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I. PHYSICAL MECHANISM

To gain intuitive insight into the physical mechanism behind Anderson delocalization accompanied by the re-
emergence of the non-Hermitian skin effect (NHSE) under anti-symmetrically correlated disorder, we consider the
regime of strong inter-chain coupling. Specifically, we assume |t| > |J|, |y £ A|,|4;|, for both symmetric and anti-
symmetric disorder configurations. In this limit, inter-chain hopping dominates the dynamics, allowing us to treat
the intra-chain hopping terms as perturbations. The Hamiltonian # is thus decomposed as Hy = 7:1,0,i + 1>, with the
unperturbed part reading

,)LA[()d: = Z |:t (a;rf)j + HC) + Aj (CL;L-CLJ' :l: l;ji)j)] , (Sl)
J
and the perturbed part as
V=3 [+ Nalagen + (v = Nalagag] + 307 (B0 + He), (S2)
J J
where 7:l+ denotes the coupled chains under the symmetric disorder configuration, and #_ under the anti-symmetric
disorder configuration.

In the strong inter-chain coupling limit, with |¢t| > |J|, |y £ A|,|A;|, Ho,+ can be rewritten as

#O,i = Z Ein3>djn,jé‘7rz,jy (SS)
Jjym==%
where &4 ; and §ij are
G = (Fa; +b;)/V2, (54)

=A%+t and &8 =4,/t2+ A2 (S5)

In the new basis |ay,j) = ézl’j |0), we write Hyas Hy = ﬁo,i + Hiadder, With
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In Eq. (S6), we have neglected disorder in the hopping terms, which is quite small for |A;| > [J], |y £ A|.

In this new basis, the Hamiltonian 7—7:& takes the form of a nonreciprocal Creutz ladder, denoted 'r':lladdcrl, subject
to a disordered onsite potential 7%0, +. The disorder configuration depends on the symmetry of correlations: 7:[0,4_
for symmetric and 7:107_ for anti-symmetric disorder. For the parameter regime considered in the main text, ﬁladder
exhibits the non-Hermitian skin effect (NHSE), with all eigenmodes accumulating at the left boundary. In the
symmetric disorder case, the effective onsite potential on each chain of the Creutz ladder is given by A; £¢ (A, €
[-W/2, W/2] denotes random disorder). This disorder leads to the Anderson localization when the disorder strength
W becomes sufficiently large.

However, in the case of anti-symmetric disorder, the onsite random potential in each leg of the ladder takes the form
+./t2 + A% (A; € [-W/2, W/2] denotes random disorder). Under this configuration, the effective disorder strength
W in the Creutz ladder is bounded as W < W?2/|8t|. In the strong inter-chain coupling limit, where [t| > |A;] (i.e.,
|t| > W), this results in a disorder strength W that is significantly weaker than the nonreciprocal hopping amplitude
. While even infinitesimal disorder induces Anderson localization in one-dimensional Hermitian systems?, it has been
shown that the interplay between nonreciprocal hopping and disorder can instead lead to an Anderson transition®*.
Consequently, as the inter-chain hopping t increases, the NHSE can re-emerge, even in the presence of arbitrarily

strong disorder, provided the disorder remains anti-symmetric.

II. EIGENENERGY-RESOLVED IPR AND mcom

In the main text, we utilize the IPR and mcom, averaged over all eigenstates and disorder realizations, to distinguish
between skin-mode localization and Anderson localization. By averaging over the full spectrum, we capture the
collective localization behavior of the system. Although the eigenstate ensemble may contain both localized and
extended states, the averaged IPR reflects the system’s overall tendency toward localization or delocalization. In
combination with the IPR, the averaged mcom serves as an effective diagnostic tool for identifying skin-mode
localization, characterized by mcom ~ 1 or mcom ~ N, and for distinguishing it from Anderson localization, which
typically yields mcom ~ N/2. Without this distinction, the two types of localization—skin-mode and Anderson—
would be mixed.

In this section, we present eigenenergy-resolved results for IPR,, and mcom,,, averaged over disorder realizations.
These results demonstrate that IPR and mcom, averaged over all eigenstates and disorder realizations, can indeed
be effectively employed to detect localization and to distinguish between skin-mode and Anderson localization in the
system.

