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This supplemental materials contain eight parts: I. A detailed derivation of the second-order equal-time correlation
function; II. Analytical calculations of the probability of photon antibunching (PA) and perfect photon blockade
(PPB) for few-qubit systems; III. The physical mechanism of nearly perfect photon blockade (NPPB); IV. Correlation
functions in weak- and strong-disorder limit; V. Effects of losses on non-waveguide modes; VI. Effects of chirality in
coupling to waveguide modes; VII. Effects of finite bandwidth of input state; VIII. The details of numerical method
used in this work.
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I. DERIVATION OF SECOND-ORDER CORRELATION FUNCTION

In this section, we present the Gorini-Kossakowski-Sudarshan-Lindblad master equation for our setup and, by
incorporating the input-output formalism, derive the formal expressions for the correlation functions in the trans-
mission and reflection outputs. To this end, we consider a one-dimensional array of N qubits coupled to a single
optical waveguide bath. Under the rotating-wave approximation, the time evolution of the system is governed by the
Hamiltonian

H =

N∑
m=1

ωmσ
†
mσm +

∑
µ=R,T

∫ ∞

−∞
dω ωa†µ(ω)aµ(ω) +

∑
m,µ

∫ ∞

−∞
dω (κm,µ(ω)a

†
µ(ω)σm + h.c.). (S1)

Here, ωm = ω0+∆m denotes the transition frequency of the mth qubit, and σm = |gm⟩⟨em| is its corresponding lower-
ing operator. The operator aµ(ω) is the boson annihilation operator for a bath mode with frequency ω, where the sub-
script µ = T (transmission) or R (reflection) distinguishes the mode. We assume weak inhomogeneity, namely, |∆m| ≪
ω0. In this regime, the coupling strengths satisfy κm,T/R(ω) = gm,,T/R exp((−/+)iωxm/c) ≈ gT/R exp((−/+)iωxm/c),
so that the interaction strength for each qubit is approximately homogeneous, i.e., |κm,T/R(ω)| ≈ gT/R. The qubits
are assumed to be equally spaced with separation d, so that xm = md. For simplicity, we set vg = 1.

We first derive the master equation describing the time evolution of the system, which further supports the calcu-
lation of the field correlation function. The derivations mainly follow those in [1–3]. Following standard derivations,
the Heisenberg equation for the field operator are obtained as

ȧT(ω, t) = −iωaT(ω, t)− igTe
−iωxmσm(t), ȧR(ω, t) = −iωaR(ω, t)− igRe

iωxmσm(t), (S2)

which can be formally integrated as

aT(ω, t) = e−iω(t−t0)aT(ω, t0)− igT
∑
m

∫ t

t0

e−iω(t−τ)−iωxmσm(τ) dτ , aR(ω, t) = −igR
∑
m

∫ t

t0

e−iω(t−τ)+iωxmσm(τ) dτ ,

(S3)
where we have assumed that photons are injected from the left side of the waveguide, such that aR(ω, t0) = 0.
Consequently, the Heisenberg equations for the atomic operator are given by

σ̇m(t) = −iωmσm(t)− iσz
m(t)

(∫ ∞

−∞
gTaT(ω, t)e

iωxm dω +

∫ ∞

−∞
gRaR(ω, t)e

−iωxm dω

)
. (S4)

Substituting the solutions of the field operators into the equations for the atomic operator, we have

σ̇m(t) = −iωσm(t)− iσz
m(t)

(
gT

∫ ∞

−∞
e−iω(t−t0)+iωxmaT(ω, t0) dω

− ig2T2π
∑
n

Θ(xm − xn)σn(t− |xm − xn|)− ig2R2π
∑
n

Θ(xn − xm)σn(t− |xm − xn|)

)

≈ −iωσm(t)− iσz
m(t)

(
gT

∫ ∞

−∞
e−iω(t−t0)+iωxmaT(ω, t0) dω

− ig2T2π
∑
n

Θ(xm − xn)σn(t)e
iω0|xm−xn| − ig2R2π

∑
n

Θ(xn − xm)eiω0|xm−xn|σn(t)

)
.

In the last line, we have used the Markovian approximation

σn(t− |xm − xn|/c) ≈ σn(t)e
iωn|xm−xn|/c = σn(t)e

iω0(1+∆n/ω0)|m−n|d/c, (S5)

and, for our purposes, we neglect the dependence of ∆n in the phase factor, i.e.,

σn(t)e
iωn|xm−xn|/c ≈ σn(t)e

iω0|m−n|d/c. (S6)

This approximation is valid when the condition |∆n|/ω0 ≪ N−1 holds. Equivalently, this condition is satisfied if
CW ≪ ω0/N , where C ∼ O(1) is a dimensionless constant. Specifically, for a detuning ∆n drawn from a normal
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distribution with standard deviation W , the inequality |∆n| ≤ CW is met with probability erf(C/
√
2). For instance,

taking C = 2 yields erf(C/
√
2) ≈ 0.95, implying that the condition |∆n| ≤ CW is satisfies with near-unit probability.

Thus, the approximation |∆n|/ω0 ≪ N−1 holds with probability near unit (0.95), provided that CW ≪ ω0/N is met.
Integrating the bath degrees of freedom, we have

σ̇m(t) = −iωmσm(t)− i
√
γTσ

z
m(t)f(t− t0, xm)

− γTσ
z
m(t)

∑
n

σn(t)Θ(xm − xn)e
iω0|xm−xn| − γRσ

z
m(t)

∑
n

σn(t)Θ(xn − xm)eiω0|xm−xn|,

where γT/R = 2πg2T/R and f(τ, z) is defined by

f(τ, z) =
1√
2π

∫ ∞

−∞
e−iω(τ−z) Tr [ρE(t0)aT(ω, t0)] dω . (S7)

Eq. (I) coincides with the equation of motion governed by the master equation

ρ̇ = −i((Heff +Hd)ρ− ρ(H†
eff +Hd)) +

∑
mn

2(γTΘ(m− n) cos(|m− n|φ) + γRΘ(n−m) cos(|m− n|φ))σmρσ†
n, (S8)

with

Heff =

N∑
m=1

(
∆m − i(γnw + γT + γR)

2

)
σ†
mσm − i

N∑
m>n

(
γTe

i|m−n|φσ†
mσn + γRe

i|m−n|φσ†
nσm

)
, (S9)

and

Hd =
∑
m

√
γT(f(t− t0,md)σ

†
m + h.c.), (S10)

where φ = ω0d/vg.
The zero-time second-order photon correlations of the emitted field are defined as

gµ =
⟨a†µ,out(t)a

†
µ,out(t)aµ,out(t)aµ,out(t)⟩

⟨a†µ,out(t)aµ,out(t)⟩2
, (S11)

where ⟨•⟩ denotes the expectation value over the emitted field. The input-output relations are given by

aT,out(t) = aT,in(t)− i
√
γT
∑
m

e−imφσm(t), aR,out(t) = −i√γR
∑
m

eimφσm(t), (S12)

with

aT,in(t) =
1√
2π

∫ ∞

−∞
e−iω(t−t0)aT(ω, t0) dω . (S13)

