into account.

In order to test explicitly gauge invariance in the pres-
ence of ultrastrong interactions and nonadiabatic tunable
couplings, we calculate the quantum state after a sudden
switch off of the interaction, by using the dipole gauge. During
the switch, the transformation is time-dependent and can be
expressed as T̂ (t ) = exp [iλ(t )F̂], where λ(t ) is the switching
function [with λ(t ) = 1 for t � t0, and λ(t ) = 0 for t � t1].
The resulting correct Hamiltonian in the dipole gauge is

Ĥ′
D(t ) = Ĥfree + V̂D(t ) − λ̇F̂ . (28)

For very fast switches, the last term in Ĥ′
D(t ) dominates

during the switching and goes to infinity for switching times
T → 0. Hence its contribution to the time evolution during
the switching time cannot be neglected. For switching times of
the order of the coupling rate, the resulting Hamiltonian in the
dipole gauge Ĥ′

D(t ) in Eq. (28) can differ significantly from
the standard dipole-gauge Hamiltonian with time-independent
parameters ĤD [see Eq. (7)].

Let us consider the system at t = t0 (before the switch off)
to be in the state |ψD(t0)〉. Assuming T → 0, just after the
switch off (t1 = t0 + T ), the resulting state is

|ψD(t1)〉 = exp

(
iF̂

∫ t1

t0

dt λ̇

)
|ψD(t0)〉. (29)

Since the integral is equal to −1, and |ψD〉 = T̂ |ψC〉, we
obtain

|ψD(t1)〉 = T̂ †|ψD(t0)〉 = |ψC (t0)〉. (30)

This result shows that, even in the presence of a nonadiabatic
switch off of the interaction, there are no gauge ambigu-
ities, since the final state (after the interaction has been
switched off) does coincide with the corresponding state in the
Coulomb gauge. The case where the system is prepared in the
absence of interaction, which is then switched on and finally
switched off before measurements, is analyzed in Appendix E.

In Ref. [32], it has been shown that the standard prac-
tice of adding a time dependence to the coupling rate gives
rise, for sufficiently strong and nonadiabatic time-dependent
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FIG. 5. Vacuum emission. (a) Mean photon number calculated
in the Coulomb (solid curve) and in the wrong dipole (dot-dashed
curve) gauges as a function of η for the system prepared in the ground
state of the quantum Rabi model. (inset) Vacuum emission (mean
photon number) after the switch off evaluated for η = 0.8. (b) Qubit
entropies (which quantifies the qubit-oscillator entanglement) for the
ground states (black curves) calculated in both the Coulomb (solid
curves) and the wrong dipole (dotted-dashed) gauges as a function
of the normalized coupling strength η.

interactions, to gauge-dependent predictions on final subsys-
tem properties, such as the qubit-field entanglement or the
number of emitted photons. This problem persists also when
the system is prepared in the absence of any interaction, and
measurements are carried out after switching off the coupling.
Our analysis of gauge transformations in the presence of
time-dependent interactions eliminates these ambiguities (see
Appendix D).

Figure 5(a) displays the mean photon numbers 〈0̃C |â†â|0̃C〉
and 〈0̃D|â†â|0̃D〉. The first quantity is the correct one, calcu-
lated using the time evolution induced by ĤC (t ). The latter is
the wrong one, obtained considering the wrong dipole-gauge
Hamiltonian ĤD(t ) = T̂ (t )ĤC (t )T̂ †(t ) (see Appendix E). As
shown in Fig. 5(b), the two mean values provide very different
predictions for the observable mean photon number after the
switch off. Very different predictions are also obtained for the
qubit excitation probabilities (see Fig. 4).

Figure 5(b) displays the Von Neumann entropy Sq, which
quantifies the qubit-oscillator entanglement for the system
ground state (black curves) of the quantum Rabi model. The
entropy [22] is obtained by calculating the ground state of the
combined system |0̃〉, using it to obtain the qubit’s reduced
density matrix in the ground state ρq = Trosc{|0̃〉〈0̃|}, and then

evaluating the entropy of that state Sq = −Trosc{ρq log2 ρq}.
The solid curves have been obtained using the Coulomb
gauge, while the dotted-dashed ones, within the wrong dipole
gauge [using ĤD(t )]. It is interesting to observe that, for
η � 0.2, the degree of entanglement strongly differs in the
two cases. In particular, while in the wrong dipole gauge both
states become entangled cat states [56] displaying maximum
entanglement above η = 2, Sq goes to zero in the Coulomb
gauge, after reaching a maximum at η � 0.6. These signif-
icant differences for large values of η can be understood
by using an analytical approximation which works well for
η 
 1 (see Appendix C).