Each skin mode can be identified by evaluating the eigenenergy-resolved mean center of mass mcom,, which
quantifies the spatial localization of the squared amplitude of each eigenstate, averaged over disorder realizations.

The eigenenergy-resolved mcom is defined as

SN G (An(h))
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mcom,, =

with (A, (j)) being

(Aa()) = (12D + [P GI) ) (S8)

where (-) indicates disorder averaging. When mcom,, is close to 1 or N, it indicates that the eigenstate is localized at
the boundaries, signaling the emergence of the NHSE. In contrast, Anderson localization typically yields mcom ~ N/2,

reflecting bulk localization.
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FIG. S1. Eigenenergy-resolved IPR,, and mcom,, of the coupled chain, subject to anti-symmetrically correlated disorder with
Ag.a) = ng.b) = Aj, plotted as a function of coupling strength ¢ for W/J = 12 and A\/J = 1 (a,b), and as a function of
asymmetric hopping strength A\ for W/J = 12 and ¢/J = 28 (d,e). The corresponding IPR averaged over all the eigenstates
are shown in (c,f). The remaining parameters are fixed at v/J = 1 and N = 200. All results are averaged over 2000 disorder

realizations.

Figure S1 shows the eigenenergy-resolved IPR,, of the coupled chain, subject to anti-symmetrically correlated
disorder with Ag.a) = —Agb) = A, as functions of the inter-chain hopping strength ¢ in (a) and the asymmetric intra-
chain hopping strength A in (d). The localized and extended states are clearly resolved by the IPR,,: a finite value
IPR,, ~ 1/M (with M < N) indicates localization, while IPR,, ~ 1/(2N) corresponds to extended states. These
localization features are also reflected in the IPR averaged over all eigenstates and disorder realizations, as shown in
Fig. S1(c,f). However, it is important to note that the IPR alone cannot distinguish between skin-mode localization
and Anderson localization.

In order to distinguish skin-mode localization from Anderson localization, we calculate the eigenenergy-resolved
mcom,, as functions of the inter-chain hopping strength ¢ [see Fig. S1(b)] and the asymmetric intra-chain hopping
strength A [see Fig. S1(e)]. As either ¢ or A increases, the system undergoes a transition: initially, all eigenstates are
Anderson localized, characterized by mcom,, ~ N/2. Then, the system enters a regime where skin-mode localization
and Anderson localization coexist. Eventually, all states become skin modes with mcom, ~ 1. These distinct
regimes are also captured by the mcom averaged over all eigenstates [see Fig. S1(c,f)]: mcom ~ N/2 indicates
Anderson localization, mcom ~ 1 signals skin-mode localization, and intermediate values reflect the coexistence of

both localization types.

III. FINITE-SIZE EFFECTS

In the main text, the Anderson localization-delocalization transition is investigated using a fixed lattice size. In

this section, we examine the impact of varying the lattice size IV on the localization behavior and demonstrate that
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FIG. S2. Impact of lattice size on Anderson localization and delocalization. IPR and mcom averaged over all the eigenstates,
subject to anti-symmetric disorder, as a function of lattice size N (a) for ¢/J =1 and A\/J =1, (b) for t/J =5 and A\/J =1, (c)
for t/J =28 and A\/J =1, (d) for t/J =1and \/J = 1.5, (e) for ¢/J =5 and \/J = 1.5, and (f) for t/J = 28 and A\/J = 1.5.
The results are averaged over 1200 disorder realizations with v/J =1 and W/J = 12.

the conclusions presented in the main text remain unchanged as the lattice size is further increased.

