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Disorder and non-Hermitian effects together can upend how waves localize. In a 1D disordered chain,
the non-Hermitian skin effect (NHSE) can induce Anderson delocalization, defying the usual rule that
disorder in low dimensions always localizes states. While weak disorder leaves the NHSE intact, strong
disorder restores Anderson localization. Here, we study a surprising twist: coupling a strongly disordered
Hatano-Nelson chain to a disordered Hermitian chain with their disorder antisymmetrically correlated.
Strikingly, once the interchain coupling exceeds a threshold, the system undergoes Anderson delocalization
irrespective of disorder strength, reinstating the NHSE with no Hermitian counterpart. This transition arises
from the interplay of nonreciprocal hopping, interchain coupling, and engineered disorder correlations, and
is captured by a real-space winding number. To confirm this, we build an electrical-circuit analog and
directly observe the reemergent NHSE via voltage measurements. Our Letter uncovers unexplored and
experimentally accessible physics at the crossroads of non-Hermiticity and disorder.
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Introduction—Recent years have seen growing interest
in exotic physics emerging from non-Hermitian systems
[1-24]. These include platforms such as optical setups
[25-33], electrical circuits [34-39], and open quantum
systems [40,41]. A central discovery is the non-Hermitian
skin effect (NHSE) [3-6], where bulk modes become
highly sensitive to boundaries and localize at the edges
under open boundary conditions. This effect, rooted in
point-gap topology [6,7], drives many novel phenomena
without Hermitian analogs, such as the breakdown of
conventional Bloch band theory [3] and disorder-free
entanglement phase transitions [21].

Disorder plays a crucial role in non-Hermitian systems,
impacting transport, entanglement, and topology [42-56]. It
induces exotic phenomena such as nonunitary scaling in
localization [46], disorder-induced non-Bloch topological
phase transitions [55], and coexistence of dynamical delo-
calization and spectral localization [54]. A seminal study by
Hatano and Nelson extended the one-dimensional (1D)
Anderson model by introducing nonreciprocal hopping
[42], revealing unexpected delocalization with the emergence
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of NHSE under weak disorder. This challenges the conven-
tional expectation that disordered systems in less than two
dimensions are always localized [57]. Their findings showed
that non-Hermiticity can fundamentally alter Anderson
localization in the 1D Hatano-Nelson (HN) chain.
However, as disorder strength increases, the skin modes
eventually localize again, highlighting a complex interplay
between disorder and non-Hermiticity. This reentrant behav-
ior raises a compelling question: can a strongly disordered
non-Hermitian system exhibit an Anderson localization-
delocalization transition that revives the NHSE?

In Hermitian systems, coupling between disordered
chains has been shown to induce delocalization [58—-64],
suggesting a potential route to explore similar transitions in
the non-Hermitian field. Inspired by this, we explore the
Anderson localization-delocalization behavior of coupled
non-Hermitian chains in a ladder geometry subjected to
ultrastrong disorder. Our Letter aims to uncover novel
mechanisms driving Anderson localization-delocalization
transitions that revive the NHSE, offering deeper insights
into the intricate interplay among non-Hermiticity, disor-
der, and interchain coupling in extended systems.

In this Letter, we uncover a novel topological Anderson
localization-delocalization transition in coupled disordered
chains, driven by the interplay of non-Hermiticity, inter-
chain coupling, and correlated disorder. Our hybrid system

© 2025 American Physical Society
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consists of a non-Hermitian HN chain coupled to a
Hermitian chain with antisymmetrically correlated disor-
der. Remarkably, this configuration leads to an Anderson
delocalization transition that revives the NHSE even under
ultrastrong disorder, with the interchain coupling strength
controlling the reemergence of the NHSE. This transition is
topologically characterized by the real-space winding
number. Experimental realization using tunable nonrecip-
rocal electrical circuits confirms these findings, highlight-
ing how non-Hermiticity and correlated disorder together
govern wave localization.

Model—We start by considering an HN chain with
asymmetric hopping [42], which shows the NHSE.
Adding random on-site disorder leads to Anderson delo-
calization at weak disorder [42-46]. As the disorder
strength increases further, Anderson localization eventually
takes over. In this Letter, we demonstrate that Anderson
delocalization, accompanied by reemergent NHSE, can be
restored even in the ultrastrong disorder regime by coupling
the disordered HN chain to a disordered Hermitian chain
with correlated disorder, as illustrated in Fig. 1(a). The
Hamiltonian of the hybrid system is written as

H = }j y+A)dlag + (v - Aal,,a))

J

; and 13} are creation operators for the HN and
Hermitian chains at jth unit cell, y + A denote the asym-
metric hopping, J is the symmetric hopping strength, 7 is

the interchain coupling strength, and A (/4 = a,b) is the

random on-site potential, applied to the HN (u = a) and
Hermitian (4 = b) chains, which is uniformly sampled in
[-W/2,W /2], with W being the disorder strength.
Although uncorrelated strong random disorder leads to
Anderson localization in both the HN chain and the coupled
chains, we will show that the reemergence of the NHSE can
occur if an appropriately correlated disorder is applied to the
coupled chains. We consider two types of correlated disorder

schemes: symmetric disorder with AW = Al j b = =A;, and

antisymmetric disorder with A;“) = —A;b) =A;.