Although we applied this analysis to a TLS coupled to
a single-mode resonator, the physical conclusions reached
here are general (see Appendix D). Let us summarize the
results discussed here considering a more general light-matter
system. The correct Hamiltonian in the dipole gauge, in the
presence of time-dependent interactions, is

Ĥ ′
D = T̂ (t )ĤC (t )T̂ †(t ) + i ˙̂T T̂ †, (31)

where ĤC is the Coulomb-gauge light-matter Hamiltonian in
the absence of any Hilbert space truncation, while T̂ is the
time-dependent unitary operator enforcing the gauge transfor-
mation. In the absence of time-dependent interactions, ĤC and
the standard dipole-gauge Hamiltonian

ĤD ≡ T̂ ĤCT̂ † = Ĥ ′
D, (32)

provide equivalent dynamics (notice that in the absence of
time-dependent interactions, ˙̂T = 0). In the presence of time-
dependent interactions, only Ĥ ′

D provides dynamical solutions
which are equivalent to the ones determined by ĤC , and the
standard multipolar Hamiltonian ĤD loose its physical mean-
ing and has to be disregarded. Consequently, we can consider
ĤC more fundamental than ĤD. The first (ĤC) originates di-
rectly from the minimal coupling replacement enforcing the
gauge principle, while the latter (ĤD) results from the first,
after a transformation which can be time-dependent.

A different point of view could be to consider, indepen-
dently on the historical derivation, ĤD as the fundamental
Hamiltonian and deriving ĤC from it after a time-dependent
unitary transformation. In this case, the resulting Hamiltonian
in the Coulomb gauge, providing a dynamics equivalent to
that of ĤD(t ), would be

Ĥ ′
C (t ) = T̂ †(t )ĤD(t )T̂ (t ) + i ˙̂T (t )†T̂ (t ).

This Hamiltonian, owing to the second term on the right-hand
side of the above equation, does not correspond to a minimal
coupling replacement as prescribed by the gauge principle
(see, e.g., Refs. [18,57]). Nevertheless, ĤC is directly obtained
by the minimal coupling replacement (which implements
the gauge principle) after setting to zero the longitudinal
component of the vector potential (which has no dynamical
relevance) [17].

In summary, the main result of this section consists of an
operational definition of ground state excitations and entan-
glement in cavity-QED systems which is independent of gauge
transformation. The physical quantities that can be observed
in experiments have to be calculated using the Coulomb gauge
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Hamiltonian, or any other equivalent Hamiltonian obtained
performing a time-dependent unitary transformation.

VI. DISCUSSION AND CONCLUSIONS

By adopting an approach based on operational procedures
involving measurements, we have highlighted and solved a
number of qualitative ambiguities in the theoretical descrip-
tion of cavity QED systems, especially important in USC
regimes. Broadly, these results deepen our understanding of
subtle, although highly relevant, fundamental aspects of the
interaction between quantized fields and matter, and are also
relevant for the design and development of new applications
exploiting the unprecedented possibilities offered by the USC
and DSC regimes (see, e.g., Refs. [1,58,59]).

Specifically, we have shown (Sec. III) that, if the trans-
formation of the photon operators â and â† when using the
dipole gauge is not taken into account, incorrect results are
obtained, even at moderate coupling strengths. In Sec. IV, we
have shown how to obtain the correct gauge-invariant qubit
population which is measured under dispersive readout, when
the qubit is coupled in the USC or DSC regimes with an
additional electromagnetic resonator.

The states (e.g., the energy eigenstates) of a cavity-QED
system are gauge dependent. As a consequence, the number
of virtual excitations, as well as the degree of light-matter
entanglement in the ground state, are gauge dependent. In
Sec. V, we provided an operational definition of ground state
excitations and entanglement in cavity-QED systems which is
independent on gauge transformations. The physical quanti-
ties that can be experimentally observed after, e.g., the switch
off of the interaction, have to be calculated using the Coulomb
gauge Hamiltonian, or any other equivalent Hamiltonian ob-
tained performing a time-dependent unitary transformation of
the Coulomb-gauge Hamiltonian.