Figure S2 shows the IPR and mcom, averaged over all eigenstates and subject to anti-symmetric disorder, as
functions of the lattice size N for different inter-chain coupling strengths ¢ and asymmetric intra-chain hopping
amplitudes A. For Anderson-localized phases with mcom ~ N/2 [see Fig. S2(a,d)] and for skin-mode localization
with mcom ~ 1 [see Fig. S2(c,f)], the phase identification remains robust and largely independent of system size. In
both cases, the mcom serves as a clear and reliable phase indicator. However, in the coexistence regime of Anderson
and skin-mode localization [see Fig. S2(b,e)], the mcom becomes less effective for small system sizes (N < 100), as
its value remains low and does not distinguish the mixed phase well from pure skin-mode localization. To resolve
this phase more clearly, the mcom should be evaluated in larger systems. In contrast, the IPR provides a consistent

indicator of localization properties even for a small-size system size.

IV. BIORTHOGONAL INVERSE PARTICIPATION RATIO

In the main text, we use the inverse participation ratio (IPR) based on right eigenstates to characterize localization

properties. As an alternative, one can also consider the biorthogonal inverse participation ratio (BIPR)®, defined as

S (L DRI R G2 + [0 G) PR (1)

BIPR,, = . - >
(s L DI RO + ) (DI ()1)

; (59)
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FIG. S3. Eigenenergy-resolved IPR,, (a) and BIPR,, (b) of the coupled chain, subject to anti-symmetrically correlated disorder
with Ag‘” = ng.b) = Aj, plotted as a function of coupling strength ¢. The corresponding IPR and BIPR averaged over all the
eigenstates are shown in (c¢). The remaining parameters are fixed at W/J = 12, v/J = 1 and N = 200. All results are averaged

over 1200 disorder realizations.

where ¢£LG)L and %%z (w;ai and wf;‘}%) are left and right eigenstates in chain a (b) . Here, BIPR,, ~ 1/(2N) for an
extended eigenstate 1, and vanishes as N — oo, while for a state localized over M <« N sites, BIPR,, ~ 1/M and
remains finite in the thermodynamic limit.

Figure S3 presents the eigenenergy-resolved IPR,, (a) and BIPR,, (b) for the coupled chain under anti-symmetrically
correlated disorder, plotted as functions of the coupling strength ¢. The corresponding IPR and BIPR averaged over
all eigenstates are shown in panel (¢). While the values of the IPR and BIPR differ slightly, both consistently indicate
that the system remains in a localized phase, as evidenced by their finite values. This confirms that either measure
can effectively characterize localization. Therefore, using the IPR based on the right eigenstates alone is sufficient to

distinguish localized states from extended ones.

V. QUENCHED DYNAMICS

The Anderson delocalization accompanied by re-emergent skin modes induced by anti-symmetric disorder can be
further examined through the study of quenched evolution dynamics. The initial state is chosen as a Gaussian
wavepacket as 1o(j) = exp[—(j — jo)?/20?] /N centered at the site jo, where A is the normalization constant, and
o denotes the wavepacket width. The wavefunction at time 7 is obtained by numerically calculating |¢(j,7)) =
exp(—iHT) |to(j)). Figure S4 plots quenched dynamics of density distributions for different A subjected to anti-
symmetric disorder, where the hopping strength suddenly changes from t/J = 1 to t/J = 28 at time 7 = 50.
For the Hermitian case with A/J = 0 [see Fig. S4(al)], the initial localized mode remains mostly localized after
the quench. The slight spreading of the density distribution is attributed to finite-size effects. As the asymmetric
hopping parameter A increases, the wavepacket initially localized at the center of the ladder becomes delocalized, and
propagates towards the left boundary after the quench, and it is finally localized at the boundary, due to the interplay

of the NHSE, inter-chain coupling and anti-symmetric disorder.

VI. ROBUSTNESS OF ANDERSON DELOCALIZATION AGAINST IMPERFECT ANTI-SYMMETRIC DISORDER

(@ = _A® = A,
J J ’
Anderson delocalization in the coupled Hermitian and non-Hermitian chains. This Anderson delocalized phase allows