Let us now consider a right-propagating coherent pulse as an input (drive), given by ρE(t0) ∝ exp(αa†T(ωin) −
αaT(ωin))|0⟩, where the input pulse is assumed to be resonant with the transition frequency for the ordered system,
i.e., ωin = ω0. In the long-time limit, the properties of the emitted field are fully determined by the steady state ρss
of the qubits (in the rotating frame with respect to H0 = ω0

∑
m σ†σm). By substituting the input-output relations

into the definition of gµ, one obtains

gµ =
Tr
(
ρssC

†
µC

†
µCµCµ

)
Tr
(
ρssC

†
µCµ

)2 , (S14)

where CR = −i√γR
∑

m eiφmσm and CT = α − i
√
γT
∑

m e−iφmσm, ρss denotes the steady state corresponding to
the master equation Eq. (S8) with f(t − t0, xm) = αe−iω0(t−t0)eimφ. In the weak-input limit (α ≪ 1), one can
solve for ρss by neglecting quantum jumps, which yields the expansion ρss ≈ |G⟩ + α|ψ1⟩ + α2|ψ2⟩ + O

(
α3
)

[4].
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(a) (b)

FIG. S1. (a) Probability of PA versus φ and W , where φ ranges from 0.001π to 0.05π. (b) Probability of PA versus φ and W ,
where φ ranges from 2.001π to 2.05π

.

Here, |G⟩ =
⊗N

m=1 |gm⟩, |ψ1⟩ = −(H
(1)
eff )−1H+|G⟩ and |ψ2⟩ = −(H

(2)
eff )−1H+|ψ1⟩ are the single- and two-excitation

components of the truncated steady-state, respectively, with H+ =
√
γT
∑

m eimφσ†
m. The operators H(1)

eff and H
(2)
eff

denote the single- and two-excitation subspace of the effective Hamiltonian Heff , respectively. After some calculations,
one obtains for the transmitted field

gT =
|1− 2i⟨G|C̃T|ψ1⟩ − ⟨G|C̃TC̃T|ψ2⟩|2

|1− i⟨G|C̃T|ψ1⟩|4
+O

(
|α|2

)
, (S15)

and for the reflected field

gR =
⟨ψ2|(C̃†

R)
2(C̃R)

2|ψ2⟩
⟨ψ1|C̃†

RC̃R|ψ1⟩2
+O

(
|α|2

)
, (S16)

where C̃T =
√
γT
∑

m e−iφmσm and C̃R =
√
γR
∑

m eiφmσm. These expressions can be further simplified as

gT =
|1− 2i⟨ϕ1+|ψ1⟩ − ⟨ϕ2+|ψ2⟩|2

|1− i⟨ϕ1+|ψ1⟩|4
, (S17)

and

gR =
|⟨ϕ2−|ψ2⟩|2

|⟨ϕ1−|ψ1⟩|4
, (S18)

where |ϕ1±⟩ =
√
γT
∑

m exp(±imφ)σ†
m|G⟩ and |ϕ2±⟩ = 2γT

∑
m>n exp(±i(m+ n)φ)σ†

mσ
†
n|G⟩. When the coupling

strengths to left- and right-going modes are homogeneous, i.e., γT = γR = γ/2, these equations, Eqs. (S17,S18),
recover Eq. (2) of the main text.

We also emphasize the periodic nature of all the above derivations, including the master equation and the input-
output relations, in the phase φ. Consequently, photon correlation should also be periodic in φ, with a period of
2π. Likewise, all the statistic quantities studied in the main text, such as the probability of PA and the probability
density function, are also periodic in φ with period of 2π. For example, the probability of PA in the transmission
for N = 10 (the inset of Fig. 2(a) in the main text) with φ/π ∈ (0.001, 0.05), and that with φ/π ∈ (2.001, 2.05), are
shown in Fig. S1. The results show good agreements with each other.

II. ANALYTICAL CALCULATIONS OF P(s < 1) AND P (0) FOR FEW-QUBIT SYSTEMS.

In this section, we present detailed calculations for the probabilities of PA and PPB for few-qubit systems, which
further substantiate the results reported in the main text. The calculations for the transmission output and for the
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reflection output with φ = 0 are carried out analytically, whereas those for the reflection output with φ ̸= 0 are
performed numerically.

A. Transmission

We first consider the single-qubit case. In this system, all two-photon scattering processes vanish, meaning that
any terms involving |ψ2⟩ (or ⟨ψ2|) drop out. Since H

(1)
eff is a 1 × 1 matrix in this case, the evaluation of |ψ1⟩ is

straightforward. After some algebraic manipulations, the second-order correlation function is given by

gT =
(1 + 4∆2

1)
2

16∆2
1

. (S19)

Moreover, an analytical expression for the probability density function (PDF) corresponding to Eq. (S19) can be
obtained. Specifically, the PDF is calculated as

P (s) =
1√
2πW

∫ ∞

−∞
δ

(
(1 + 4∆2

1)
2

16∆4
1

− s

)
e−∆2

1/2W
2

d∆1. (S20)

Here, the Dirac delta function is handled using the standard identity δ(f(x)) =
∑

j δ(x − xj)/|f ′(xj)|. After some
calculations, one finds that P (s) = 0 for s < 1. Thus, we have

P(s < 1) = P (0) = 0. (S21)

For s ≥ 1, the PDF is given by

P (s) =
1

4
√
2πW

1

(
√
s− 1)3/2

√
s
e1/(1−1

√
s)8W 2

. (S22)

The asymptotic behaviors for P (s > 1) are

P (s→ 1+) ∼ 1

4πW
(s− 1)−3/2e−1/(4W 2(s−1)), P (s→ +∞) ∼ 1

4
√
2πW

s−5/4. (S23)

Furthermore, the mode of the PDF, corresponding to the most probable value of the correlation function, is located
at

smax =
1 + 56W 2 + 464W 4 +

√
W 8(1 + 28W 2)2(1 + 56W 2 + 464W 4)

800W 4
, (S24)

This result shows that the mode scales as smax ∼ W−4 for W → 0+ and smax ∼ 1 for W → +∞. In other words,
when W ≪ 1 the most probable output is strongly bunched, while for W ≫ 1 it is nearly coherent.

For a two-qubit system, although the analytical expression become more involved, the calculation remains tractable.
In this case, the correlation function is given by

gT =
(8∆2

1∆
2
2 + f+ − cos(2φ))

(
8∆2

1∆
2
2(1 + (∆1 +∆2)

2) + (∆1 +∆2)
2(f− − cos(φ)) + 4∆1∆2(∆1 +∆2) sin(2φ)

)
64∆4

1∆
4
2(1 + (∆1 +∆2)2)

,

(S25)

with f± = 1 + 2∆2
1 + 2∆2

2 ± 4∆1∆2 cos(2φ)− 2(∆1 +∆2) sin(2φ). It is practically infeasible to derive a closed-form
expression for the corresponding PDF in this case. Nonetheless, since the correlation function gT ≥ 1, we have
P(s < 1) = 0 and P (0) = 0.