This work was motivated by the development of a gauge-
invariant quantum Rabi model [11] and by the possibility to
implement the gauge principle in truncated Hilbert spaces
[11,18]. Our paper has focused on the quantum Rabi model
describing individual two-level systems, whose interaction
with light is introduced via the minimal coupling replacement.
So far, the USC regime has been reached only in systems
involving several emitters or in superconducting circuits gal-
vanically coupled to microwave resonators. As a consequence,
the specific numerical results here provided cannot be applied
to analyze current experiments. However, the physical conclu-
sions reached here are general. Our analysis can be directly
extended to study matter systems including several energy
levels [60], a collection of quantum emitters, or collective
excitations (see, e.g., Ref. [61]) or interacting electron sys-
tems [62–64]. Moreover, the conceptual issues discussed and
solved here may also apply to light-matter systems involving
multimode resonators [54,65–67], or to atoms (natural or ar-
tificial) coupled to a continuum of light modes [68], or even
in cavity quantum optomechanics [69,70]. Finally, we point
out that most of the concepts put forward here can also be
applied to circuit QED systems. Some preliminary results can
be found in Ref. [71].
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APPENDIX A: DERIVATION OF THE PHOTON
OPERATORS IN THE DIPOLE GAUGE

We start by considering the simplest case of a two-level
system (TLS) coupled to a single-mode resonator, where â
is the photon destruction operator in the Coulomb gauge.
Following Ref. [11] (see also Sec. II), the corresponding op-
erator in the dipole gauge is â′ = T̂ âT̂ †, where T̂ = exp(iF̂ )
with F̂ = −ησ̂x(â + â†). We obtain â′ = â + iησ̂x, where η =
g/ωc (g is assumed real).

We now check the consistency of this result by deriving
the general case using an alternative approach not based on
unitary transformations. Specifically, we consider a single
TLS interacting with a collection of complete electromagnetic
modes, and then generalize the result to a strict single-mode
coupling regime.

It is well known [14,36,72] that the dipole interaction
Hamiltonian between an atom and the radiation field, should
involve the transverse displacement field, D̂, rather than the
electric field, Ê, so that (we neglect a μ2 term that is trivially
proportional to the identity operator in a two-level approxima-
tion):

ĤI = −μ · D̂(r)

ε0εb(r)
, (A1)

where εb(r) is the background dielectric constant of the
medium where the TLS is embedded. The key point is that in
the dipole gauge the electric field operator is not a canonical
operator and thus the energy has to be expressed in terms
of D̂(r) (which is a canonical operator), in order to obtain
the interaction Hamiltonian. Given the displacement field’s
fundamental importance [37,73], we introduce a new field
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operator through

F̂(r) = D̂(r)

ε0εb(r)
, (A2)

and carry out field quantization with respect to this quantum
field operator. Thus, for a single dipole at position r0,

ĤI = −μ · F̂(r0), (A3)

and below we assume μ is real (though this is not neces-
sary). This procedure can be generalized for multiple dipoles;
however, in this case the field-induced dipole-dipole interac-
tion terms have to be also included (see Appendix III B). In
this section, we only consider a single dipole (TLS) at r0.
The field operator, obtained from the Power-Zienau-Woolley
(PZW) transformation, can be expanded in terms of photon
field operators (that also couple to matter degrees of freedom),
âk , so that

F̂(r, t ) = F̂+(r, t ) + F̂−(r, t )

= i
∑

k

√
h̄ωk

2ε0
fk (r)âk (t ) + H.c., (A4)

where fk (r) are “normal modes” with real eigenfrequen-
cies, ωk , obtained from Maxwell’s equations for a particular
medium. The normalization of these normal modes is ob-
tained from

∫
drεb(r)f∗

k (r) · fk′ (r) = δkk′ . These modes are
complete, so that

∑
k εb(r)f∗

k (r)fk (r′) = 1δ(r−r′), and note
that the sum includes both quasitransverse and quasilongitu-
dinal modes (ωk = 0). For convenience, one can also write
this as

1δ(r − r0) = 1

2
εb(r)

[∑
k

fk (r)f∗
k (r0) + f∗

k (r0)fk (r)

]
. (A5)

We can also introduce the usual TLS-mode coupling rate from

gk ≡
√

ωk

2h̄ε0
μ · fk (r0), (A6)

which is only finite for transverse modes (which is due to the
choice of gauge).