In the main text, we demonstrated that anti-symmetric disorder, defined by A can give rise to

the NHSE to reappear, even in the presence of ultra-strong disorder. In this section, we investigate how robust this

phenomenon is when the anti-symmetric condition is no longer exact. To this end, we consider a modified disorder
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FIG. S4. Dynamical localization and delocalization via quench. Quenched dynamics of density distributions for
different A subjected to anti-symmetric disorder, where the initial state is set as the Gaussian wavepacket as 1o(j) =
exp[—(j — jo)?/20°] /N centered at the site jo in the HN chain. At time 7 = 50, the hopping strength changes from ¢/J = 1
to t/J = 28. The parameters used are v/J = 1, W/J = 12, and N = 400 with (al) \/J =0, (a2) \/J = 0.1, (a3) A/J = 0.2,
(ad) A/J =0.3, (ab) A\/J = 0.5, and (a6) \/J = 1.

configuration where A( o) = =Aj and A(b) = —A; +§;, with J; being a random variable that quantifies deviations from

perfectly anti-symmetry. Then, the Hamlltonian of the hybrid system reads

Hais = Z [(7+A)a a1+ (v — N ]Ha]} +Z (JbTHb +talb; +Hc)
+ZA (a g — j ) Z‘S'b;‘bja (S10)

where A; represents the anti-symmetric disorder applied to both the non-Hermitian and Hermitian chains. It is
uniformly sampled from the interval [—W/2, W/2], where W denotes the disorder strength. The term §; introduces
a random perturbation that breaks the exact anti-symmetry, and is independently drawn from a uniform distribution
in [—0/2, §/2], with § characterizing the degree of asymmetry in the disorder.

Figures S5(a) and (b) show the mcom and IPR, averaged over all eigenstates, in the presence of anti-symmetric
disorder A; and a random perturbation §; that explicitly breaks the anti-symmetry. These quantities are plotted as
functions of the perturbation strength § for A\/J = 1 in panel (a) and A\/J = 1.5 in panel (b), for two different values
of the asymmetric hopping strength. In both cases, the finite value of the IPR indicates that the eigenstates of the
coupled system remain localized, either due to Anderson localization or localization induced by the NHSE.

When the disorder deviates moderately from the anti-symmetric configuration, i.e., when the perturbation ¢; is of

moderate strength, the eigenstates stay localized near the left boundary due to the re-emergent NHSE. The small value
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FIG. S5. Impact of imperfect anti-symmetric correlated disorder on Anderson delocalization. (a,b) IPR and mcom averaged
over all the eigenstates, subject to anti-symmetric disorder A; and a random perturbation §; that breaks the exact anti-
symmetry, as a function of the perturbation strength ¢ for A\/J =1 (a) and A/J = 1.5 (b). The results are averaged over 2000
disorder realizations with v/J = 1, W/J = 12, t/J = 28, and N = 200. (c) Probability density distributions |1\ (5)|? and
|1,b£1b> (§)]? of all the eigenstates subject to anti-symmetric disorder A; and a random perturbation &; for A/J = 1.5 and 6/J = 3

in one disorder realization with N = 200.

of mcom in Fig. S5(a) confirms the persistence of this re-emergent NHSE for deviations as large as approximately
16.7% at A\/J = 1, despite the presence of strong disorder A;. Furthermore, for A\/J = 1.5, the NHSE persists
even with a deviation of about 25% from the anti-symmetric disorder configuration, despite the presence of strong
disorder, as shown in Fig. S5(b). For moderate values of d, the eigenstates manifest as skin modes localized at the
left boundary. As § increases, a coexistence emerges between skin-mode localization and Anderson localization. With
a further increase in §, the system undergoes a transition into a regime dominated by strong perturbation-induced
Anderson localization, where the eigenstates become localized in the bulk.

Figure S5(c) shows the probability density distributions |¢7(La)(j)\2 and |w7(lb) (7)|? for all eigenstates, obtained from
a single disorder realization with anti-symmetric disorder A; and a random perturbation §;, with A\/J = 1.5 and
0/J = 3. These distributions reveal the Anderson delocalization accompanied by the NHSE even with a deviation of
25% from the anti-symmetric disorder configuration.

These results demonstrate that the Anderson delocalization, accompanied by the re-emergent NHSE, remains robust

even under strongly non-ideal anti-symmetric disorder, extending its applicability beyond fine-tuned scenarios.

VII. DEPENDENCE OF PHASE DIAGRAMS ON ~

In the main text, we plot the phase regions of Anderson localization and skin-mode localization as functions of W,
~v and A by fixing A\. Now, we consider the dependence of phase diagrams on v under anti-symmetric disorder.