B. Reflection

For the single-qubit system, the absence of two-photon scattering processes implies that ⟨ϕ2−|ψ2⟩ = 0, so that
gR = 0. For the two-qubit system, we first consider the case φ = 0. In this situation, the correlation function reduces
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to

gR =
(∆1 +∆2)

2 + 4∆2
1∆

2
2

(∆1 +∆2)2 + (∆1 +∆2)4
. (S26)

The probability of PA is then calculated from

P(s < 1) =

∫ 1

0

P (s)ds =
1

2πW 2

∫ ∞

−∞
d∆1

∫ ∞

−∞
d∆2 exp

(
−∆2

1 +∆2
2

2W 2

)
Θ(gR − 1), (S27)

where Θ(x) denotes the Heaviside step function. Changing the variables as 2Ω = ∆1 + ∆2 and 2Λ = ∆1 −∆2, one
obtains gR = (Ω2 + (Ω2 − Λ2)2)/(Ω2 + 4Ω4). PA occurs when

|Ω| > 1√
3
|Λ|. (S28)

It follows that the probability of PA is given by

P(s < 1) =
1

πW 2

∫∫
|Ω|> |Λ|√

3

dΩdΛ exp

(
−Ω2 + Λ2

W 2

)
=

2

3
, (S29)

which recovers the equality stated in Eq.(4) of the main text. To demonstrate the result P (0) = 0 presented in the
main text, we now analyze the asymptotic behavior of P (s) for s≪ 1. Starting from

P (s) =
4

πW 2

∫ ∞

0

dΩ

∫ ∞

0

dΛ exp

(
−Ω2 + Λ2

W 2

)
δ

(
Ω2 + (Ω2 − Λ2)2

Ω2 + 4Ω4
− s

)
. (S30)

a change of variables Ω2 → Ω and Λ2 → Λ yields

P (s) =
1

πW 2

∫ ∞

0

dΩ

∫ ∞

0

dΛ
1√
ΩΛ

exp

(
−Ω+ Λ

W 2

)
δ

(
Ω+ (Ω− Λ)2

Ω+ 4Ω2
− s

)
. (S31)

Carrying out the integral over Λ leads to

P (s) =
1

πW 2

∫ ∞

(1−s)/4s

dΩ exp
(
−Ω/W 2

) (1 + 4Ω)√
4sΩ+ s− 1

exp
(

−Ω+

W 2

)
√
Ω+

+
exp
(

−Ω−
W 2

)
√
Ω−

, (S32)

where Ω± = Ω ±
√
Ω(4sΩ+ s− 1). In the limit s ≪ 1, the lower limit of the Ω integral can be approximated

as (1 − s)/4s ≈ 1/4s. In this regime, one can approximate Ω± ≈ Ω and
√
4sΩ+ s− 1 ≈

√
4sΩ− 1. With these

approximations, the expression simplifies to

P (s) ≈ 2

πW 2
√
s

∫ ∞

1/4s

dΩ e−2Ω/W 2 1√
4sΩ− 1

. (S33)

This asymptotic form reveals that strong photon antibunching (gR ≪ 1) is associated with large detuning, as dictated
by the lower integration bound Ω = ∆1 +∆2 > 1/4s ∼ s−1. Performing the integral over Ω yields

P (s≪ 1) ∼ 1√
2πW

s−1 exp

(
− 1

2W 2s

)
. (S34)

From this expression it is evident that as s → 0, P (s) → 0; hence, P (0) = 0, in agreement with the result stated in
the main text. Finally, we compare this analytical approximation to numerical integration of the starting expression
(Eq. (S30)) [see Figs. S2(a-c)].

For the system with φ ̸= 0, the correlation function is given by

gR =

∣∣∣∣ (−i+ ie2iφ + 2∆1 + 2∆2)(e
2iφ + (2∆1 − i)(2∆2 − i))

(∆1 +∆2 − i)(2∆2 − i+ e2iφ(2∆1 + i))2

∣∣∣∣2. (S35)
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33

33

(a) (b) (c)

(d) (e) (f)

(g)

FIG. S2. (a-c) The asymptotic behaviors of P (s). The chosen disorder strengths are W = 0.1 (a), W = 1 (b), and W = 10
(c). In all plots, red dots are obtained from the numerical integration of Eq. (S30), and black lines represent the analytical
solutions from Eq. (S34). (d-f) The asymptotic behaviors of P (s). The chosen disorder strengths are W = 0.1 (d), W = 1
(e), and W = 10 (f). The different symbols correspond to systems with different values of φ. In all plots, the symbols are
obtained from the numerical integration with the correlation expression replaced by Eq. (S35), and black lines represent the
analytical solutions from Eq. (S34). (g) P̃(s < 1) = P(s < 1)− 2/3 versus phase and disorder strength. The result is obtained
from numerical integration of Eq. (S27), while the expression of correlation is replaced by Eq. (S35)

.

gT ∆1 ∆2 ∆3

10−8 0.149124450372206 −0.053903424589490 0.144085703957167

10−10 0.148134188883455 −0.055253952848190 0.144762975264912

10−12 0.149005562567387 −0.054129160721382 0.144182673551411

TABLE S1. Partial solutions {∆1,∆2,∆3} of equation gT = s0 with s0 = 10−8, 10−10, 10−12. Here φ = 0.04π, which is the
same with the parameters in Fig. 1(c) of main text.

In this case, the analytical forms for both P(s < 1) and P (0) are practically infeasible to obtain. Fig. S2(g) displays
the numerical results for P(s < 1), which now depend on both the phase and the disorder strength. Notably, the
numerical data imply that P(s < 1) is bounded from below by 2/3, the value obtained in the Dicke limit for a two-
qubit system. As the disorder strength increases, P(s < 1) attains a maximum at φ ∼ 0.25π, and then saturates to
the lower bound of 2/3 when φ ∼ 0 or 0.5π.

Regarding P (0), Figs. S2(d-f) illustrate the asymptotic behavior of P (s) for s ≪ 1. It is evident that P (s ≪ 1)
displays essentially the same asymptotic form as in the case of φ = 0. This similarity arises because strong PA is
primarily associated with samples {∆1,∆2} in which one detuning |∆i| ≪ 1 (i.e., nearly resonant), while the other
|∆j ̸=i| ≫ 1 (i.e., far off-resonant). Physically, this scenario corresponds to one qubit interacting strongly with the
input while the other is nearly transparent to it, effectively reducing the system to a single-photon absorber/emitter.
However, since the detunings are sampled from a Gaussian distribution, the probability of obtaining |∆j ̸=i| ≫ 1
decreases exponentially with |∆j ̸=i|, which ultimately leads to an exponential decay of P (s) as s→ 0. Consequently,
P (0) = 0 is recovered in this regime.

These findings demonstrate that, even when φ ̸= 0, the essential asymptotic behavior of the correlation function
remains consistent with the φ = 0 case, while the overall probability P(s < 1) exhibits a nontrivial dependence on
both the phase and the disorder strength.
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(a) (b)

emit

input

emit

input

FIG. S3. (a-b) Schematics of single-photon scattering path involves (a) non-interacting path (b) interacting path for an array
with N = 3.

~0.0055

~0.089
~0.091

~1.33

~0.76 ~0.70

Transmission Reflection

(a)

(g) (h)

(b) (c) (d) (e) (f)

FIG. S4. (a-c) Top: PDFs; Bottom: Solutions of gT = 10−10 for the transmission output. The chosen parameters are φ = 0.01π
and W = 0.15; the chain sizes are indicated above the plots. (d-f) Top: PDFs; Bottom: Solutions of gR = 10−10 for the reflection
output. The chosen system parameters are φ = 0.5π and W = 1; the chain sizes are indicated above the plots. In the top of
(a-f), the results are obtained from 109 disorder realizations. (g-h) PDFs for the transmission (g) and reflection (h) outputs
under different numbers of disorder realizations. The chosen parameters are N = 3, φ = 0.01π, W = 0.15 in (g) and N = 3,
φ = 0.5π, W = 1 in (h).

