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I. MAPPING ISING MODELS TO COHERENT ISING MACHINES

The basic structure of a CIM is a fiber cavity complemented by a nonlinear crystal

and a coupling module. Optical pulses propagate in the cavity and form degenerated optical

parametric oscillators (DOPOs) described by a two-photon pump (in the interaction picture),

H = −iS
∑
n

[(a†n)
2 − (an)

2], (S1)

and loss terms including two-photon loss,

Ltp(ρ) =
∑
n

Γtp

2
[2ananρ(t)a

†
na

†
n − {a†na†nanan, ρ(t)}],

(S2)

and single-photon loss,

Ls(ρ) =
∑
n

Γs

2
[2anρ(t)a

†
n − {a†nan, ρ(t)}],

(S3)

where an is the annihilation operator of the nth DOPO mode, {•, •} denotes the anti-

commutator, and ρ is the density matrix describing all the DOPO modes. The DOPO

exhibits a phase transition at

2|S| = Γs, (S4)

where the steady-state transitions from a squeezed vacuum state to two possible coherent

states [1, 2]:

|Ψ(t→∞)⟩ = | ± α⟩. (S5)

CIMs use these two coherent states to emulate spin states:

|α⟩ ←→ | ↑⟩, | − α⟩ ←→ | ↓⟩. (S6)

If there are N DOPO pulses in the CIM, the steady state is a collective mode corresponding

to a many-body spin system, e.g.,

|α⟩ ⊗ | − α⟩ · · · ⊗ |α⟩ ←→ | ↑⟩ ⊗ | ↓⟩ · · · ⊗ | ↑⟩.
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Note that a DOPO exhibits dark states if the single-photon loss rate is vanishing (Γs ≈ 0):

|Ψ(t→∞)⟩ = C+|α⟩+ C−| − α⟩, (S7)

and the complex amplitude α of the coherent states is given by α = i
√
2S/Γd.

Two common design principles for implementing the optical coupling in CIMs are the op-

tical delay-line architecture [3] and the measurement-feedback architecture [4], respectively.

The optical delay-line coupling between two DOPO modes can be described by a collective

loss,

Lm,n(ρ) =
Γc

2
(2Ln,mρL

†
n,m − L†

n,mLn,mρ− ρL†
n,mLn,m),

Ln,m = an + sign(Jm,n)am. (S8)

where n and m correspond to two different DOPO modes. This phase-dependent loss in

Eq. (S8) can be associated with an Ising interaction term:

Hn,m = Jm,nσ
(n)
z σ(m)

z , (S9)

where σ
(n)
z is the Pauli matrix of the nth spin, and the coupling strength satisfies |Jm,n| = J .

The effect of the collective loss and of the Ising interaction, respectively, are summarized in

the following table:

Effect States Values

Collective loss Photon loss probability |α⟩n ⊗ |α⟩m 2|αn|2Γc(1 + sign(Jm,n))

|α⟩n ⊗ | − α⟩m 2|αn|2Γc(1− sign(Jm,n))

| − α⟩n ⊗ | − α⟩m 2|αn|2Γc(1 + sign(Jm,n))

| − α⟩n ⊗ |α⟩m 2|αn|2Γc(1− sign(Jm,n))

Ising interaction Energy shift | ↑⟩n ⊗ | ↑⟩m Jm,n

| ↑⟩n ⊗ | ↓⟩m −Jm,n

| ↓⟩n ⊗ | ↓⟩m Jm,n

| ↓⟩n ⊗ | ↑⟩m −Jm,n

It is straightforward to see that the energy difference in the spin system is mapped

to the loss difference in DOPO modes. An Ising energy −J corresponds to vanishing

loss, while an Ising energy J corresponds to finite loss. Due to the loss-dependent phase

3



transition in Eq. (S4), the Ising ground state is mapped to a collective DOPO mode with

lowest transition pump strength |S|.