The phase diagrams determined by the winding number in the presence of anti-symmetric disorder are shown in
Fig. S6(a—c), where the phase boundary between the absence (w = 0) and presence (w = 1) of skin modes is clearly
visible. However, the winding number cannot identify the coexistence regions of skin-mode localization and Anderson
localization. In contrast, this distinction can be made using the mcom, as shown in Fig. S6(d—f). Three distinct
regions are observed: Anderson localization with mcom ~ N/2; skin-mode localization with mcom ~ 1, and a mixed
phase characterized by 1 < mcom < N/2. We find that the phase boundary becomes less sensitive to variations in

~ once < is sufficiently large. This results from the weakening of nonreciprocal hopping at large values of -y.
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FIG. S6. (a-c) Winding number w and (d-f) mcom, under anti-symmetric disorder, in the (W,~) plane with A\/J = 1 and
t/J = 14 (a,d), the (¢,7v) plane with W/J = 12 and A\/J = 1 (b,e), and the (),~v) plane with W/J = 12 and ¢/J = 14 (c,f).
There exist three regions: Anderson localization with mcom ~ N/2, skin-mode localization with mcom ~ 1, and a mixture of

the two with 1 <« mcom < N/2, respectively. The results are averaged over 1200 disorder realizations with N = 200.

VIII. COEXISTENCE REGION OF ANDERSON AND SKIN-MODE LOCALIZATION

As shown in Fig. 3(d-f) of the main text, under strong disorder, the system exhibits Anderson localization for
small inter-chain coupling ¢ (region I). As the inter-chain coupling ¢ increases, the system enters region III, where
Anderson localization and skin-mode localization coexist. This is because increasing t¢ effectively reduces the disorder
strength, leading to competition between Anderson localization and the NHSE. With further increase in ¢, the system
transitions into region II, where all eigenstates exhibit skin-mode localization due to the NHSE. In this region II, the
effective disorder becomes quite weak at the large inter-chain coupling ¢ for the anti-symmetric disorder configuration.

As explained in the main text, the winding number cannot identify the coexistence region (Region III), where
both Anderson localization and skin-mode localization are present. Specifically, it cannot distinguish Region III from
the pure skin-mode localization region (Region II). This limitation is expected, as the winding number reflects the
presence of the NHSE. Even in the coexistence region, eigenstates under OBCs still exhibit skin-mode localization if
their corresponding eigenvalues lie inside the point gap of the PBC spectrum, as illustrated in Fig. S7(a). Indeed,
part of the OBC spectrum is enclosed by the point gap in the PBC spectrum. Eigenstates associated with eigenvalues
inside this point gap are skin-mode localized [see Fig. S7(b)], whereas those outside the point gap are Anderson
localized [see Fig. S7(c)]. Consequently, the winding number remains fixed at W = 1 throughout Region III, resulting

in only two distinct regions being visible in the winding number phase diagram.
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FIG. S7. (a) Complex eigenenergy spectra under OBCs (red dots) and PBCs (blue circles) in region III, where the Anderson
localization and skin-mode localization coexist. (b,c) Probability density distributions |1/JT({Z) (4)]* and |1/J»Slb) (H)? of specific
eigenstates inside (b) and outside (c) the point gap. The parameters are W/J =20, t/J = 10, and v/J = \/J = 1.

IX. CIRCUIT IMPLEMENTATION OF THE MODEL

In this section, we present a detailed circuit implementation of our model. Linear circuit networks, composed

of linear components, can be characterized by a series of time-dependent differential equations. After applying the