III. PHYSICAL MECHANISM OF NPPB

Although the solutions presented in the main text correspond to gT = 10−10, one can also obtain solutions for
gT = ϵ, where ϵ can be made arbitrarily close to 0 as computational precision increases. To achieve an NPPB event,
i.e., gT/R = ϵ → 0, the detunings of the qubits must be very finely tuned (see Table. S1 for an example). This
requirement for fine-tuning of parameters for an NPPB event suggests that the underlying physical mechanism is the
destructive interference of quantum paths [5, 6].

To manifest the interference effect, note that the photon correlations depend solely on the single- and two-photon
scattering processes. Consequently, the overall quantum path comprises three contributions: (i) a single-photon
scattering path with probability amplitude ⟨ϕ1±|ψ1⟩; (ii) a two-photon scattering path with probability amplitude
⟨ϕ2±|ψ2⟩; (iii) a free propagation path with probability amplitude 1. From Eqs. (S17-S18), NPPB in the transmission
output involves nearly completely destructive interference among the single-photon scattering path, the two-photon
scattering path, and the free propagation path, whereas NPPB in the reflection output involves nearly completely
destructive interference solely of the two-photon scattering path. Furthermore, the single- and two-photon scattering
paths are determined by transition paths, which are governed by the non-Hermitian effective Hamiltonian Heff . These
transition paths dictate how the qubits are excited by the input and how the emitted photons interfere with each
other.

More specifically, in the single-photon scattering path the fully inverted chain of qubits is first excited by the input
to the state, |G⟩ + αH+|G⟩. Then, the single-excitation component, αH+|G⟩ ∝

∑
m exp(imφ)σ†

m|G⟩, transitions to
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the steady state through an infinite number of transition paths. To see this, we can rewrite

|ψ1⟩ = −(H
(1)
eff )−1H+|G⟩ = lim

z→0

1

z −H
(1)
eff

H+|G⟩ = lim
z→0

(G
(1)
I (z) +G

(1)
C (z))H+|G⟩, (S36)

with

G
(1)
I (z) =

1

z −H
(1)
0

, G
(1)
C (z) =

∞∑
j=1

G
(1)
C,j(z), G

(1)
C,j(z) =

(
G

(1)
I (z)T (1)

)j
G

(1)
I (z). (S37)

Here H0 =
∑

m(∆m − iγ/2)σ†
mσm and T = −iγ

∑
m ̸=n exp(iφ|m− n|)σ†

mσn/2 represent the free and interaction
terms of the non-Hermitian Hamiltonian, respectively; the superscript (1) denotes the single-excitation sector. Now,
assuming that the single-excitation component of the steady state can be written as |ψ1⟩ =

∑
m ψmσ

†
m|G⟩, the

unnormalized probability amplitude is given by ψm = ψI
m + ψC

m, with

ψI
m = lim

z→0
⟨G|σmG(1)

I (z)H+|G⟩ = −
√
γ

2

eimφ

∆m − iγ/2
, ψC

m = −
√
γ

2
lim
z→0

N∑
n=1

∞∑
j=1

einφ⟨G|σmG(1)
C,j(z)σ

†
n|G⟩. (S38)

The first term, ψI
m, represents the steady-state probability amplitude of qubits individually interacting with the

waveguide, while the second term, ψC
m, represents the probability amplitude for qubits collectively interacting with the

waveguide. This collective term involves transitions between different qubits mediated by the long-range interaction
of photons. Such transitions can be viewed as an emission-reabsorption process, whereby photons emitted by one
qubit are reabsorbed by another. Specifically, for the n-th qubit initially excited by the input, the excitation transfers
to the m-th qubit through an infinite sequence of transitions, with the unnormalized probability amplitudes for the
j-th path given by einφ

√
γ/2⟨G|σmG(1)

C,j(z)σ
†
n|G⟩.

After excitation, each excited qubit in the state ψmσ
†
m|G⟩ can emit a single photon into the waveguide with an

(unnormalized) probability amplitude ψm. The propagation of this emitted photon acquires a phase factor exp(±imφ),
where the minus (plus) sign corresponds to the transmission (reflection) output. Consequently, the final probability
amplitude for the single-photon path is given by

⟨sup1±|ψ1⟩ = P I
T/R + P C

T/R, (S39)

with

P I
T/R = −γ

2

N∑
m=1

exp[(0/2)imφ]

∆m − iγ/2
, P C

T/R =

√
γ

2
lim
z→0

N∑
m=1

∞∑
j=1

exp[(−/+)imφ]⟨G|σmG(1)
C,j(z)H+|G⟩. (S40)

The first term, P I
T/R, involves only a sum over the qubit index. It represents the superposition of N paths in which

the m-th path corresponds to a photon emitted from the m-th qubit propagating along the waveguide without being
reabsorbed by other qubits; we refer to this term as the probability amplitude of the “non-interacting transition
path”. Consequently, the second term, P C

T/R, represents the probability amplitude for the case in which the emitted
photon can be reabsorbed by other qubits, and we refer to it as “interacting transition path”. Thus, the final
probability amplitude for the single-photon scattering path, ⟨ϕ1±|ψ1⟩, is the combination of the non-interacting path
and interacting paths. In Fig. S3, we present the single-photon scattering processes for an array with N = 3 as an
example.

As for the two-photon scattering path, the conclusion is similar. In addition to the single-photon events, the two-
photon scattering path, ⟨ϕ2±|ψ2⟩, further involves the two-excitation steady state of the qubit ensemble. After similar
derivations, the probability amplitude for the two-photon scattering path can be expressed as

⟨sup2±|ψ2⟩ = P II
T/R + P IC

T/R + P CI
T/R + P CC

T/R, (S41)
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with 

P II
T/R =

γ2

2

∑
m>n

exp[(0/2)i(m+ n)φ]

(∆m − iγ/2)(∆n − iγ/2)

P IC
T/R = γ lim

z→0

∑
m>n

∞∑
j=1

exp[(−/+)i(m+ n)φ]⟨G|σmσnG(2)
I (z)H+G

(1)
C,j(z)H+|G⟩

P CI
T/R = γ lim

z→0

∑
m>n

∞∑
j=1

exp[(−/+)i(m+ n)φ]⟨G|σmσnG(2)
C,j(z)H+G

(1)
I (z)H+|G⟩

P CC
T/R = γ lim

z→0

∑
m>n

∞∑
j=1,k=1

exp[(−/+)i(m+ n)φ]⟨G|σmσnG(2)
C,j(z)H+G

(1)
C,k(z)H+|G⟩

. (S42)

Similarly, the first term P II
T/R denotes the probability amplitude of the non-interacting path, while the remaining

terms correspond to the probability amplitudes of the interacting path. As a consequence, NPPB in the transmission
output involves nearly completely destructive interference among the single-photon scattering path with a probability
amplitude ⟨ϕ1+|ψ1⟩, the two-photon scattering path with a probability amplitude ⟨ϕ2+|ψ2⟩, and the free propagation
path with a probability amplitude 1; whereas NPPB in the reflection output involves nearly completely destructive
interference solely of the two-photon scattering path with a probability amplitude ⟨ϕ2−|ψ2⟩.