The measurement-feedback coupling can be expressed as classical pumps on different

DOPO modes:

HMF = −i
∑
n,m

Ω sign(Jn,m)⟨(am + a†m)⟩(an − a†n). (S10)

Such a pump can effectively modify the two-photon pump strength S in the semiclassical

limit (mean field):

H +HMF = −iS
∑
n

[(a†n)
2 − (an)

2]− i
∑
n,m

Ω sign(Jn,m)⟨(am + a†m)⟩(an − a†n)

≈ −i
∑
n

[S⟨(an + a†n)⟩ −
∑
m

Ω sign(Jn,m)⟨(am + a†m)⟩](a†n − an). (S11)

As the steady states of DOPOs are coherent states with 0 phase or π phase, we have

⟨(an + a†n)⟩ = ±⟨(am + a†m)⟩,

in the semi-classical limit. Here, we assume a negative S to make the amplitude α real. If

⟨(an + a†n)⟩ = sign(Jn,m)⟨(am + a†m)⟩,

the total pump strength acting on the nth mode is increased. For an opposite relative phase

⟨(an + a†n)⟩ = −sign(Jn,m)⟨(am + a†m)⟩,

the total pump strength acting on the nth mode is reduced. According to the threshold

relation in Eq. (S4), modifying the pump strength of the collective mode is equivalent to

modifying the loss of the collective mode. Therefore, the measurement-feedback in Eq. (S11)

can also be mapped to the Ising interaction.

II. PROBLEMS CAUSED BY FRUSTRATION

A. Intrinsic loss

In the collective loss coupling protocol, the Ising energy is mapped to the loss. Note that

a collective loss with zero loss (that is, the system is in a dark state) corresponds to a spin
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configuration in which all the Ising coupling terms contribute negative energies. Such spin

configurations do not exist in frustrated Ising models. Therefore, there will be intrinsic loss

caused by the coupling protocol, if we use CIMs to simulate frustrated Ising models. Such

intrinsic loss generically destroys most strong quantum effects, and thus prevents CIMs

benefiting from quantum effects. Note that the current measurement-feedback coupling

protocol exhibits few quantum effects.

B. Inhomogeneity in amplitudes

Although the current CIMs mainly work in the semi-classical regime, frustration can

still cause problems. To correctly map an Ising model to a CIM, the amplitudes of dif-

ferent steady-state DOPO pulses are required to be the same. To see how inhomogeneous

amplitudes can cause errors, let us, for example, consider a pair of spins,

| ↑⟩n ⊗ | ↑⟩m,

which has the Ising coupling energy −J for the coupling term

Hn,m = −Jσn
z σ

m
z .

However, the collective DOPO mode

|α⟩n ⊗ |α +∆⟩m,

is not a dark mode of the collective loss operator,

Ln,m = an − am.

In addition the effective pump strength shift in Eq. (S11) requires that

|⟨(am + a†m)⟩| = |⟨(an + a†n)⟩|.

Note that one possible approach to mitigate the problem of inhomogeneous amplitudes

is the chaotic amplitude control [5].

III. POTENTIAL ADVANTAGES OF QUANTUM STATES IN A CIM

The advantages of quantum states for metrology have been analytically proved in spin

systems [6]. Following the idea of spin systems, we show the potential advantages of quantum
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final states in CIMs. Consider an Ising problem with Nsolution degenerate ground states and

the corresponding optical states in a CIM

|Ψn⟩, 0 ≤ n < Nsolution. (S12)

Due to the presence of Nsolution degenerate ground states, the probability of obtaining a

specific solution is

P =
1

Nsolution

. (S13)

Therefore, it is hard to verify the correctness of a candidate solution |ψcan⟩ if the CIM

produces a mixture of the solution states |Ψn⟩. Now we consider a superposition of all the

ground states,

|Ψ⟩ = 1√
Nsolution

∑
n

|Ψn⟩. (S14)

Here, the overlap between different effective spin states in CIMs is assumed to be negligible