Figures 1(b)—1(e) plot the probability density distributions

where &'

s (j)|? and |y (j)? of right eigenstates under ultrastrong
on-site disorder, and the corresponding complex eigenener-
gies under periodic (PBC) and open (OBC) boundary
conditions. In the presence of symmetrically correlated
disorder, all states in the coupled HN-Hermitian chains
remain localized [see Fig. 1(b)]. The absence of point gaps
in Fig. 1(d) further indicates the breakdown of the NHSE.
However, when antisymmetrically correlated disorder is
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FIG. 1. (a) Schematic showing a disordered HN chain (top)

coupled to a disordered Hermitian chain (bottom). y + A denote
the asymmetric hopping strengths, J is the symmetric hopping
strength, and ¢ is the interchain coupling strength. The antisym-
metric random on-site potential A; and —A; are applied to each
chain. (b),(c) Probability density distributions |l//£f)( J)? and
|1//(b)( j)|> of the coupled chains subject to symmetric random

potential with A( 9 = AS J=A ; (b), and antisymmetric random

potential with A(a) A(b) =A; (c). All eigenstates exhibit
Anderson locahzatlon, Where only a few are plotted in (b) for
clarity from one disorder realization. Plots in (d),(e) show the
corresponding complex eigenenergies under PBC (blue dots) and
OBC (red dots). The parameters used are y/J =41/J =1,
W/J =12, t/J =28, and N = 200.

introduced, the complex eigenspectrum under PBC (blue
dots) forms two point gaps at large interchain coupling
strength ¢ [see Fig. 1(e)], which encircle the eigenenergies
under OBC (red dots). As shown in Fig. 1(c), all states inside
the point gaps are localized at the left boundary, signaling the
reemergence of the NHSE. Note that the eigenstates in the
coupled Hermitian chains remain localized despite antisym-
metric disorder. This highlights that the Anderson delocal-
ization accompanied by reemergent NHSE in a disordered
nonreciprocal chain, coupled to a Hermitian chain with
antisymmetric disorder, is a genuinely nontrivial phenome-
non without a Hermitian counterpart.

The hidden physical mechanism can be intuitively under-
stood by considering the strong interchain coupling case
with | >> |J, |y £ 4],|A;| for both symmetric and antisym-
metric disorder configurations (see Sec. I of Supplemental
Material (SM) [65]). In this limit, rewriting H in the new
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basis |a, . j) = &} ;|0), with & ; = (+a; + b;)/ V2, yields
an effective nonreciprocal Creutz ladder subject to on-site

random potentials A; + 7 and +,/ £+ A? for symmetric

and antisymmetric disorder configurations, respectively. For
symmetric disorder, the effective Creutz ladder undergoes
Anderson localization under strong disorder A;. However,
for antisymmetric disorder, the effective disorder strength W
becomes W < W?/|8t| [65]. In the strong interchain cou-
pling limit |¢| > W, W becomes much smaller than the
nonreciprocal hopping strength A of the Creutz ladder. While
an arbitrarily small amount of disorder induces Anderson
localization in 1D Hermitian systems [57] (see also Sec. IV
of SM [65]), the interplay between nonreciprocal hopping
and disorder can instead lead to an Anderson transition
[42,45]. Consequently, increasing interchain coupling ¢
drives the Anderson delocalization with the reemergent
NHSE, even under arbitrarily strong antisymmetric disorder.

To further characterize the Anderson localization-
delocalization transition induced by the antisymmetrically
correlated disorder, we calculate the inverse participation

ratio (IPR) of each normalized right eigenstate
v, = (p', l;fw)r, defined as
S (a) (b)
PR, = > (jya ()I* + lwa” ()[)- (2)
=1

Here, IPR, ~1/(2N) for an extended eigenstate v,
and vanishes as N — oo, while for a state localized over
M <« N sites, IPR, ~1/M and remains finite in the
thermodynamic limit.

However, the IPR cannot distinguish skin-mode locali-
zation from Anderson localization. To resolve skin modes,
we compute the mean center of mass (mcom) of the squared
amplitudes of all right eigenvectors v, averaged over
disorder realizations [67], defined as

2L JCAG)
Jo (AG))

with the mean amplitude squared of all right eigenstates

mcom =

(3)

A0 = (5 WGP+ P ). @

n=1

where (-) denotes averaging over disorder realizations. When
mcom is close to 1 or N, it indicates that the eigenstates are
localized at the boundaries, with the emergence of NHSE. As
explained in Sec. II of the SM [65], the IPR and mcom
averaged over all eigenmodes effectively resolve delocalized
and extended states and distinguish skin-mode localization
from Anderson localization. In addition, to avoid finite-size
effects (see details in Sec. III of SM [65]), we perform our
calculations on a large lattice.
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FIG. 2. (a)-(c) IPR and mcom averaged over all eigenstates,
under antisymmetric disorder—(a) as a function of ¢ with
A/J =1, (b) as a function of 1 with ¢t/J =28, and (c) as a
function of & with A/J = 1.5, where a random perturbation
8;€[-6/2,6/2] breaks the exact antisymmetry. The results are

averaged over 2000 disorder realizations with y/J =1, W/J =
12 and N = 200.