In addition to the physical mechanism of NPPB, the mathematical structure of solutions satisfying gT/R = 0 is
somewhat subtle. For an array of N qubits, the solutions for gT/R = 0 form a (N−2)-dimensional submanifold. This
is because, these solutions are essentially constrained by two conditions

gT/R = 0, ∇gT/R = 0. (S43)

The second condition arises from the fact that the correlation function is analytical and attains its minimum value at
0; hence, its gradient must vanish at 0. Consequently, solutions of gT/R = ϵ with ϵ ̸= 0 form a (N−1)-dimensional
submanifold, since only the condition gT/R = ϵ is imposed. However, as the value of ϵ decreases toward 0, one can
expect that this (N−1)-dimensional submanifold nearly collapses into a (N−2)-dimensional submanifold, corresponding
to the solutions of gT/R = 0. As a result, solutions of gT = 10−10 for an array with N = 3 form near a curve embedded
in the 3D parameters space, as shown in the main text. In Fig. S4, we present solutions of the correlation functions
for chains with N ≥ 3. The solutions are obtained as follows: (i) For N = 3, we first use a nonlinear programming
solver to find the maximum value of

∑
m ∆2

m, the set {∆1,min, ∆2,min, ∆3,min}, under the constraint gT/R = 10−10.
That is,

gT/R

∣∣
∆1=∆1,min,∆2=∆2,min,∆3=∆3,min

= 10−10,
∑
m

∆2
m

∣∣
∆1=∆1,min,∆2=∆2,min,∆3=∆3,min

= min

{∑
m

∆2
m

}
. (S44)

Based on this solution, we then apply the Gauss-Newton algorithm to automatically find solutions to the equation
gT/R = 10−10 until a maximum number of solutions, Ksols, is reached. Here, we set Ksols = 105. (ii) For N > 3, we
similarly find the minimum of

∑
m ∆2

m under the constraints gT/R = 10−10; while in the Gauss-Newton algorithm, we
fix the first (N − 3) detunings and solve the equation gT/R = 10−10 for the last three detunings. Due to the existence
of NPPB, the PDF tends to be constant at s ≪ 1, with fluctuations near that constant, as shown in Figs. S4(a-f).
These fluctuations arise from the standard deviation inherent in the numerical method used to estimate the PDF,
and they can be effectively suppressed by increasing the number of disorder realizations [see Figs. S4(g-h)]. Details
regarding the numerical method are discussed in the last section.

IV. CORRELATION FUNCTION IN THE WEAK- AND STRONG-DISORDER LIMITS

A. Weak-disorder limit (W ≪ 1)

In the weak-disorder limit, one can expect that the photon correlations do not deviate significantly from their clean
counterparts. This means that for the reflection output, the correlation functions are expected to be distributed
around the value of gR for W = 0 [see Fig. S5(a)]; while for the transmission output, the correlation functions are
expected to be distributed around gT ∼ +∞. To confirm this statement, we present the PDFs in Figs. S5(b-i). For the
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Reflection Transmission
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FIG. S5. (a) Correlation functions for the reflection output in the absence of disorder. (b-e) PDFs for the reflection output
versus disorder strength. Parameters are indicated above the plots. (f-i) PDFs for the reflection output versus disorder strength.
Parameters are the same as (b-e). In all plots, the results are obtained from 107 disorder realizations.

reflection output [see Figs. S5(f-i)], the shapes of P (s) become increasingly sharper around {1, 0.444, 1, 1}, as disorder
strength decreases. The peaks of the PDFs correspond to the values of the correlation function in the clean limit
(W = 0). For the transmission output, as the disorder strength decreases, when φ = 0.5π the region where P (s) ̸= 0
shifts further towards infinity; and when φ = 0, the value of P (s) decreases for smaller s while it increases for larger
s [see Figs. S5(b-e)]. Both of these results indicate that gT in the weak-disorder limit is distributed around infinity.

B. Strong-disorder limit (W ≫ 1)

In the strong-disorder limit, one can expect that the photon-mediated interaction between qubits is significantly
quenched [see Fig. S6(a)]. This indicates that the probability amplitudes of interacting paths are extremely suppressed,
so that one can consider only the probability amplitudes of non-interacting paths. In this situation, the correlation
functions can be solved exactly, as derived in the previous section. After some calculations, the truncated steady
states are given by

|ψ̃1⟩ = −γ
2

N∑
m=1

exp(imφ)

∆m − iγ/2
σ†
m|G⟩, |ψ̃2⟩ = |ψ̃1⟩ ⊗ |ψ̃1⟩ = γ2

2

∑
m>n

exp(i(m+ n)φ)

(∆m − iγ/2)(∆n − iγ/2)
σ†
mσ

†
n|G⟩. (S45)

Thus,

gT =
|1− 2iP I

T − P II
T |2

|1− iP I
T |4

=
|1 + i

∑
m(∆m − i/2)−1 −

∑
m>n(∆m − i/2)−1(∆n − i/2)−1/2|2

|1 + i
∑

m(∆m − i/2)−1/2|4
(S46)

and

gR =
|P II

R |2

|P I
R |4

=
|2
∑

m>n
e2i(m+n)φ

(∆m−i/2)(∆n−i/2) |
2

|
∑

m
e2imφ

∆m−i/2 |4
. (S47)

From Eq. (S46), the correlation function in the transmission output is independent of the distance between qubits,
i.e., independent of φ. In addition, solutions of gT = 0 exist when φ = 0, provided that N ≥ 3. For instance, one can
easily verify that gT = 0 if ∆i = 1/2 and ∆j = −1/2 for i ̸= j. However, these results do not contradict those obtained
from Eq. (S15), where the correlation functions are distance-dependent and have no solutions satisfying gT = 0 when
φ = 0. This discrepancy arises because Eqs. (S46,S47) are valid only in the sense of disorder averaging.
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0.4 0.8
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FIG. S6. (a) Schematics of the systems in the weak- and intermediate-disorder regimes (left panel); and in the strong-disorder
regime (right panel). Here Tmn = −i exp(i|m− n|φ)σ†

mσn/2 with m ̸= n. (b,c) Fidelity between the truncated steady
state

{
|ψ1⟩, |ψ2⟩

}
obtained from the non-Hermitian Hamiltonian with long-range interactions and the truncated steady state{

|ψ̃1⟩, |ψ̃2⟩
}

obtained from Eq. (S45). (d,e) Hellinger distance between the PDFs obtained from Eqs. (S15-S16) and those
obtained from Eqs. (S46,S47). Here we plot H̃(P, P̃ ) = 1− H̃(P, P̃ ). N = 10 in plots (b-e). The results are obtained from 104

disorder realizations. (f,g) Probability of PA and P (10−3) for the transmission output versus disorder strength for different
system sizes. The dashed lines indicate slopes of W−3. These results are obtained from Eq. (S46) using 1010 disorder realizations.
(h,i) Probability of PA and P (10−3) for the reflection output versus disorder strength for different system sizes and phases.
These results are obtained from Eq. (S47) using 1010 disorder realizations. Different colored lines correspond to different chain
sizes (the same as those in (f,g)). In the top panel of (i), the parameters are the same as in (h) (labeled within the plot), and
in the bottom panel of (i), we plot P(s < 1)− 2/3 for N = 10.