Next, it is useful to recall the relation between Ê and F̂:

F̂(r) = Ê(r) + δ(r − r0)

ε0εb(r)
P̂d (r0), (A7)

where we consider a single dipole. Treating the dipole as a
quantized TLS, then

F̂(r) = Ê(r) + μ

ε0εb(r)
δ(r − r0)(σ̂+ + σ̂−), (A8)

where σ̂+ + σ̂− = σ̂x are the usual Pauli operators. Thus,
defining ÊD(r) as the electric field operator in the dipole
gauge, we have

ÊD(r, t ) = i
∑

k

√
h̄ωk

2ε0
fk (r)âk (t ) + H.c.

− 1

2ε0

[∑
k

fk (r)f∗
k (r0) + f∗

k (r0)fk (r)

]

· μ(σ̂+ + σ̂−), (A9)

with the understanding that the last term is formally zero for
r 	= r0. For positions away from the dipole location, then

ÊD(r 	= r0, t ) = i
∑

k

√
h̄ωk

2ε0
fk (r)âk (t ) + H.c., (A10)

while for positions at the dipole location,

ÊD(r0, t ) = i
∑

k

√
h̄ωk

2ε0
fk (r0)âk (t ) + H.c.

− 1

ε0

[∑
k

f∗
k (r0)fk (r0)

]
· μ(σ̂+ + σ̂−). (A11)

Also note, that since ÊD(r 	= r0, t ) = F̂(r, t ), then one can
use either operator for field detection analysis (away from the
TLS), which is a result of including a sum over all modes.
It is also important to note that the general solution of âk (t )
also includes coupling to the TLS, which can be obtained,
e.g., from the appropriate Heisenberg equations of motion. It
is worth noticing that Eq. (A9) can be rewritten in a way that
makes each mode contribution more clear:

ÊD(r, t ) = i
∑

k

√
h̄ωk

2ε0
fk (r)â′

k (t ) + H.c., (A12)

where

â′
k (t ) = âk (t ) + iηk σ̂x, (A13)

with ωkηk = √
ωk/2h̄ε0 μ · fk (r0). Comparing Eqs. (A12) and

(A4), it is clear that, although ÊD(r 	= r0, t ) = F̂(r, t ), the
electric field operator ÊD(r, t ) and the field F̂D(r, t ) corre-
spond to two different modal expansions.

1. Single-mode limit

Next, we focus on a single-mode solution (k = c, â ≡
âc, η ≡ ηc) as this is typically the most interesting case for
cavity QED regimes, and is one of the key models considered
in the main text (the quantum Rabi model). Of course, treating
a single-field mode as a normal mode is not a rigorous model
for open cavities, as we cannot include the cavity mode loss
rigorously, but similar result can be obtained using a quantized
quasinormal mode approach [74,75] (which are the correct
resonant modes in the presence of dissipative output losses).
Nevertheless, for high-Q resonators, it is an excellent approx-
imation. Exploiting Eq. (A12), we obtain

ÊD(r, t ) ≈ i

√
h̄ωc

2ε0
fc(r)â′(t ) + H.c., (A14)

where

â′(t ) = â(t ) + iησ̂x, (A15)

with ωcη = √
ωc/2h̄ε0 μ · fc(r0). Again assuming that g is

real, then g = ωcη, and ĤI = ih̄g(â† − â)σ̂x ≡ V̂D, as used in
the main text.

It is worth highlighting a rather striking difference between
the single-mode model and the multimode model. The latter
case causes the two field operators F̂D(r) and ÊD(r) to be
identical, unless r at the dipole location (r0). This multimode
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result also enforces some fundamental results in electromag-
netism, e.g., it recovers well known limits such as the local
field problem (requiring the self-consistent polarization), and
ensures causality. The need to enforce causality in quantum
optics has been pointed out in other contexts [54]. We also
observe that, as shown explicitly by the unitary transformation
â′ = T̂ âT̂ † at the beginning of this section (see also [11]), by
only using the primed operators in the dipole gauge, gauge
invariance of the expectation values is ensured. Generalizing
this approach to the multimode-interaction case, it can also be
shown that â′

k = T̂ âkT̂ †, where T̂ is the appropriate unitary
gauge operator [17]. Consequently,

〈ψD|â′†
k â′

k|ψD〉 = 〈ψC |â†
k âk|ψC〉,

where |ψD〉 = T̂ |ψC〉.