(@ _ (b) @
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{ o Sy
b; C
J-1 I
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FIG. S8. Electrical-circuit lattice. (a) Circuit implementation of the coupled HN-Hermitian lattice subject to correlated
disorder, corresponding to the tight-binding lattice model in (b). The red solid line outlines a unit cell, containing two
sublattices a; and bj, in the circuit lattice. For the HN chain {a;}, the nonreciprocal intra-chain hopping, represented by
capacitors Cy £ C}, is realized by the voltage follower (VF). The circuit diagram of the voltage follower module is shown in
(c), where the resistor R = 1 k€ in the voltage follower is used to ensure its stability. The capacitor C; denotes the intra-chain
hopping in the Hermitian chain {b;}, C; represents the inter-chain hopping. C’J(-a) and C’J(-b) are disordered capacitances for
simulating the correlated disorder. The inductor L is used to adjust the resonance frequency of the circuit. (d) Photograph of

the whole printed circuit board.
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Fourier transformation with respect to time, these equations can be simplified into a set of algebraic equations in the

frequency domain. In the frequency domain, the relation of current and voltage between two nodes can be written as

Vi) ~ Vi(w)

Tinle) = Zik(w)

(S11)

where Zji,(w) is the impedance between node j and node k, and the impedances of capacitor, inductor and resistor
are Zo(w) = 1/iwC, Z(w) = iwLl and Zg(w) = R. According to Kirchhoff’s current law, the sum of all currents
entering and leaving a node equals zero. This indicates that the input current I; at the node j equals the sum of the

currents leaving node j:

=Y I (s12)

According to Egs. (S11) and (S12), we can derive the circuit Laplacian of the electrical circuit in Fig. S8(a),
corresponding to the tight-binding lattice model in Fig. S8(b).

The equivalent circuit of the model is composed of inductors and capacitors. The voltage follower is used to
equivalently simulate the non-reciprocal hopping of the model with v = A. The circuit diagram of the voltage follower
module is shown in Fig. S8(c), where the resistor R = 1 k) in the voltage follower is used to ensure its stability.
Capacitors are used to equivalently simulate the reciprocal hopping and onsite potential of the tight-binding model,
where the capacitances of the capacitors C, Cx, Ct and C; correspond to the reciprocal hopping strengths «y, A, ¢ and
J in Fig. S8(b). The correlated disorders A;a) and Agb) are simulated by the disordered capacitances C](a) and CJ(-b).
In addition, the inductor L is used to adjust the resonance frequency of the circuit. The fabricated circuit boards are
shown in Fig. S8(d).

The coupled HN-Hermitian chains in the main text can be represented by the Laplacian J(w) of the circuit. The
Laplacian is defined as the response of the voltage vector V to the input current vector I by
I(w) = J(w)V(w). (S13)

According to Eq. (S11) and Eq. (S12), the Kirchhoff equation of the circuit in Fig. S8(a) is written as

Ia,j = w (CV + C)\) (Va)j+1 — Va,j) + w (C,y — C)\) (Va,jfl — Va’j> + ith (%’j — Va,j)

i @\y Loy

i (Cy + C7) Vi —Vas: (S14)
. . . ) 1

Iy = iwCi (Va; — Vo) +iwCy (Voj11 — Vo 5) +iwCy (Vi j—1 — Vi j) — iw (Cg + Cj(-b)) Voj = 7 Vos,  (S15)

where I, ; (Vo ;) and I ; (Vb,;) denote the currents (voltages) on a and b sublattices in the jth cell, respectively, w
denotes the circuit frequency, and C; is grounded capacitor for ensuring the circuit stability. In experiments, we take
Cy = Cj. Then, using Egs. (S14) and (S15), the circuit Laplacian J(w) is rewritten as

1
J(w) = iwHe — <2ich +iwCy + iwCy + WL) 1, (S16)



where 1 is the 2N x 2N identity matrix, and H. reads

¢ ¢, Cc;4+Cy 0
c, -c 0 cy
c,-cy 0 -
He = 0 C; c, —ci ...
0 0 0 0
0 0 0 0

Ct

11

: (S17)

The matrix H, in the first term of the circuit Laplacian J(w) in Eq. (S16) replicates the Hamiltonian matrix of the
coupled HN-Hermitian chains described in the main text. The second term of the circuit Laplacian J(w) in Eq. (S16)

(s
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FIG. S9. Schematic of the experiment. (a) A chirp signal is used for analyzing the steady-state voltage response at different

frequencies. (b) A monochromatic signal is used for measuring the temporal voltage response of the circuit under the specific

frequency fo.
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does not influence the state localization and delocalization. Therefore, this allows the circuit Laplacian to model the
desired Hamiltonian.