⟨Ψn|Ψm⟩ ≈ 0 for n ̸= m. Assume now that we have obtained Ndet determined ground states

|Ψn,det⟩ with n < Ndet. We can then prepare a superposition of all these determined ground

states,

|Ψdet⟩ =
1√
Ndet

∑
n

|Ψn,det⟩, (S15)

and use the coherence between different solutions to verify the correctness of the candidate

state

Pco = ⟨Ψdet|Ψ⟩⟨Ψ|Ψcan⟩+ ⟨Ψcan|Ψ⟩⟨Ψ|Ψdet⟩ =
2
√
Ndet

Nsolution

. (S16)

We find that the coherence has a higher probability to be measured compared to the pro-

jection measurement with the success probability 1/Nsolution.

IV. THE IDEA OF THE ANCILLARY-MODE CONSTRUCTION

Here we introduce the basic idea behind introducing ancillary modes in dissipative cou-

pling channels. Consider the collective coupling illustrated in Fig. S1(a), which can be

expressed by the Lindblad operator,

L = a1 + a2. (S17)
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𝐿 ൌ 𝑎ଵ ൅ 𝑎ଶ 𝐿 ൌ 𝑎ଵ ൅ 𝑎ଶ ൅ 2𝑎ୟ୬

𝐿 ൌ 𝑎ଵ ൅ 𝑎ଶ ൅ 𝑒
௜గ
ସ 𝑎ଵ ൅ 𝑎ଷ ൅  𝑒௜గ/ଶሺ𝑎ଶ ൅ 𝑎ଷሻ ൅ 2𝑎ୟ୬

Original dark state for Dark state with ancillary for

Frustration eliminated dark states for 

Spin configurationFlipped couplingAncillary phase

𝐿ଵ,ଶ ൌ 𝑎ଵ ൅ 𝑎ଶ𝜙 ൌ 0

𝐿ଵ,ଷ ൌ 𝑎ଵ ൅ 𝑎ଷ𝜙 ൌ 𝜋 4⁄

𝐿ଶ,ଷ ൌ 𝑎ଶ ൅ 𝑎ଷ𝜙 ൌ 𝜋 2⁄

(a) (b)

(c)

FIG. S1: Illustration of the ancillary-controlled coupling flipping.

When the two effective spins have opposite orientations, they cancel in the loss channel

and form a dark mode, as illustrated in Fig. S1(a). On the other hand, the collective

modes associated to aligned orientations couple to the loss channel, so that this alignment

is suppressed by the dissipative coupling. This way, the dissipative coupling in Fig. S1(a)

induces an antiferromagnetic coupling.

The preferred collective spin state can be modified by adding an additional ancillary

mode, as illustrated in Fig. S1(b),

L′ = a1 + a2 + 2aan. (S18)

Due to the presence of a “larger” ancillary spin, the two signal spins must have the same

orientation for all three spins to form a dark mode. In the new dark mode the two signal

spins have the same orientation, as illustrated in Fig. S1(b). Note that the original dark
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mode (a1 − a2)/
√
2 is still decoupled from the loss channel in Fig. S1(b), but the original

bright mode (a1 + a2)/
√
2 is now pumped by the ancillary mode aan. This can be verified

as follows,

∂⟨a1 + a2⟩
∂t

= −i⟨[H, ρ](a1 + a2)⟩+ ⟨Ltp(ρ)(a1 + a2)⟩

+
Γc

2
⟨(2L′ρL′† − L′†L′ρ− ρL′†L′)(a1 + a2)⟩

= −i⟨[H, ρ](a1 + a2)⟩+ ⟨Ltp(ρ)(a1 + a2)⟩

+
Γc

2
[⟨L′ρL′†(a1 + a2)⟩ − ⟨L′†L′ρ(a1 + a2)⟩+ ⟨L′ρL′†(a1 + a2)⟩ − ⟨ρL′†L′(a1 + a2)⟩]