Figures 2(a) and 2(b) show the averaged IPR and mcom
under antisymmetric disorder as functions of interchain
coupling ¢ and asymmetric hopping A, respectively. Strong
disorder (W/J = 12) induces Anderson localization at
small ¢ [Fig. 2(a)], while increasing ¢ triggers Anderson
delocalization and revives the NHSE with boundary-local-
ized eigenstates. Furthermore, with fixed disorder
(W/J = 12) and hopping strength (¢/J = 28), Anderson
delocalization occurs only when 4 exceeds a critical value,
highlighting the necessity of strong nonreciprocal hopping
and interchain coupling for the reemergence of the NHSE
under strong antisymmetric disorder. Note that the IPR
based on biorthogonal eigenvectors shows the same locali-
zation behavior as that using right eigenvectors alone, as
shown in Sec. IV of SM [65]. In addition, the reemergent
NHSE can be further revealed through quenched evolution
dynamics (see details in Sec. V of SM [65]).

We now investigate the robustness of this phenomenon
under deviations from exact antisymmetric disorder. To this
end, we consider a modified disorder configuration with

AW = A and AV = —A; + 5, where 65, € [~5/2.6/2] is
a random variable characterizing symmetry-breaking per-
turbations (see details in Sec. VI of SM [65]). Figure 2(c)
plots the averaged IPR and mcom as a function of §,
showing that the NHSE persists even with deviations up to
25% (6 = 3) from perfectly antisymmetric disorder con-
figuration. This demonstrates the robustness of reemergent
NHSE against imperfect antisymmetric disorder, extending
its applicability beyond fine-tuned scenarios.

Phase diagram—In order to determine the phase dia-
grams of the Anderson localization to delocalization
transitions with the emergence of skin modes, due to the
triple interplay of antisymmetric disorder, nonreciprocal
hopping and interchain coupling, we calculate the winding
number and mcom for different parameters. The winding
number in real space is defined as [51]

w(Ey) = 3 T(0'10. %), ©

where Q is a positive-definite Hermitian matrix, which is
obtained by the polar decomposition (ﬂ —E,) = 0P,
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FIG. 3. (a)—(c) Winding number w and (d)—(f) mcom, under
antisymmetric disorder, in the (W, ¢) plane with 1/J = 1 [(a),(d)],
the (1,7) plane with W/J = 12 [(b),(e)], and the (4, W) plane
with 7/J = 14 [(c),(f)]. Regions I, II, and I correspond to
Anderson localization, skin-mode localization, and a mixture of
the two, respectively. The results are averaged over 1200 disorder
realizations with y/J = 1 and N = 200.

with unitary matrix P. O and P are related to the singular
value decomposition (H{ — E,) = M SN, with O = MN*
and P=NSN'. X is the coordinate operator, with
Xy = JOj 1654 (s = a,b), and Tr' denotes the trace over
the middle interval with length N’, where the whole chain is
cut off from both ends. This definition of the winding
number avoids the effects from the system’s boundary.

The phase diagrams in the presence of antisymmetric
disorder are shown in Figs. 3(a)-3(c), where the phase
boundary between the absence (w =0) and presence
(w=1) of skin modes is clearly visible. We find
that, regardless of the disorder strength W, skin modes
reappear once the interchain coupling ¢ becomes suffi-
ciently large [see Fig. 3(a)]. Moreover, the phase boundary
strongly depends on the asymmetric hopping strength A
[see Figs. 3(b) and 3(c)]. The dependence of the phase
diagrams on y is discussed in Sec. VII of SM [65].

The winding number cannot identify the coexistence
regions of skin-mode localization and Anderson localiza-
tion (see details in Sec. VIII of SM [65]), whereas this
distinction can be made using the mcom, as shown in
Figs. 3(d)-3(f). Regions I, II, and IIl correspond to
Anderson localization, skin-mode localization, and a mix-
ture of the two, respectively. Moreover, the phase boundary
(white dotted line across region I) between the absence and
presence of skin modes, determined by mcom, agrees with
that obtained from the real-space winding number.

Experimental implementation—We implement electrical
circuits to realize Anderson delocalization with reemergent
NHSE in coupled HN-Hermitian chains induced by corre-
lated disorder. Figure 4(a) shows the designed circuit
network, where the unit cell containing sublattices a j
and b; is outlined by the red solid line. In the HN chain

a;, the nonreciprocal hopping between nodes j and j + 1,

(@) =

a/i VF
% .

FIG. 4. (a) Circuit implementation of the coupled HN-Hermi-
tian lattice subject to the correlated disorder, corresponding to the
model in Fig. 1(a). The red solid line outlines a unit cell in the
circuit lattice. For the HN chain {a;}, the nonreciprocal intra-
chain hopping, represented by capacitors C, & C), is realized via
a voltage follower (VF) with its circuit diagram shown in (b),
where the resistor R = 1 kQ is used to ensure its stability. The
capacitor C; denotes the intrachain hopping in the Hermitian

chain {b;}, C, represents the interchain hopping. C ) and C
are disordered capacitances to simulate the correlated dlsorder
The inductor L is used to adjust the resonance frequency of the
circuit. (c) Photograph of the fabricated electric circuit in the
enlarged view of a unit cell outlined by the red solid line. The
modules outlined by blue, yellow, and pink solid lines denote the
capacitor C;, VF, and capacitor C}, respectively.

represented by capacitors C, & C;, is implemented using a
voltage follower [36] [see its circuit in Fig. 4(b)]. In the
Hermitian chain b;, the hopping is realized by capacitor C,.
C, denotes the interchain coupling. The correlated disorder

is introduced through disordered capacitances Cﬁ.“) and

Cﬁb). Figure 4(c) shows the fabricated circuit board.