When the input current is zero, we can obtain the eigenvalue equation:

HV = (2@ 4Oty - wiL) V. (S18)
This indicates that the voltage distribution reflects the state distribution corresponding to the specific eigenvalue by
adjusting the frequency f = w/(27) of the excited voltage. By measuring the voltage response of the excitation, we
can experimentally verify the state delocalization and localization of the coupled HN-Hermitian chains subject to the
correlated disorder.

A printed circuit board (PCB) layout is simulated using LTSpice, designed and manufactured using LCEDA. The
non-reciprocal hopping is implemented using voltage followers based on the unity-gain stable operational amplifier
model LT1363. In the circuit, 1 kQ (+1% tolerance) resistors are employed to maintain the stability of the operational
amplifier, and 100 nF (+10% tolerance) and 2.2 uF (+£10% tolerance) capacitors are used to suppress ripple noise
from the direct current (DC) power supply.

To measure eigenstates, a signal generator (Keysight 33500B) is used to generate a chirp signal, which is then
injected into the circuit. The voltage response to this signal is recorded using an oscilloscope (Keysight DSOX4024A)
to diagnose the resonance frequency f. With this frequency f, the circuit is excited at a certain node, and the voltage
response is measured on all nodes to obtain the eigenstates. For temporal measurements, the signal generator is
utilized to produce a sinusoidal signal with frequency f and duration of 150 us, and this signal is injected to a certain
node of the circuit. The oscilloscope then measures the voltage response at all the nodes to obtain the time-evolving

states.
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FIG. S10. Experimental observations of the Anderson localization of HN-Hermitian coupled chains subject to symmetric
disorder. (a,b) Measured site-resolved voltage distributions |V, ;| + [V4,;] (j is unit-cell index) at resonance frequencies f =
70 kHz (a) and f = 79 kHz (b) for weak inter-chain hopping C;, with Cy, = Cx = C; = C; = 100 nF, L = 4.7 pH, and
C’J(-a) = C;b) € [-6Cy, 6Cy]. The legend “ja” (o = a,b) in (b) indicates the excitation at the jth site of the chain a. (c,d)
Measured temporal voltage responses excited at the 11th (¢) and 17th (d) unit cells, indicated by the blue arrows, for the weak
inter-chain hopping with f = 79 kHz. (e,f) Measured voltage distributions and (g,h) temporal voltage responses for strong
inter-chain hopping Cy, with C, = Cy = Cj; =47 nF, Cy =1 pF, L = 4.7 yuH, and C'](-a) = CJ(-b) € [-6Cy, 6Cy].
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In experiments, we excite the circuit at a certain node, and then test the voltage response at all nodes. The
schematic of the testing is shown in Fig. S9. A chirp signal (10 kHz - 400 kHz) is used for analyzing the steady-state
voltage response at different frequencies [see Fig. S9(a)]. A monochromatic signal, e.g. sinusoidal wave, is used for

measuring the temporal voltage response of the circuit under the specific frequency [see Fig. S9(b)].

X. EXPERIMENTAL RESULTS OF HN-HERMITIAN COUPLED CHAINS SUBJECT TO THE SYMMETRIC
DISORDER

As shown in the main text, the experimental results have proved that the strong inter-chain coupling can lead to
the re-emergent NHSE in the coupled NH-Hermitian chains in spite of the strong anti-symmetric disorder. In this
section, as a comparison, we present experimental results of the coupled HN-Hermitian chains subject to symmetrically-
correlated disorder. We resonantly excite the circuit, and measured the site-resolved voltage distributions |V, ;| +|V} ;|
in the presence of symmetric disorder. As shown in Fig. S10(a,b) for weak inter-chain coupling and Fig. S10(e,f) for
strong inter-chain coupling, the voltage distributions remain mostly localized. Furthermore, we measure the temporal
voltage response, as shown in Fig. S10(c,d) for weak inter-chain coupling and Fig. S10(g,h) for strong inter-chain

coupling. Once it is excited, the voltage remains localized as time evolves.
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