= −i⟨[H, ρ](a1 + a2)⟩+ ⟨Ltp(ρ)(a1 + a2)⟩

+
Γc

2
[⟨L′ρL′†(a1 + a2)⟩ − ⟨L′ρ(a1 + a2)L

′†⟩+ ⟨ρL′†(a1 + a2)L
′⟩ − ⟨ρL′†L′(a1 + a2)⟩]

= −i⟨[H, ρ](a1 + a2)⟩+ ⟨Ltp(ρ)(a1 + a2)⟩

+
Γc

2
[⟨L′ρ[L′†, (a1 + a2)]⟩+ ⟨ρL′†[(a1 + a2), L

′]⟩]

= −i⟨[H, ρ](a1 + a2)⟩+ ⟨Ltp(ρ)(a1 + a2)⟩

+
Γc

2
⟨(a1 + a2 + 2aan)ρ[(a

†
1 + a†2 + 2a†an), (a1 + a2)]⟩

+
Γc

2
⟨ρ(a†1 + a†2 + 2a†an)[(a1 + a2), (a1 + a2 + 2aan)]⟩

= −i⟨[H, ρ](a1 + a2)⟩+ ⟨Ltp(ρ)(a1 + a2)⟩ − Γc(⟨a1⟩+ ⟨a2⟩+ 2⟨aan⟩). (S19)

Note that the last term −2Γc⟨aan⟩ can be an effective pump if ⟨aan⟩ has the same sign

as −(⟨a1⟩ + ⟨a2⟩). Such an effective pump can cause the mode (a1 + a2) to dominate the

competition with the original dark mode (a1− a2), which is induced by the two-photon loss

terms. Such a competition mechanism can be understood as follows,

⟨Ltp(ρ)(a1 + a2)⟩ =
Γtp

2

∑
k=1,2

⟨a2kρ[(a
†
k)

2, (a1 + a2)]⟩

= −Γtp⟨a†1a21⟩ − Γtp⟨a†2a22⟩

= − Γtp

2
√
2
⟨(a†+ + a†−)(a+ + a−)

2⟩ − Γtp

2
√
2
⟨(a†+ − a

†
−)(a+ − a−)2⟩

= − Γtp

2
√
2
⟨(a†+a2+ + 2a†+a−a+ + a†+a

2
−)⟩ −

Γtp

2
√
2
⟨(a†−a2+ + 2a†−a−a+ + a†−a

2
−)⟩

− Γtp

2
√
2
⟨(a†+a2+ − 2a†+a−a+ + a†+a

2
−)⟩+

Γtp

2
√
2
⟨(a†−a2+ − 2a†−a−a+ + a†−a

2
−)⟩

= −Γtp√
2
(⟨a†+a2+⟩+ ⟨a

†
+a

2
−⟩+ ⟨2a

†
−a−a+⟩). (S20)

with a+ = (a1 + a2)/
√
2 and a− = (a1 − a2)/

√
2. Under the mean field approximation, the
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last two terms describe single-photon loss acting on the mode a+ with a loss rate depending

on the semiclassical amplitude of the mode a−. It follows that a− is suppressed by a pumped

a+, even though it is decoupled from the loss.

To control multiple couplings with a single ancillary mode, we may associate different

coupling terms with different phases and use a hyperspin as the ancillary mode, as illustrated

in Fig. S1(c). The phase is an effective rotation of the z direction of each coupling term, so

that different coupling terms do not interfere with each other. The hyperspin ancilla chooses

a specific spin orientation, and flips the corresponding coupling term.