The model in Eq. (1) is represented by the Laplacian
J(w) of the circuit, which is defined as the response of the
voltage vector V to the input current vector I by
I(w) = J(w)V(w). As shown in Fig. 4(a), the circuit
Laplacian J(w) reads (see details in Sec. IX of SM [65])

J(w) = ioH, — (21(1)CJ +iwC, + iwCy+ - L)ﬂ, (6)
iw

where 1 is the 2N x 2N identity matrix, and the matrix H,
is shown in Sec. IX of SM [65].

The circuit Laplacian J(w) and H in Eq. (1) share the
same eigenstates if we set C;,=J, C,=t,
C,+Ci=y+a C=Ci=y—2 and C¥=-Al"
(a = a, b). The eigenstates of J(w), corresponding to
the circuit frequency @ = 2z f, can be obtained by meas-
uring the voltage response at the circuit nodes.

Figures 5(a) and 5(b) show the measured site-resolved
voltage distributions |V, ;| 4+ |V} ;|, subject to the antisym-
metric disorder. We resonantly excite the circuit at different
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(a),(b) Measured site-resolved voltage distributions |V, ;| + [V, ;| (j is unit-cell index) at resonance frequencies f = 70 kHz
interchain  hopping C, with C,=C,=C,=C,=100nF, L =47 pH,

[-6C;,6C,]. The legend “ja” (@ = a, b) in (b) indicates the excitation at the jth site of the chain a. (c),(d) Measured

and

temporal voltage responses excited at the 11th (c) and 17th (d) unit cells, indicated by the blue arrows, for the weak interchain hopping
with f = 75 kHz. (e),(f) Measured voltage distributions and (g),(h) temporal voltage responses for the strong interchain hopping C, with

C,=C,=C,=471F, C, =1 yF, L = 4.7 uH, and €\ = —-C'” € [-6C,.6C)).

nodes with resonance frequencies f =70 kHz and
f =75 kHz, respectively, and then measure the voltages
at all the nodes. For weak interchain hopping strength C,, we
observe the Anderson-localized voltages distributions [see
Figs. 5(a) and 5(b)]. This localization is further confirmed by
temporal voltage measurements excited at the 11th and 17th
unit cells at f = 75 kHz [see Figs. 5(c) and 5(b)], where the
voltages remain localized over time, consistent with the
steady-state distributions in Figs. 5(a) and 5(b).

We increase the capacitance C, to enhance the interchain
coupling and excite the circuit at frequencies f = 120 kHz
and f = 126 kHz, respectively. The measured site-resolved
voltage distributions |V, ;| 4|V}, ;| [see Figs. 5(e) and 5(f)],
excited at different nodes under antisymmetric disorder,
reveal reemergent skin effects, consistent with theoretical
predictions. In contrast, voltages remain localized under
symmetrically correlated disorder (see details in Sec. X of
SM [65]). Temporal voltage measurements [see Figs. 5(g) and
5(h)], excited at the 11th and 20th unit cells at frequency
f =120 kHz, show voltage propagation along the left
boundary, confirming the Anderson delocalization with the
reemergent NHSE. These results experimentally demonstrate
the antisymmetrical disorder-induced reemergent NHSE in a
nonreciprocal chain coupled to a Hermitian chain. Our circuit
simulations further confirm the robustness of reemergent
NHSE against imperfections in the antisymmetric disorder,
which are inevitable in practical systems, thereby extending
its applicability beyond fine-tuned conditions.

Conclusion—In summary, we have shown that coupled
HN and Hermitian chains with antisymmetrically correlated
disorder exhibit a topological Anderson localization-

delocalization transition and a robust NHSE, phenomena
absent in Hermitian systems. While an isolated disordered
HN chain remains localized, coupling to a disordered
Hermitian chain with antisymmetric disorder induces an
Anderson delocalization. Notably, strong interchain coupling
universally leads to Anderson delocalization, accompanied
by the reemergent NHSE, regardless of the disorder strength.
The topological character of this transition is captured by a
real-space winding number. Our electrical-circuit realization
reproduces these effects in site-resolved voltage measure-
ments, in excellent agreement with theoretical predictions.
Furthermore, our theoretical and experimental results
demonstrate that Anderson delocalization with reemergent
NHSE remains robust even in the presence of imperfect
antisymmetric disorder. This indicates that correlated disorder
can drive Anderson delocalization and stabilize the NHSE in
strongly disordered systems, extending beyond finely tuned
conditions. This proof of concept highlights that, when
combined with interchain coupling, correlated disorder serves
as a tunable control parameter to induce transitions between
localized and delocalized phases and to reestablish the NHSE.
This tunability opens avenues for applications in quantum
switches and devices, where wave transport properties can be
dynamically modulated via interchain coupling. Looking
ahead, it will be compelling to extend this framework to
higher-dimensional disordered non-Hermitian systems,
where symmetry may play a crucial role in shaping
Anderson transitions. Additionally, incorporating inter-
actions could reveal new insights into the interplay of
correlated disorder, non-Hermiticity, and many-body effects
in governing localization and non-Hermitian phenomena.