To examine the validity of Eqs. (S46,S47), we numerically calculate the normalized fidelity

F1 =
|⟨ψ̃1|ψ1⟩|√

|⟨ψ̃1|ψ̃1⟩||⟨ψ1|ψ1⟩|
, F2 =

|⟨ψ̃2|ψ2⟩|√
|⟨ψ̃2|ψ̃2⟩||⟨ψ2|ψ2⟩|

. (S48)

Since photon correlations are fully encoded in the truncated steady states, the closer the normalized fidelity is to unity,
the closer the values of the two types of correlation functions (obtained from Eqs. (S15,S16) and Eqs. (S46,S47)) will
be. We also investigate the Hellinger distance between the PDFs P (s) obtained from Eqs. (S15-S16) and the PDFs
P̃ (s) obtained from Eqs. (S46,S47). The Hellinger distance between two probability density functions, q(x) and p(x),
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FIG. S7. Correlation statistics of the transmission output. (a) Probability of PA versus γnw and W . Here N = 1.
(b) PDFs for different γnw, with the values of γnw being indicated besides each curve. The chosen parameters are
{N = 3, φ = 0.04π,W = 0.14} (top) and {N = 3, φ = 0,W = 1} (bottom), which are the same as Figs. 2(a,b) of the main
text. These results are obtained from 1010 disorder realizations.

is defined as

H(q(x), p(x)) =
1

2

∫ (√
p(x)−

√
q(x)

)2
dx . (S49)

The Hellinger distance measures the similarity between p(x) and q(x); its values range from 0 to 1, with values closer
to 0 indicating that the two distributions are more similar. From Figs. S6(b-e), one can see that (i) the fidelity is
close to 1 for both the single- and two-excitation steady states as the disorder strength increases, and (ii) the value of
H(P (s), P̃ (s)) approaches 0 both for both the transmission and reflection outputs as the disorder strength increases.
This implies that Eqs. (S46,S47) are indeed good approximations in the strong-disorder limit. Note that, although we
only calculated the case of N = 10 here, similar results can be obtained for other chain sizes.

In Figs. S6(f-i), we present P (10−3) and P(s < 1) versus different disorder strengths. For the transmission output,
our results indicate that both P (10−3) and P(s < 1) decrease as the disorder strength increases. This decrease follows
a scaling of the form W−3, regardless of the chain size. For the reflection output, the probability of NPPB increases
with increasing disorder strength, while the probability of PA saturates to a constant in the limit W ≫ 1. This
constant is close to 2/3, i.e., the value of P(s < 1) for a system with N = 2 and φ = 0. This result is also consistent
with Fig. 4(c) of the main text, where P(s < 1) is calculated based on Eq. (S18).

V. EFFECTS OF LOSSES ON NON-WAVEGUIDE MODES

In this section, we consider losses to modes external to the waveguide. With such losses, the non-Hermitian
Hamiltonian becomes

Heff =

N∑
m,n=1

(
∆mδm,n − iγnw

2
δm,n − iγ

2
ei|m−n|φ

)
σ†
mσn, (S50)

where γnw denotes the decay rate to non-waveguide modes. Again, we set γ = 1 in the remainder of this section and
use the symbol β to represent the coupling efficiency. The definition of β is β = γ/(γ + γnw) = (1 + γnw)

−1. In the
main text, we set γnw = 0, corresponding to a unit value of the coupling efficiency.
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A. Transmission output

We first consider the single-qubit system, for which P(s < 1) and P (0) can be analytically calculated. In this case,
the correlation function is given by

gT =
(4∆2

1 + (γnw − 1)2)(4∆2
1 + (γnw + 1)2)

(4∆2
1 + γ2nw)

2
. (S51)

Before proceeding to disordered systems, let us first focus on clean systems. For a resonant qubit, i.e., ∆1 = 0, the
correlation function is gT = (γ2nw − 1)2/γ4nw, which satisfies gT < 1 for γnw > 1/

√
2 (β ≲ 0.58) and gT = 0 for γnw = 1

(β = 1/2). Unlike lossless system, here the transmission output can produce either antibunched or perfectly blockaded
photons by appropriately adjusting the coupling efficiency.

Considering the effects of disorder, the probability of PA is calculated as

P(s < 1) =
1√
2πW

∫ ∞

−∞
e−∆2

1/2W
2

Θ

(
(4∆2

1 + (γnw − 1)2)(4∆2
1 + (γnw + 1)2)

(4∆2
1 + γ2nw)

2
− 1

)
d∆1

=
1√
2πW

∫ γ2
nw
4 − 1

8

0

e−∆1/2W
2

√
∆1

Θ

(
γnw − 1√

2

)
d∆1

= erf

(√
γ2nw/4− 1/8√

2W

)
Θ

(
γnw − 1√

2

)
,

(S52)

where erf(x) is the error function. This result shows that when a single qubit is strongly coupled to the waveguide,
PA in the transmission output is impossible. By reducing the coupling efficiency until reaching a critical value
βcri = 1/(1 + 1/

√
2) ≈ 0.58, PA events can be observed. For β < βcri, the probability of PA increases as the coupling

efficiency decreases, as shown in Fig. S7(a).
As for P (0), we first calculate the PDF. After performing the integral (similar to Eq. (S20)), the PDF for s < 1 is

given by

P (s) = − 1√
2πW

(−1 +
√
s+ 4(1− s)γ2nw)

3

4
√
−1 + (s− 1)γ2nw +

√
s+ 4(1− s)γ2nw(s− 1)2(4(s− 1)γ2nw − s+

√
s+ 4(1− s)γ2nw)(1− s)3/2

×

exp

(
−1 + (s− 1)γ2nw +

√
s+ 4(1− s)γ2nw

(8s− 8)W 2

) ,

(S53)
where γnw > 1/

√
2 and 1 + γ−4

nw − 2γ−2
nw < s < 1. From this result, P (0) = 0 for β ̸= 1/2 (γnw ̸= 1/2); only when the

coupling efficiency is exactly 1/2, P (s) diverges as P (s) ∼ (W
√
s)−1, whereby PPB events become possible.

In Figs. S8(a,b), we present the numerical results for the probability of PA for N = 5 and N = 10. These results
show that the probability of PA can be efficiently enhanced by decreasing the coupling efficiency (by increasing γnw).
In particular, the probability of PA can reach unit provided that the chain is highly dense, i.e., φ ≪ 1. We then
calculate the PDFs for the system with N = 3 [see Fig. S7](b). When φ ̸= 0, the results show that as the coupling
efficiency decreases, the PDFs still exhibit a constant behavior at s≪ 1 as long as β ≳ 0.45; this behavior disappears
for β ≲ 0.45. For β ≳ 0.45, the value of P (s) at s ≪ 1 can even be larger than that for lossless systems (γnw = 0).
This is observed, for instance, when γnw = 1.2 (β ≊ 0.45). Therefore, we still use P (10−3) as a measure for the
probability of NPPB and present the results for different system parameters in Figs. S8(c,d). The results show that
the probability of NPPB attains a larger value when the coupling efficiency is not too high (β ≲ 0.5). Moreover, when
φ = 0, the generation of strongly antibunched photon is impossible [see Fig. S7], similar to the system with β = 1.