APPENDIX B: DISPERSIVE READOUT OF A QUBIT
STRONGLY COUPLED TO A CAVITY MODE

Let us consider a TLS ultrastrongly coupled to a cavity
mode of frequency ωa and weakly coupled to a second mode
(e.g., a readout cavity) of frequency ωb acting as a sensor for
the matter system. As shown in the main text (Sec. IV), the
resulting Hamiltonian in the Coulomb gauge can be written
as [11]

ĤC = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
{σ̂zcos[2ηa(â† + â)

+ 2ηb(b̂† + b̂)] + σ̂ysin[2ηa(â† + â) + 2ηb(b̂† + b̂)]},
(B1)

with ηa = ga/ω0 and ηb = gb/ω0. Assuming that 2ηb(b̂† + b̂)
is small as compared to the other terms, as shown in the main
text (Sec. IV), we obtain

ĤC = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
σ̂C

z + ηbh̄ω0(b̂† + b̂)σ̂C
y ,

(B2)
where the Pauli operators in the Coulomb gauge σ̂C

i have been
defined in Eq. (26). Moreover, we define

X̂C
± = (b̂†σ̂C

− ± b̂σ̂C
+ ),

ŶC
± = (b̂σ̂C

− ± b̂†σ̂C
+ ). (B3)

Subsequently, Eq. (B2) can be rewritten in a more convenient
form as

ĤC = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
σ̂C

z + iηbh̄ω0(X̂C
− + ŶC

−).

(B4)
In order to investigate the effect of the readout cavity on

the TLS, we can always perform a canonical (unitary) trans-
formation (see, e.g., Ref. [53]):

ĤC → H̃C ≡ e−ŜĤCeŜ

= ĤC + [ĤC, Ŝ] + 1

2!
[Ŝ, [Ŝ, ĤC]] + . . . , (B5)

where we defined H̃C to indicate the corresponding dispersive
Hamiltonian in the Coulomb gauge. In the usual way, we
search for an anti-Hermitian operator Ŝ which satisfies the
relation

ĤI + [Ĥ0, Ŝ] = 0, (B6)

where
ĤI = iηbh̄ω0(X̂C

− + ŶC
−) (B7)

and

Ĥ0 = h̄ωbb̂†b̂ + h̄ω0

2
σ̂C

z . (B8)

Equation (B6) is satisfied using

Ŝ = λX̂C
+ + λ̄ŶC

+, (B9)

with

λ = −i
gb

�
(B10)

and

λ̄ = −i
gb

�
, (B11)

where � = ω0 − ωb and � = ω0 + ωb. With such a choice,
we obtain

H̃C = h̄ωaâ†â + Ĥ0 + [ĤI , Ŝ] + 1

2!
[Ŝ, [Ŝ, ĤC]] + . . .

(B12)
Developing the calculations up to the second order in gb,

we obtain

H̃C = ĤC
0 + h̄χ

2
(b̂† + b̂)2 σ̂C

z , (B13)

where

χ = g2
b

�
+ g2

b

�
(B14)

and

ĤC
0 = h̄ωaâ†â + h̄ωbb̂†b̂ + h̄ω0

2
σ̂C

z . (B15)

Neglecting the counter-rotating terms proportional to b̂†2 and
b̂2, Eq. (B13) becomes

H̃C = h̄ωaâ†â +
(

h̄ω0

2
− h̄χ

2

)
σ̂C

z + h̄
(
ωb + χσ̂C

z

)
b̂†b̂.

(B16)
As it is clear from this expression, the last term in Eq. (B16)

can be interpreted as a dispersive shift of the cavity transition
by χσ̂C

z , depending on the state of the qubit [76]. Sending
a frequency-tunable probe signal into the resonator b, trans-
mission spectroscopy can provide direct information on the
expectation value 〈σ̂C

z 〉C which coincides with 〈σ̂z〉D. Hence,
we can conclude that this kind of readout spectroscopy pro-
vides direct information on the expectation value of the qubit
population difference, as defined in the dipole gauge.