076602-5



PHYSICAL REVIEW LETTERS 135, 076602 (2025)

Acknowledgments—T. L. gratefully acknowledges help-
ful discussions with Zhongbo Yan. T.L. conceived and
initiated the study and acknowledges the support from the
National Natural Science Foundation of China (Grant
No. 12274142), the Fundamental Research Funds for the
Central Universities (Grant No. 2023ZYGXZR020),
Introduced Innovative Team Project of Guangdong Pearl
River Talents Program (Grant No. 2021ZT097109), and the
Startup Grant of South China University of Technology
(Grant No. 20210012). Y. R. Z. acknowledges the support
from the National Natural Science Foundation of China
(Grant No. 12475017) and Natural Science Foundation of
Guangdong Province (Grant No. 2024A1515010398).
W.J. acknowledges the support from the National
Natural Science Foundation of China (No. U21A2093)
and Introduced Innovative Team Project of Guangdong
Pearl River Talents Program (Grant No. 2021ZT09Z109).
F.N. is supported in part by the Japan Science and
Technology Agency (JST) [via the CREST Quantum
Frontiers program Grant No. JPMJCR2412, the Quantum
Leap Flagship Program (Q-LEAP), and the Moonshot
R&D Grant No. JPMIMS2061].

Data availability—The data that support the findings of
this article are openly available [68].

[1] D. Leykam, K. Y. Bliokh, C. Huang, Y. D. Chong, and F.
Nori, Edge modes, degeneracies, and topological numbers
in non-Hermitian systems, Phys. Rev. Lett. 118, 040401
(2017).

[2] R. El-Ganainy, K.G. Makris, M. Khajavikhan, Z.H.
Musslimani, S. Rotter, and D. N. Christodoulides, Non-
Hermitian physics and PT symmetry, Nat. Phys. 14, 11
(2018).

[3] S. Yao and Z. Wang, Edge states and topological invariants
of non-Hermitian systems, Phys. Rev. Lett. 121, 086803
(2018).

[4] K. Yokomizo and S. Murakami, Non-Bloch band theory of
non-Hermitian systems, Phys. Rev. Lett. 123, 066404
(2019).

[5] T. Liu, Y.-R. Zhang, Q. Ai, Z. Gong, K. Kawabata, M. Ueda,
and F. Nori, Second-order topological phases in non-
Hermitian systems, Phys. Rev. Lett. 122, 076801 (2019).

[6] K. Zhang, Z. Yang, and C. Fang, Correspondence between
winding numbers and skin modes in non-Hermitian sys-
tems, Phys. Rev. Lett. 125, 126402 (2020).

[7] N. Okuma, K. Kawabata, K. Shiozaki, and M. Sato,
Topological origin of non-Hermitian skin effects, Phys.
Rev. Lett. 124, 086801 (2020).

[8] K. Kawabata, T. Bessho, and M. Sato, Classification of
exceptional points and non-Hermitian topological semimet-
als, Phys. Rev. Lett. 123, 066405 (2019).

[9]1 Z. Y. Ge, Y.R. Zhang, T. Liu, S. W. Li, H. Fan, and F.
Nori, Topological band theory for non-Hermitian
systems from the Dirac equation, Phys. Rev. B 100,
054105 (2019).

[10] H. Zhao, X. Qiao, T. Wu, B. Midya, S. Longhi, and L. Feng,
Non-Hermitian topological light steering, Science 365,
1163 (2019).

[11] K. Kawabata, K. Shiozaki, M. Ueda, and M. Sato, Sym-
metry and topology in non-Hermitian physics, Phys. Rev. X
9, 041015 (2019).

[12] D.S. Borgnia, A.J. Kruchkov, and R.-J. Slager, Non-
Hermitian boundary modes and topology, Phys. Rev. Lett.
124, 056802 (2020).

[13] T. Liu, J.J. He, T. Yoshida, Z.-L. Xiang, and F. Nori,
Non-Hermitian topological Mott insulators in one-dimen-
sional fermionic superlattices, Phys. Rev. B 102, 235151
(2020).

[14] T. Liu, J.J. He, Z. Yang, and F. Nori, Higher-order Weyl-
exceptional-ring semimetals, Phys. Rev. Lett. 127, 196801
(2021).

[15] S. Mu, L. Zhou, L. Li, and J. Gong, Non-Hermitian pseudo
mobility edge in a coupled chain system, Phys. Rev. B 105,
205402 (2022).

[16] K. Li and Y. Xu, Non-Hermitian absorption spectroscopy,
Phys. Rev. Lett. 129, 093001 (2022).

[17] Z. Ren, D. Liu, E. Zhao, C. He, K. K. Pak, J. Li, and G.-B.
Jo, Chiral control of quantum states in non-Hermitian spin—
orbit-coupled fermions, Nat. Phys. 18, 385 (2022).

[18] Z.-F. Cai, T. Liu, and Z. Yang, Non-Hermitian skin effect in
periodically driven dissipative ultracold atoms, Phys. Rev. A
109, 063329 (2024).

[19] L. Li, W. X. Teo, S. Mu, and J. Gong, Direction reversal of
non-Hermitian skin effect via coherent coupling, Phys. Rev.
B 106, 085427 (2022).

[20] Y. Li, Z.-F. Cai, T. Liu, and F. Nori, Dissipation and
interaction-controlled  non-Hermitian  skin  effects,
arXiv:2408.12451.

[21] K. Kawabata, T. Numasawa, and S. Ryu, Entanglement
phase transition induced by the non-Hermitian skin effect,
Phys. Rev. X 13, 021007 (2023).