V. SEMICLASSICAL EQUATIONS FOR A CIM

In the limit of large amplitudes, we can also approximate a CIM with semiclassical equa-

tions of motion, which follow from a mean field approximation of the quantum dynamics:

∂

∂t
An = PA∗

n − γsAn − γdAn|An|2 − Cn

Cn =
∑
m

|Jn,m|[An + sign(Jn,m)Am], (S21)

where An ≡ ⟨an⟩ is the amplitude of the nth mode with the annihilation operator an, and

Cn is the coupling term determined by the coupling matrix Jn,m = ±J with J > 0. Without

coupling |Jn,m| = 0, each mode in Eq. (S21) has two steady solutions Am = ±
√

(P − γs)/γd,

which correspond to two spin orientations, above the threshold P > γs.

The coupling term Cn can shift the threshold as

P > γs +
∑
m

|Jn,m|+
∑
j

Jn,m
Am

An

. (S22)

Note that Am/An = ±1, if the amplitudes are homogeneous.

A. Semiclassical description for frustration elimination

The ancillary modes in the frustration-elimination method can be described by the fol-

lowing mean-field equations,

∂

∂t
Aans = 2SA∗

ani − ΓtpAans|Aani|2 − Cans,

∂

∂t
Aani = 2SA∗

ans − ΓtpAani|Aans|2 − Cani, (S23)
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with Aans ≡ ⟨aans⟩ and Aani ≡ ⟨aani⟩. Note that the single-photon loss is omitted here. The

dark mode condition for the ancillary modes is AansAani = 2S/Γtp. With a pair of conjugate

coupling terms Cans = C∗
ani, the solutions obey the symmetry Aans = A∗

ani, which is the

condition required for the ancillary modes. Note that the Lindblad terms in the main text

satisfy this relation.

The semiclassical coupling terms for the frustration elimination are

CF
i = Jeff

i (Ã+ 2Aans) + Jeff
i

∗
(Ã∗ + 2Aani),

Cans = 2J{Ã+ 2Aans}, Cani = 2J{Ã∗ + 2Aani}, (S24)

with Ã =
∑

n,m e
iϕn,m [Am +An], and the phase terms ϕ1,2 = 0, ϕ2,3 = π/2, ϕ1,3 = π/4. Note

that the effective coupling strength Jeff
i ≡

∑
j(e

−iϕi,jJi,j + e−iϕj,i |Jj,i|), which has no effect

on the dark-state condition CF
i = 0, originates from the quantum coupling model described

by the Lindblad operator.

VI. REALIZATION OF FRUSTRATION-ELIMINATION-TYPE COLLECTIVE

LOSS

A. Two-mode collective loss with optical delay lines

We first consider a two-mode collective loss formed by a delay line coupled to two optical

pulses, as illustrated in Fig. S2,

The input mode bin (usually the vacuum state) couples with two system modes succes-

sively through two beam splitters. The fields after the scattering in Fig. S2(a) are:

b′in = Tbin +Ra1,

a′1 = Ta1 −Rbin. (S25)

After the second scattering, the fields are:

b′′in = T 2bin +RTa1 +Ra2,

a′1 = Ta1 −Rbin,

a′2 = Ta2 −RTbin −R2a1. (S26)

Here, the transmission rate is T 2 and the reflection rate is R2. When the transmission rate

is close to 1, the input mode bin is not coupled to the collective mode (a1 − a2) up to the
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DOPO1 DOPO1

Input vacuum

DOPO2DOPO2

Output field

𝑏in

𝑏in
′

𝑎1 𝑎1
′ 𝑎2

𝑏in
′

𝑎2
′

(a) (b)

FIG. S2: Illustration of the collective loss realized through a delay-line coupling. (a) First, the

first pulse denoted as a1 passes the first beam splitter and mixes with a vacuum field denoted as

bin in the delay line denoted as b′in. (b) Then the pulse b′in, which carries the information of a1,

interacts with the second pulse a2 at the second beam splitter. For a proper collective state, the

output field is almost a vacuum state, which corresponds to a dark state of such collective loss.

second order of |R|. The change of the “dark mode” is as follows:

a′1 − a′2 = T (a1 − a2) + (1− T )Rbin +R2a1

= (T + 0.5R2)(a1 − a2) + (1− T )Rbin + 0.5R2(a1 + a2). (S27)

It is easy to see that this “dark mode” is not really dark, but coupled to the bright mode

(a1 + a2) up to second order in R. Therefore, we can conclude that the “dark mode” in

Fig. S2(a) is dark to the input field bin, but not completely decoupled from other modes.