B. Reflection

In Figs. S9(a,b), we present the results of the probability of PA for N = 5 and N = 10. As the coupling efficiency
decreases, a high probability of PA can only be achieved when the chain is highly dense, which is similar to the
transmission output. Besides, it maintains a finite value even for strong disorder strength. This is because the effects
of losses will be suppressed by strong disorder. We also investigate the behavior of P (s0) at s0 ≪ 1 when W ≫ 1. In
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FIG. S8. Correlation statistics of the transmission output. (a,b) Probability of PA versus φ and W for different N and γnw.
(c,d) P (10−3) versus φ and W for different N and γnw. These results for P(s < 1) (P (10−3)) are obtained from 54 (5 × 106)
disorder realizations.

this limit, the correlation function is given by

gR =
|P II

R |2

|P I
R |4

=
|2
∑

m>n
e2i(m+n)φ

(∆m−i/2−iγnw/2)(∆n−i/2−iγnw/2) |
2

|
∑

m
e2imφ

∆m−i/2−iγnw/2 |4
. (S54)

The numerical results in Figs. S9(c,d) show clearly that the probability of NPPB increases with increasing disorder
strength, which is similar to systems where β = 1.

VI. EFFECTS OF CHIRALITY IN COUPLING TO WAVEGUIDE MODES

In this section, we consider chirality in coupling to waveguide modes, i.e., γT ̸= γR. We define the chirality as
α = γR/γT, and we set γT = 1 as the energy unit. Figures S10(a1) show the photon correaltions for transmission
output, for system with chain size N = 10. The chirality together with the losses on non-waveguide modes significantly
affect photon correlations. For transmission output, when qubits weakly coupled to waveguide (β ≪ 1), photons
maintain the coherence for all values of chirality; while when qubits strongly coupled to waveguide (β ≈ 1), photons
exhibit strong bunching for α ≳ 0.5, and antibunched even strongly antibunched photon emerge by further increasing
chirality (decreasing α). When the qubits are weakly coupled to the waveguide in a perfectly chiral fashion, the
transmitted photon exhibit Poisson statistics for small system size, N = 10. As the chain size increases, the output
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FIG. S9. Correlation statistics of the reflection output. (a,b) Probability of versus φ and W for different N and γnw. (c,d)
Solid lines denote P (10µ) versus φ and W for different N and γnw, with the values of µ = −3, −7. Dashed lines represent the
numerical fits of ∼W . These results for P(s < 1) (P (s0)) are obtained from 54 (5× 1010) disorder realizations.

becomes antibunched and approaches near-perfect antibunching at the optimal chain size N ≈ 183; beyond this
optimal chain size the output light becomes bunched as N increases further [see Fig. S10(a2)]. Note that these
behaviors are quantitatively consistent with Fig. 3a in [10].

In the presence of disorder, Figs. S10(b1-c2) show P(s < 1) and P (10−3) for the case of complete transimission-
chirality (α = 0). On the one hand, the probability of photon antibunching approach unit when qubits weakly coupled
to waveguide, and rapidly decrease with increasing coupling strength. On the other hand, the probability of strong
photon antibunching exhibits non-negligible value only for 0.1 ≲ β ≲ 0.4. Notably, for the chain size investigated
here N = 10, 20, these behaviors of P(s < 1) and P (10−3) do not change significantly with changing N . Considering
that when N ∼ 102, the qubit number significantly affects the correlations even without the presence of disorder, we
expect that P(s < 1) and P (10−3) may show quite distinctive behaviors with further increasing N , in comparison
with the results provided here.

VII. EFFECTS OF FINITE BANDWIDTH OF INPUT STATE

In this section, we consider the effects of finite bandwidth of the input state, which should be compared with the
single-mode (zero bandwidth) coherent input state considered in the main text. We assume that the input state has
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FIG. S10. (a1) Photon correlations in the transmission output versus chirality and coupling strength for N = 10 and φ = 0.
(a2) Photon correlations in the transmission output versus chain size. Here the chosen parameters are α = 0 and β = 0.0083.
(b1,c1) Probability of photon antibunching in the transmission output versus disorder and coupling strength. N = 10 in (b1)
and N = 20 in (c1). (b2,c2) P (10−3) in the transmission output versus disorder and coupling strength. N = 10 in (b2) and
N = 20 in (c2). α = 0 in (b1-c2). Results are obtained from 105 disorder realizations.

the form

ρE(t0) ∝ exp

(
n̄

∫ ∞

−∞
α(ω)aT(ω)− α(ω)a†T(ω) dω

)
. (S55)

Here, α(ω) controls the profile of the input state and is required to be normalized, i.e.,
∫
(α(ω))2 dω = 1, such that

n̄2 =
∫∞
−∞ Tr

[
ρEa

†
T(ω)aT(ω)

]
dω represents the total number of photons in the input state, and we still consider the

weak-input limit n̄2 ≪ 1. To be able to compare with the case of zero bandwidth, we require α(ω) to exhibit two
following generic features: (i) α(ω) approaches its maximum at ω0 and rapidly decreases to zero for ω away from ω0;
(ii) a characteristic bandwidth denoted by σω is able to characterize the width of α(ω), such that σω → 0 (σω → ∞)
corresponds to a ideal zero-bandwidth input (δ-pulse input in the time domain). Hereafter, we consider α(ω) to be
Lorentz profile, i.e., (we assume γ = 1)

α(ω) =
1

N
σω

(ω − ω0)2 + σ2
ω

, (S56)

where N = (π/2σω)
1/2 denotes the normalization factor. The total number of photons in the time domain is given

by

n̄2(t) =

∫
Tr
{
a†T(ω, t)aT(ω, t)ρE(t0)

}
dω =

1√
2π

∫
Tr
{
e−iω(t−t0)a†T(ω)aT(ω)ρE(t0)

}
dω = n̄2

e−σω|t−t0|(1 + σω|t− t0|)√
2π

.

(S57)
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This expression demonstrates that the input is also a wave package in the time domain, where n̄2(t) approaches its
maximum at t = t0 and rapidly decreases for t away from t0.

In this case, the master equation is still given by Eq. (S8), with

f(t− t0,md) = n̄
√
σωe

−σω|t−t0−md/vg|e−iω0(t−t0−md/vg) ≈ n̄
√
σωe

−σω|t−t0|e−iω0(t−t0), (S58)

where we assume that photons are injected far from the atomic ensemble, such that t0 +md/vg ≈ t0. Consequently,
the correlation function can be obtained as

gµ(τ, τ) =
Tr
[
ρ(τ)a†µ,out(τ)a

†
µ,out(τ)aµ,out(τ)aµ,out(τ)

]
Tr
[
ρ(τ)a†µ,out(τ)aµ,out(τ)

]2 , (S59)

where ρ(τ) denotes the density matrix of atomic ensemble governed by the master equation. The input-output
relations read as

aT,out(τ) = aT,in(τ)− i

√
γ

2

∑
m

e−imdσm(τ), aR,out(τ) = −i
√
γ

2

∑
m

eimdσm(τ), (S60)

with

aT,in(τ) =
1√
2π

∫
Tr
[
ρE(t0)e

−iω(τ−t0)aT(ω, t0)
]
dω = n̄

√
σωe

−σω|τ−t0|e−iω0(τ−t0). (S61)

Before proceeding to present the results for the correlation functions, we stress that, in addition to the bandwidth
σω, the evolution time τ will also significantly affect the photon correlation. For a ideal zero-bandwidth input, the
correlation functions gµ are time-independent for t≫ 1, and thus their values can be obtained from the steady state
of the atomic ensemble. This actually arises from the fact that the drive strength ∝ |f(t− t0,md)| remains a constant
in the time domain. However, for a finite-bandwidth input, the drive strength is now time-dependent, therefore, one
should expect that gµ(τ, τ) is also dependent on the evolution time τ .