[22] W.-Z. Ling, Z.-F. Cai, and T. Liu, Interaction-induced
second-order skin effect, Phys. Rev. B 111, 205418 (2025).

[23] Z.-F. Cai, X. Wang, Z.-X. Liang, T. Liu, and F. Nori, Chiral-
extended photon-emitter dressed states in non-Hermitian
topological baths, Phys. Rev. A 111, L061701 (2025).

[24] Z.-F. Cai, Y.-C. Wang, Y.-R. Zhang, T. Liu, and F. Nori,
Versatile control of nonlinear topological states in non-
Hermitian systems, arXiv:2411.10398.

[25] A. Regensburger, C. Bersch, M. A. Miri, G. Onishchukov,
D.N. Christodoulides, and U. Peschel, Parity—time syn-
thetic photonic lattices, Nature (London) 488, 167 (2012).

[26] H. Jing, S. K. Ozdemir, X. Y. Li, J. Zhang, L. Yang, and F.
Nori, P7-symmetric phonon laser, Phys. Rev. Lett. 113,
053604 (2014).

[27] H. Hodaei, M. A. Miri, M. Heinrich, D. N. Christodoulides,
and M. Khajavikhan, Parity-time—symmetric microring
lasers, Science 346, 975 (2014).

[28] B. Peng, S.K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda,
G.L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang,
Parity—time-symmetric whispering-gallery microcavities,
Nat. Phys. 10, 394 (2014).

[29] B. Peng, S. K. Ozdemir, S. Rotter, H. Yilmaz, M. Liertzer, F.
Monifi, C. M. Bender, F. Nori, and L. Yang, Loss-induced
suppression and revival of lasing, Science 346, 328 (2014).

076602-6


https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1103/PhysRevLett.118.040401
https://doi.org/10.1038/nphys4323
https://doi.org/10.1038/nphys4323
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.121.086803
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.123.066404
https://doi.org/10.1103/PhysRevLett.122.076801
https://doi.org/10.1103/PhysRevLett.125.126402
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.124.086801
https://doi.org/10.1103/PhysRevLett.123.066405
https://doi.org/10.1103/PhysRevB.100.054105
https://doi.org/10.1103/PhysRevB.100.054105
https://doi.org/10.1126/science.aay1064
https://doi.org/10.1126/science.aay1064
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevX.9.041015
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevLett.124.056802
https://doi.org/10.1103/PhysRevB.102.235151
https://doi.org/10.1103/PhysRevB.102.235151
https://doi.org/10.1103/PhysRevLett.127.196801
https://doi.org/10.1103/PhysRevLett.127.196801
https://doi.org/10.1103/PhysRevB.105.205402
https://doi.org/10.1103/PhysRevB.105.205402
https://doi.org/10.1103/PhysRevLett.129.093001
https://doi.org/10.1038/s41567-021-01491-x
https://doi.org/10.1103/PhysRevA.109.063329
https://doi.org/10.1103/PhysRevA.109.063329
https://doi.org/10.1103/PhysRevB.106.085427
https://doi.org/10.1103/PhysRevB.106.085427
https://arXiv.org/abs/2408.12451
https://doi.org/10.1103/PhysRevX.13.021007
https://doi.org/10.1103/PhysRevB.111.205418
https://doi.org/10.1103/8qpx-68x6
https://arXiv.org/abs/2411.10398
https://doi.org/10.1038/nature11298
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1103/PhysRevLett.113.053604
https://doi.org/10.1126/science.1258480
https://doi.org/10.1038/nphys2927
https://doi.org/10.1126/science.1258004

PHYSICAL REVIEW LETTERS 135, 076602 (2025)

[30] C. Leefmans, A. Dutt, J. Williams, L. Yuan, M. Parto, F.
Nori, S. Fan, and A. Marandi, Topological dissipation in a
time-multiplexed photonic resonator network, Nat. Phys.
18, 442 (2022).

[31] M. Parto, C. Leefmans, J. Williams, F. Nori, and A.
Marandi, Non-Abelian effects in dissipative photonic topo-
logical lattices, Nat. Commun. 14, 1440 (2023).

[32] C.R. Leefmans, M. Parto, J. Williams, A. Dutt G. H. Y. Li,
F. Nori, and A. Marandi, Topological temporally mode-
locked laser, Nat. Phys. 20, 852 (2024).

[33] J. Zhang, B. Peng, S. K. Ozdemir, K. Pichler, D. O. Krimer,
G. Zhao, F. Nori, Y.X. Liu, S. Rotter, and L. Yang, A
phonon laser operating at an exceptional point, Nat. Pho-
tonics 12, 479 (2018).

[34] Y. Choi, C. Hahn, J. W. Yoon, and S. H. Song, Observation
of an anti-PT-symmetric exceptional point and energy-
difference conserving dynamics in electrical circuit reso-
nators, Nat. Commun. 9, 2182 (2018).

[35] T. Helbig, T. Hofmann, S. Imhof, M. Abdelghany, T.
Kiessling, L. W. Molenkamp, C.H. Lee, A. Szameit, M.
Greiter, and R. Thomale, Generalized bulk—boundary cor-
respondence in non-Hermitian topolectrical circuits, Nat.
Phys. 16, 747 (2020).