Note that the second order of R is important because the loss generated by the delay line

on the bright mode is of the order of R2.

To solve this problem, we can introduce a delay line with opposite scattering order, as

shown in Fig. S3. Such a delay line has the following effects on the DOPO pulses:

a′′2 = Ta′2 −Rbin,op,

a′′1 = Ta′1 −RTbin,op −R2a′2. (S28)

11



DOPO1

DOPO2

DOPO1

Output field

𝑎1

𝑏in,op
′

𝑎1
′

𝑎2
′

DOPO1

DOPO2 DOPO2

Input vacuum

𝑏in,op

𝑏in,op
′

𝑎2 𝑎2
′

𝑎1

FIG. S3: Illustration of the open-port delay line in the opposite direction. A delay line can only

delay and convey the information of a pulse to the pulses coming after it. However, note that in

cyclic structures, e.g., in CIMs, the nth pulse in the mth circle passes the coupling modula before

the (n− 1)th pulse in the (m+ 1)th circle. Therefore, a delay line in the opposite direction delays

the pulses longer than the circling period.

The total effects of the two delay lines are:

a′′1 = T 2a1 − T 3Rbin −RTbin,op −R2Ta2 +R4a1,

a′′2 = T 2a2 − T 2Rbin − TR2a1 −Rbin,op. (S29)

After passing the two-delay lines with opposite scattering order, the collective mode (a1−a2)

becomes,

a′′1 − a′′2 = T (T +R2)(a1 − a2)−RT 2(T − 1)bin −R(T − 1)bin,op +R4a1

≈ (a1 − a2) + o(R2). (S30)

This collective mode is unchanged up to second order in T . Therefore, two delay lines with

different directions can form a dark mode. The collective mode with opposite relative phase

(a1 + a2) experiences loss through these delay lines:

a′′1 + a′′2 = T (T −R2)(a1 + a2)−RT 2(T + 1)bin −R(T + 1)bin,op +R4a1

≈ (1−R2)(a1 + a2)−R(bin + bin,op) + o(R2). (S31)
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𝑏in,1
𝑎1 𝑎2 𝑎12

(±)

𝑏in,1

𝑎12
(±)

⋯
𝑎12
(±)

𝑎𝑖𝑗
(±)𝑎an𝑖

EOM EOM
𝑏in,1

(a)

(b)

FIG. S4: Illustration of the multi-port delay line. (a) Expression of two modes coupled to a delay

line as a collective mode. (b) Illustrations of phase terms in the frustration-eliminating channel

generated by the phase and amplitude modulators (EOM). A multi-port delay line can be naively

interpreted as connecting several two-port delay lines with EOMs.

Note that Eq. (S31) is equivalent to the coupling between a loss channel bin + bin,op and a

collective mode (a1+a2). The collective loss Eq. (S31) can also be expressed by the Lindblad

terms:

L1,2(ρ) =
Γc

2
(2L1,2ρL

†
1,2 − L

†
1,2L1,2ρ− ρL†

1,2L1,2),

L1,2 = a1 + a2. (S32)

Note that the preferred collective mode can be changed by including an electro-optic phase

and amplitude modulator (EOM),

L1,2 = a1 + a2 −→ L′
1,2 = a1 − a2. (S33)

B. Multi-mode collective loss for frustration elimination

To eliminate the frustration in CIMs, we need a frustration-eliminating loss channel of

the following form:

Lani =
∑
n,m

eiϕm,n(an + sign(Jm,n)am) + 2aani. (S34)
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Note that here we take the frustration-eliminating channel of an idler ancillary mode as an

example, while the channel for the signal ancillary modes only differs in the phases. Such

loss can be realized by multi-port delay lines, as illustrated in Fig. S4.