In Fig. S11(a), we present the photon correlation in the transmission output for N = 1 with ∆1 = 0. For a ideal
zero-bandwidth input, gT = ∞. Our result reveals that gT(τ, τ) generally recovers its zero-bandwidth counterpart
when σω ≪ 1. This is because, when the bandwidth is much smaller than the individual decay rate γ, the input can
be approximately considered as a zero-bandwidth coherent state, resulting in gT(τ, τ) ≫ 1. Increasing σω, gT(τ, τ)
becomes sensitive to the evolution time τ : its value still approximately recovers the zero-bandwidth counterpart for
τ ∼ t0; while for |τ − t0| ≫ 1, gT(τ, τ) significantly deviates from infinity, which can even approaches near zero.
In Figs. S11(b,c), we present the probability of PA for system with N = 2 and φ = 0, and the probability density
functions for system with N = 3 and φ = 0.5π in the reflection output. The obtained results show good agreement
with their zero-bandwidth counterpart as long as σω/γ ≲ 0.1, i.e., P(s < 1) = 2/3 and P (s≪ 1) ̸= 0.

In summary, when one considers the effect of finite band width of input state, the obtained results show good agree-
ment with their zero-bandwidth counterpart, as long as the bandwidth σω is much smaller than the individual decay
rate γ, and the detection time τ is appropriately chosen. In typical waveguide QED platforms, γ ∼ MHz, therefore,
the required band width should be σω ≲ KHz, which can be achieved in the state-of-art waveguide platforms [7–9].

VIII. NUMERICAL CALCULATIONS OF P(s < 1) AND P (s≪ 1) FOR MANY-QUBIT SYSTEM

A. Calculation about P(s < 1)

The definition of P(s < 1) is

P(s < 1) =

∫ 1

0

P (s)ds =

∫ ∞

−∞
· · ·
∫ ∞

−∞
Θ(gµ − 1)p(∆1,∆2,· · ·,∆N )d∆1 · · · d∆N . (S62)
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2/3

(a) (b) (c)

FIG. S11. (a) Photon correlation in the transmission versus bandwidth and evolution time for system with N = 1 and ∆1 = 0.
(b) Probability of photon antibunching in the reflection output versus band width for system with N = 2 and φ = 0. Results
are obtained from 10000 disorder realizations. (c) Probability density function in the reflection output for different values of
band width for system with N = 3 and φ = 0.5π. Results are obtained from 105 disorder realizations. τ = t0 in (b) and (c).
n̄ = 0.1 in (a-c).

2/3

(a) (b) (c)

FIG. S12. (a) Probability of PA for the reflection output from the Monte Carlo integration. The result is obtained from 102

estimations. Red dots and the shaded area denote the mean value and the standard deviation of the estimations, respectively.
Here the chosen parameter are N = 2 and φ = 0, so that the solid line represents the exact value of P(s < 1), which is
equal to 2/3. (b-c) PDFs for the transmission (b) and reflection (c) outputs from the Monte Carlo integration. The result
is obtained from 102 estimations. Red dots and the shaded area denote the mean value and the standard deviation from
Eq. (S64), respectively. The number of disorder realizations is K = 50000. The solid blue lines represent the results from
K = 1011 disorder realizations. Here the chosen parameters are N = 3, φ = 0.04π, and W = 0.15 in (b); N = 3, φ = 0.5π,
W = 1 in (c).

According to the Monte Carlo method, this integral can be approximately evaluated by

P(s < 1) = E[Θ(gµ − 1)] ≈ 1

K

K∑
j=1

Θ
(
gµ
∣∣
∆⃗j

− 1
)
, (S63)

where ∆⃗j = {∆1,j , · · · ,∆N,j} denotes the j-th sample drawn from the i.i.d Gaussian distribution. The sample size K
should be large enough to reduce the variance of the estimation in Eq. (S63), which is given by V [Θ(gµ − 1)] ∼ K−1.
In Fig. S12(a), we present E[Θ(gµ − 1)] for the reflection output versus the sample size K, with N = 2 and φ = 0.
The mean and standard deviation are obtained from 102 estimations of Eq. (S63). As shown, K ∼ 104 is sufficient
to reduce V [Θ(gµ − 1)], so that the mean value deviate only slightly from the exact value of 2/3, even for a single
estimation. Therefore, in the main text, we set K = 50000 and perform a single estimation for all plots concerning
P(s < 1).
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B. Calculation about P (s≪ 1)

Similarly, P (s) can be approximately estimated by the Monte Carlo method according to

P (s) = E[δ(gµ − s)] ≈ 1

K

K∑
j=1

lim
ε→0

δ̃ε

(
gµ
∣∣
∆⃗j

− s
)
, (S64)

where δ̃ε(x) represents a function that weakly converges to the Dirac-delta function in the limit ε→ 0. Compare to the
estimation in Eq. (S63), the estimation of P (s), especially at s≪ 1, requires a larger number of disorder realizations
to achieve an acceptable error. This is because the number of events s − ϵ < gµ < s + ϵ with ϵ ≪ s decreases with
decreasing s. To see this, note that the probability of the event s0 − ϵ < gµ < s0 + ϵ, with ϵ≪ s0, is given by

P(s0 − ϵ < s < s0 + ϵ) =

∫ s0+ϵ

s0−ϵ

P (s) ds ∼ P (s0)ϵ. (S65)

Since we have shown that P (s0) ∼ constant for s0 ≪ 1, this probability decreases as s0 decreases, due to the condition
ϵ ≪ s0. In fact, the constant form of P (s) implies that this probability scales as s; i.e., P(s0 − ϵ < s < s0 + ϵ) ∼ s
if we let ϵ = ηs0 with η ≪ 1. The decrease of P(s0 − ϵ < s < s0 + ϵ) ∼ s means that the number of events with
s− ϵ < gµ < s+ ϵ also decreases as s decreases. As a result, many estimations from Eq. (S64) for s≪ 1 will yield zero
if K is not sufficiently large, because the value of δ̃ϵ(x) is proportional to the number of such events. Meanwhile, the
computational cost increases rapidly with K, especially for large chain size. To balance the accuracy of the Monte
Carlo integration results with the computational cost, an appropriate value of K must be chosen.

In Figs. S12(b,c), we compare the PDFs obtained from K = 50000 with those obtained from K = 1011. For
K = 50000, we perform 102 estimations so that the total sample size is 56. For K = 1011, the variation in the
estimation is negligible, and it can be regarded as the exact PDF. Compared to the estimation of Eq. (S63), the
variation increases as s decreases s and becomes non-negligible for s ≪ 1. However, despite the increased variation,
the mean values from 102 are very close to the exact value. Therefore, unless otherwise noted, we set K = 50000 and
perform 102 estimations using Eq. (S64) to obtain all plots related to P (10−3) in the main text.
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