[36] J. Wu, Z. Wang, Y. Biao, F. Fei, S. Zhang, Z. Yin, Y. Hu, Z.
Song, T. Wu, F. Song, and R. Yu, Non-Abelian gauge fields
in circuit systems, Nat. Electron. 5, 635 (2022).

[37] D. Zou, T. Chen, W. He, J. Bao, C. H. Lee, H. Sun, and X.
Zhang, Observation of hybrid higher-order skin-topological
effect in non-Hermitian topolectrical circuits, Nat. Com-
mun. 12, 7201 (2021).

[38] J. Hu, R.-Y. Zhang, Y. Wang, X. Ouyang, Y. Zhu, H. Jia, and
C.T. Chan, Non-Hermitian swallowtail catastrophe
revealing transitions among diverse topological singular-
ities, Nat. Phys. 19, 1098 (2023).

[39] X. Zhang, C. Wu, M. Yan, and G. Chen, Observation of
non-Hermitian pseudo-mobility-edge in a coupled electric
circuit ladder, Phys. Rev. B 111, 014304 (2025).

[40] K. Yamamoto, M. Nakagawa, K. Adachi, K. Takasan, M.
Ueda, and N. Kawakami, Theory of non-Hermitian fer-
mionic superfluidity with a complex-valued interaction,
Phys. Rev. Lett. 123, 123601 (2019).

[41] M. Nakagawa, N. Tsuji, N. Kawakami, and M. Ueda,
Dynamical sign reversal of magnetic correlations in dissipa-
tive Hubbard models, Phys. Rev. Lett. 124, 147203 (2020).

[42] N. Hatano and D. R. Nelson, Localization transitions in non-
Hermitian quantum mechanics, Phys. Rev. Lett. 77, 570
(1996).

[43] N. Hatano and D. R. Nelson, Non-Hermitian delocalization
and eigenfunctions, Phys. Rev. B 58, 8384 (1998).

[44] J. Feinberg and A. Zee, Non-Hermitian localization and
delocalization, Phys. Rev. E 59, 6433 (1999).

[45] Z. Gong, Y. Ashida, K. Kawabata, K. Takasan, S.
Higashikawa, and M. Ueda, Topological phases of non-
Hermitian systems, Phys. Rev. X 8, 031079 (2018).

[46] K. Kawabata and S. Ryu, Nonunitary scaling theory of non-
Hermitian localization, Phys. Rev. Lett. 126, 166801 (2021).

[47] H. Jiang, L.-J. Lang, C. Yang, S.-L. Zhu, and S. Chen,
Interplay of non-Hermitian skin effects and Anderson
localization in nonreciprocal quasiperiodic lattices, Phys.
Rev. B 100, 054301 (2019).

[48] C. Wang and X. R. Wang, Level statistics of extended states
in random non-Hermitian Hamiltonians, Phys. Rev. B 101,
165114 (2020).

[49] S. Longhi, Topological phase transition in non-Hermitian
quasicrystals, Phys. Rev. Lett. 122, 237601 (2019).

[50] A.F. Tzortzakakis, K.G. Makris, and E.N. Economou,
Non-Hermitian disorder in two-dimensional optical lattices,
Phys. Rev. B 101, 014202 (2020).

[51] J. Claes and Taylor L. Hughes, Skin effect and winding
number in disordered non-Hermitian systems, Phys. Rev. B
103, 1140201 (2021).

[52] X. Luo, T. Ohtsuki, and R. Shindou, Universality classes of
the Anderson transitions driven by non-Hermitian disorder,
Phys. Rev. Lett. 126, 090402 (2021).

[53] C.C. Wanjura, M. Brunelli, and A. Nunnenkamp, Corre-
spondence between non-Hermitian topology and directional
amplification in the presence of disorder, Phys. Rev. Lett.
127, 213601 (2021).

[54] S. Weidemann, M. Kremer, S. Longhi, and A.Szameit,
Coexistence of dynamical delocalization and spectral locali-
zation through stochastic dissipation, Nat. Photonics 15,
576 (2021).

[55] Q. Lin, T. Li, L. Xiao, K. Wang, W. Yi, and P. Xue,
Observation of non-Hermitian topological Anderson insu-
lator in quantum dynamics, Nat. Commun. 13, 3229 (2022).

[56] H. Liu, M. Lu, Z.-Q. Zhang, and H. Jiang, Modified
generalized Brillouin zone theory with on-site disorder,
Phys. Rev. B 107, 144204 (2023).

[57] E. Abrahams, P. W. Anderson, D. C. Licciardello, and T. V.
Ramakrishnan, Scaling theory of localization: Absence of
quantum diffusion in two dimensions, Phys. Rev. Lett. 42,
673 (1979).

[58] P. W. Brouwer, C. Mudry, B. D. Simons, and A. Altland,
Delocalization in coupled one-dimensional chains, Phys.
Rev. Lett. 81, 862 (1998).

[59] H. C.F. Martens, Delocalization in weakly coupled disor-
dered wires: Application to conjugated polymers, Phys.
Rev. Lett. 96, 076603 (2006).

[60] D. Weinmann and S. N. Evangelou, Parity-dependent locali-
zation in n strongly coupled chains, Phys. Rev. B 90,
155411 (2014).

[61] P. Bordia, H. P. Liischen, S.S. Hodgman, M. Schreiber, 1.
Bloch, and U. Schneider, Coupling identical one-dimen-
sional many-body localized systems, Phys. Rev. Lett. 116,
140401 (2016).