APPENDIX C: LARGE-COUPLING LIMIT

Here we discuss the large-coupling limit (η 
 1) by using
an analytical perturbative method. Notice that for η 
 1, the
system enters in the so-called deep strong coupling (DSC)
regime. We start from the quantum Rabi Hamiltonian in the
dipole gauge:

ĤD = Ĥfree + V̂D, (C1)

where

Ĥfree = h̄ωcâ†â + h̄ω0

2
σ̂z, (C2)
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and the interaction Hamiltonian is

V̂D = iηh̄ωc(â† − â)σ̂x. (C3)

When ηωc 
 ω0, the last term in Eq. (C1) can be regarded
as a perturbation. Equation (C2) can be rewritten as ĤD =
Ĥ′

0 + V̂ ′
D, where

Ĥ′
0 = h̄ωcâ†â + iηh̄ωc(â† − â)σ̂x (C4)

and

V̂ ′
D = h̄ω0

2
σ̂z. (C5)

In the limit η 
 1, V̂ ′
D can be regarded as a small per-

turbation; neglecting it, the resulting Hamiltonian can be
analytically diagonalized. The two resulting lowest-energy
degenerate eigenstates can be written as |∓iη〉|±x〉, where
the first ket indicates photonic coherent states with amplitude
∓iη, such that: â|∓iη〉 = ∓iη|∓iη〉; while the second ket
indicates the eigenstates of σ̂x. The perturbation (h̄ω0/2)σ̂z

removes the degeneracy and mixes the two states, so that the
two eigenstates become entangled:

|ψ±
D 〉 = 1√

2
[|−iη〉|+x〉±| + iη〉|−x〉]. (C6)

The corresponding eigenstates in the Coulomb gauge are
|ψ±

C 〉 = T̂ †|ψ±
D 〉, where

T̂ = exp[−iη(â + â†)σ̂x] (C7)

is the unitary operator determining the gauge transformation
of the qubit-oscillator system: ĤD = T̂ ĤC T̂ †. By applying
the operator T̂ † to both members of Eq. (C6), and using
the properties of the displacement operator, we obtain the
separable states

|ψ±
C 〉 = |0〉|±z〉. (C8)

Equations (C6) and (C8), describing the lowest two energy
states in the dipole and Coulomb gauge respectively (for η 

1), explain the results in Figs. 4 and 5 for very large values
of η. In particular, it is easy to obtain: 〈ψ−

C |σ̂+σ̂−|ψ−
C 〉 = 0,

〈ψ+
C |σ̂+σ̂−|ψ+

C 〉 = 1, 〈ψ±
D |σ̂+σ̂−|ψ±

D 〉 = 0.5, 〈ψ−
C |â†â|ψ−

C 〉 =
0, 〈ψ+

C |â†â|ψ+
C 〉 = η2. Moreover, Eq. (C6) describes two

light-matter maximally entangled cat states providing a qubit
entropy Sq

D = 1, while Eq. (C8) describes two separable states
(Sq

C = 0), see Fig. 5.

APPENDIX D: GAUGE TRANSFORMATIONS IN THE
PRESENCE OF TIME-DEPENDENT COUPLING

We start by summarizing some well-known results on
equivalent descriptions of the dynamics of a physical system
(see, e.g., Ref. [17]). We consider a simple 1D dynamical
system described by the Lagrangian L(x, ẋ), where x is the
coordinate and ẋ the velocity. The momentum conjugate with
x is p = ∂L/∂x. By adding to the Lagrangiaan L(x, ẋ) the
total time derivative of a function F (x, t ), one obtains a new
Lagrangian

L′(x, ẋ) = L(x, ẋ) + d

dt
F (x, t ) = L(x, ẋ) + ẋ

∂F

∂x
+ ∂F

∂t
,

(D1)

which is equivalent to L in the sense that it gives the same
equation of motion for the coordinate x. Considering the new
Lagrangian, the momentum conjugate with x becomes

p′ = ∂L′

∂ ẋ
= p + ∂F

∂x
. (D2)

When one applies the standard canonical quantization pro-
cedure, starting with L on the one hand and L′ on the other, one
derives two equivalent quantum descriptions for the system,
related by a unitary transformation, described by the operator
(we use h̄ = 1)

T̂ = exp[iF̂ (t )], (D3)

where F̂ (t ) ≡ F (x̂, t ) is the quantum operator corresponding
to the classical function F (x, t ), with the hat “ ˆ ” indicating
the promotion of classical variables to quantum operators.
Considering a generic operator Ô = O(x̂, p̂), it transforms
as Ô′ = T̂ ÔT̂ †, while the state vectors transform as |ψ ′〉 =
T̂ |ψ〉, so that the generic matrix elements of the operators
remain unchanged. If the function F (x, t ) depends explicitly
on time, the system Hamiltonain transforms differently:

Ĥ ′ = T̂ Ĥ T̂ † + i ˙̂T T̂ † = T̂ Ĥ T̂ † − ∂F̂

∂t
. (D4)

The function F introduced by PZW [35,72] is

F = −
∫

d3r P(r) · A⊥(r), (D5)

where, considering a single charge centered on a single ref-
erence point R, the polarization operator can be expressed as

P(r) = q
∫ 1

0
du(r − R)δ[(1 − u)(r − R)]. (D6)

Hence, the PZW Lagrangian can be derived by that in the
Coulomb gauge by the transformation

L′ = L + d

dt
F, (D7)

where F is given by Eq. (D5).
In a gauge transformation, defined by a function χ (r, t ),

the potentials become

A′(r, t ) = A(r, t ) + ∇χ (r, t ), (D8a)

U ′(r, t ) = U (r, t ) − ∂

∂t
χ (r, t ). (D8b)

Introducing Eqs. (D8a) and (D8b) in the Lagrangian L in the
Coulomb gauge, the following relationship between the two
Lagrangians holds (see, e.g., p. 267 of Ref. [17]):

L′ = L + d

dt
χ (r, t ). (D9)

If the function χ (r, t ) is chosen equal to the function F (r, t ),
then

χ (r, t ) = −
∫

d3r P(r) · A⊥(r). (D10)

Equations (D7) and (D9) shows that the PZW transforma-
tion and the multipolar gauge transformation are equivalent.
This equivalence still holds in the presence of a time-
dependent interaction strength. As discussed in the main text,
an example of a time-dependent coupling can be properly
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described assuming an atom moving in and out a Fabry-
Pérot Gaussian cavity mode, like in experiments with Rydberg
atoms [77], so that the coupling strength becomes time
dependent. In this case, the charge is localized around a time-
dependent position R(t ). This will give rise to additional terms
when taking the time derivative of F . However, Eqs. (D7) and
(D9) do still coincide, as do the conjugate momenta. Both ap-
proaches give rise to the same Hamiltonian in Eq. (D4). Notice
that the resulting Hamiltonian after the gauge transformation
is different from

ĤD(t ) = T̂ (t )ĤC (t )T̂ †(t ). (D11)

This explains precisely why the Hamiltonian in Eq. (D11)
does not describe dynamics which is equivalent to that of the
Hamiltonian in the Coulomb gauge [32]. In short, Eq. (D11)
is not the correct Hamiltonian to describe the correct light-
matter interaction dynamics. Specifically, considering the
time-dependent unitary transformation, Eq. (D11) is incor-
rect because it misses the explicit time dependence on the
transformation—see last term in Eq. (D4). The gauge trans-
formation, Eq. (D11) is not correct because it is obtained
by neglecting the explicit time dependence of χ (r, t ) in
Eq. (D8b), arising from the time dependence of R in Eq. (D6).
The correct Hamiltonian in the dipole gauge, in the presence
of time-dependent interactions, is

Ĥ ′
D = T̂ (t )ĤC (t )T̂ †(t ) + i ˙̂T T̂ †.

Further analysis and some examples of the consequences can
be found in Sec. V.

APPENDIX E: NONADIABATIC TUNABLE COUPLING:
SWITCH-ON AND SWITCH-OFF DYNAMICS

Following Ref. [32], we consider the treatment of tuneable
light-matter interactions through a time-dependent coupling
function. In Ref. [32], it is shown that applying the standard
procedure, for sufficiently strong light-matter interactions, the
final subsystem properties, such as entanglement and subsys-
tem energies, depend significantly on the definitions (gauges)
of light and matter adopted during their interaction. This oc-
curs even if the interaction is not present at the initial and
final stages of the protocol, at which times the subsystems
are uniquely defined and can be individually addressed. Such
an ambiguity is surprising and poses serious doubts on the
predictability of the system dynamics in the presence of ultra-
strong time-dependent light-matter interactions.

Here we address this apparent problem by considering
a light-atom system initially in the absence of interaction
and starting, e.g., in its ground state |ψ (tin )〉 = |g, 0〉. A
different choice of the initial state does not change the conclu-
sions. This situation can be visualized considering a system
consistenting of an optical cavity (initially prepared in the
zero-photon state) and an atom initially external to the cavity
and in its ground state. At t = t1, the atom enters the cavity
and leaves it at t = t2. We consider the case of a TLS (the
generalization to multilevel systems is straightforward). In
addition, for the sake of simplicity, we assume that for t1 <

t < t2, the normalized interaction strength η is constant. We
will demonstrate that: after one switches off the interaction, the

same quantum state is obtained independently of the adopted
gauge.