[62] T. Iadecola and M. Znidari&, Exact localized and ballistic
eigenstates in disordered chaotic spin ladders and the Fermi-
Hubbard model, Phys. Rev. Lett. 123, 036403 (2019).

[63] X. Lin and M. Gong, Fate of localization in a coupled free
chain and a disordered chain, Phys. Rev. A 109, 033310
(2024).

[64] X. Lin, M. Gong, and G.-C. Guo, From single-particle to
many-body mobility edges and the fate of overlapped
spectra in coupled disorder models, arXiv:2307.01638.

[65] See  Supplemental Material at http://link.aps.org/
supplemental/10.1103/lpm2-vcb4 for (i) physical mecha-
nism, (ii) eigenenergy-resolved IPR and mcom, (iii) finite-
size effects, (iv) biorthogonal inverse participation
ratio, (v) quenched dynamics, (vi) robustness of Anderson
delocalization against imperfect antisymmetric disorder,

076602-7


https://doi.org/10.1038/s41567-021-01492-w
https://doi.org/10.1038/s41567-021-01492-w
https://doi.org/10.1038/s41467-023-37065-z
https://doi.org/10.1038/s41567-024-02420-4
https://doi.org/10.1038/s41566-018-0213-5
https://doi.org/10.1038/s41566-018-0213-5
https://doi.org/10.1038/s41467-018-04690-y
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41567-020-0922-9
https://doi.org/10.1038/s41928-022-00833-8
https://doi.org/10.1038/s41467-021-26414-5
https://doi.org/10.1038/s41467-021-26414-5
https://doi.org/10.1038/s41567-023-02048-w
https://doi.org/10.1103/PhysRevB.111.014304
https://doi.org/10.1103/PhysRevLett.123.123601
https://doi.org/10.1103/PhysRevLett.124.147203
https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevLett.77.570
https://doi.org/10.1103/PhysRevB.58.8384
https://doi.org/10.1103/PhysRevE.59.6433
https://doi.org/10.1103/PhysRevX.8.031079
https://doi.org/10.1103/PhysRevLett.126.166801
https://doi.org/10.1103/PhysRevB.100.054301
https://doi.org/10.1103/PhysRevB.100.054301
https://doi.org/10.1103/PhysRevB.101.165114
https://doi.org/10.1103/PhysRevB.101.165114
https://doi.org/10.1103/PhysRevLett.122.237601
https://doi.org/10.1103/PhysRevB.101.014202
https://doi.org/10.1103/PhysRevB.103.L140201
https://doi.org/10.1103/PhysRevB.103.L140201
https://doi.org/10.1103/PhysRevLett.126.090402
https://doi.org/10.1103/PhysRevLett.127.213601
https://doi.org/10.1103/PhysRevLett.127.213601
https://doi.org/10.1038/s41566-021-00823-w
https://doi.org/10.1038/s41566-021-00823-w
https://doi.org/10.1038/s41467-022-30938-9
https://doi.org/10.1103/PhysRevB.107.144204
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.42.673
https://doi.org/10.1103/PhysRevLett.81.862
https://doi.org/10.1103/PhysRevLett.81.862
https://doi.org/10.1103/PhysRevLett.96.076603
https://doi.org/10.1103/PhysRevLett.96.076603
https://doi.org/10.1103/PhysRevB.90.155411
https://doi.org/10.1103/PhysRevB.90.155411
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1103/PhysRevLett.116.140401
https://doi.org/10.1103/PhysRevLett.123.036403
https://doi.org/10.1103/PhysRevA.109.033310
https://doi.org/10.1103/PhysRevA.109.033310
https://arXiv.org/abs/2307.01638
http://link.aps.org/supplemental/10.1103/lpm2-vcb4
http://link.aps.org/supplemental/10.1103/lpm2-vcb4
http://link.aps.org/supplemental/10.1103/lpm2-vcb4
http://link.aps.org/supplemental/10.1103/lpm2-vcb4
http://link.aps.org/supplemental/10.1103/lpm2-vcb4

PHYSICAL REVIEW LETTERS 135, 076602 (2025)

(vii) dependence of phase diagrams on y, (viii) coexistence [67] P. Molignini, O. Arandes, and E. J. Bergholtz, Anomalous

region of Anderson and skin-mode localization, (ix) circuit skin effects in disordered systems with a single non-

implementation of the model, and (x) experimental results Hermitian impurity, Phys. Rev. Res. 5, 033058 (2023).

of HN-Hermitian coupled chains subject to the symmetric [68] W.W. Jin, W. Ju, and T. Liu, Supporting Experimental

disorder, which includes Ref. [66]. Data for Manuscript “Anderson Delocalization in Strongly-
[66] Y.-X. Xiao and C. T. Chan, Topology in non-Hermitian Chern Coupled Disordered Non-Hermitian Chains,” 10.5281/zenodo

insulators with skin effect, Phys. Rev. B 105, 075128 (2022). .16411878.

076602-8


https://doi.org/10.1103/PhysRevB.105.075128
https://doi.org/10.1103/PhysRevResearch.5.033058
https://doi.org/10.5281/zenodo.16411878
https://doi.org/10.5281/zenodo.16411878

	Anderson Delocalization in Strongly Coupled Disordered Non-Hermitian Chains
	Introduction
	Model
	Phase diagram
	Experimental implementation
	Conclusion
	Acknowledgments
	Data availability
	References