We start our analysis considering the Coulomb gauge. The
initial state (actually independent on the gauge) is |ψC (tin )〉 =
|g, 0〉C . At t = t1, the interaction is nonadiabatically switched
on within a time T → 0. This sudden switch has no ef-
fect on the quantum state [55], hence, at t = t+

1 = t1 + T ,
|ψC (t+

1 )〉 = |g, 0〉. For t > t+
1 , the quantum state evolves as

|ψC (t )〉 = exp [−iĤC (t − t1)]|g, 0〉C . Then, at t = t2, the in-
teraction is suddenly switched off. At t = t+

2 = t2 + T , the
system state is |ψC (t+

2 )〉 = exp [−iĤC (t2 − t1)]|g, 0〉C . For
t > t2, the quantum state evolves according to the Hamil-
tonian for the noninteracting system (η = 0): |ψC (t )〉 =
exp [−iĤfree(t − t2)]|ψC (t+

2 )〉, where Hfree is the system
Hamiltonian in the absence of interaction. We can use these
quantum states to calculate any system expectation value at
any time. For example, the mean photon number can be cal-
culated as

〈ψC (t )|Ŷ (−) Ŷ (+)|ψC (t )〉, (E1)
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FIG. 6. Gauge-invariant emission of a TLS coupled to a single-
mode resonator (quantum Rabi Hamiltonian) induced by sudden
switching on and off the light-matter interaction, calculated for three
normalized coupling strengths. (a) Displays the switching function
λ(t ). The system is initially prepared in its ground state: |ψC (tin )〉 =
|g, 0〉. At t = t1, the interaction is suddenly switched on, and it is
finally switched off at t = t2. (b)–(d) display 〈ψC (t )|Ŷ (−) Ŷ (+)|ψC (t )〉
for three different coupling strengths.
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where Ŷ (+) and Ŷ (−) are the positive and negative-frequency
components of the operator Ŷ = i(â − â†) [with Ŷ (−) =
(Ŷ (+) )†]. Notice that, for t < t1 and t > t2, Ŷ (+) = iâ.

Now we describe the same dynamics in the dipole gauge.
Before switching on the interaction, the state is simply
|ψD(t−

1 )〉 = |g, 0〉. As shown in Appendix D, the system
Hamiltonian in the dipole gauge is

ĤD(t ) = T̂ (t )ĤC T̂ †(t ) + i ˙̂T (t )T̂ †(t )

= Ĥfree + V̂D(t ) − λ̇F̂ , (E2)

where λ(t ) is the switching function (see Fig. 6). Notice
that, when the interaction strength is time independent, the
last term in Eq. (E2) goes to zero. However, during nona-
diabatic switches or modulations, this term can become the
dominant one. Owing to the presence of the last term in
Eq. (E2), the state after the switch-on of the interaction
becomes

|ψD(t+
1 )〉 = exp

(
iF̂

∫ t+
1

t−
1

dt λ̇

)
|ψD(t−

1 )〉 = T̂ |g, 0〉. (E3)

For t > t+
1 , the quantum state evolves as |ψD(t )〉 =

exp (−iĤD(t − t1)T̂ |g, 0〉. Then, at t = t2, the interaction is
suddenly switched off. At t = t+

2 = t2 + T the system state
becomes |ψD(t+

2 )〉 = T̂ † exp [−iĤD(t2 − t1)]T̂ |g, 0〉. Since
ĤC = T̂ †ĤDT̂ , it implies that

|ψD(t+
2 )〉 = |ψC (t+

2 )〉. (E4)

As an example, we show in Fig. 6 the gauge-invariant
emission,

〈ψC (t )|Ŷ (−) Ŷ (+)|ψC (t )〉,
from a TLS coupled to a single-mode resonator (quantum
Rabi Hamiltonian) induced by sudden switching on and off
the light-matter interaction, calculated for three normalized
coupling strengths.

As a final remark, we observe that the procedure described
here can be directly extended to show that gauge invariance is
also preserved for intermediate gauge transformations depen-
dent on a continuous parameter α [10]. Indeed, it is sufficient
to replace F̂ with αF̂ .
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