To simplify the expressions, we express the two signal modes coupled to the delay line in

Fig. S2 as a collective mode, as shown in Fig. S4(a). Note that

a
(±)
12 = a1 ± a2. (S35)

We can couple multiple collective modes, which correspond to different coupling terms in

Eq. (S8), to a common open-port delay, as illustrated in Fig. S4(b). By introducing necessary

phase terms ϕm,n with EOMs, the collective mode coupled to the delay line is exactly the

Lindblad operator in Eq. (S34). The additional coupling terms can be cancelled by a delay

line in opposite direction as illustrated in Fig. S5.

⋯
𝑎12
(±)

𝑎𝑖𝑗
(±)𝑎an𝑖

⋯
𝑎21
(±)

𝑎𝑗𝑖
(±)

𝑎an𝑖

FIG. S5: Illustration of the frustration-eliminating loss channel formed by a pair of multi-port

delay lines. As in the two-port delay cases, the unwanted coupling terms can be eliminated with a

delay line in opposite direction.

VII. FRUSTRATION ELIMINATION IN MEASUREMENT-FEEDBACK COU-

PLING

Following the idea in Eq. (S11), the frustration-elimination coupling can also be realized

with measurement feedback.

HFEMF = iΩ⟨(Lani + L†
ani)⟩(Lani − L†

ani). (S36)

14



Consider now the semi-classical amplitude equation of the nth DOPO mode under the

influence of this Hamiltonian,

∂

∂t
⟨an⟩ = i⟨[HFEMF, an]⟩,

= −Ω⟨(Lani + L†
ani)⟩⟨[(Lani − L†

ani), an]⟩ (S37)

Note that the contribution of the frustration-elimination loss in Eq. (S34) to the amplitude

equation has a similar form in the semi-classical limit,

∂

∂t
⟨an⟩ =

Γc

2
⟨an(2LaniρL

†
ani − L

†
aniLaniρ− ρL†

aniLani)⟩,

=
Γc

2
⟨[an, Lani]ρL

†
ani⟩+

Γc

2
⟨[L†

ani, an]Laniρ⟩,

≈ −Γc

2
⟨Lani + L†

ani⟩⟨[(Lani − L†
ani), an]⟩. (S38)

VIII. SCALING OF FRUSTRATION ELIMINATION DISSIPATIVE COUPLING

A. General design for scaling the frustration-elimination method

As mentioned in the main text, applying the frustration elimination method to the general

case of flipping several couplings requires a modified model,

Ln,m
ans = Ln,m + i(bcontrol + bn,m) + 2an,mans ,

Ln,m
ani = Ln,m − i(bcontrol + bn,m) + 2an,mani ,

Lcontrol =
∑

bn,m + (2NF −Nc)bcontrol. (S39)

Unlike the single-ancilla case, now a pair of frustration eliminating loss channels is attributed

to each coupling term Lm,n. Each pair of ancillary modes can either flip the corresponding

loss term or the coupling between a pair of control modes bcontrol and bn,m. If a coupling term

Ln,m is flipped, the corresponding control modes prefer the dark state of (bcontrol + bn,m). If

we want to flip NF couplings within all the Nc coupling terms, we need NF control modes

bn,m in the dark state of (bcontrol + bn,m) and (Nc − NF) control modes in the dark state of

15



(bcontrol − bn,m). Such control is achieved by the third line of Eq. (S39), which prefers NF

control modes bn,m to share the same orientation with the control mode bcontrol.

The basic idea is to control different coupling terms with different ancillary modes, and

to control the number of active ancillary modes with additional loss channels. For each

coupling term Ln,m in the original Ising model, we need a pair of frustration-eliminating

coupling channels, Ln,m
ans and Ln,m

ani , which comprises three additional modes, i.e., bn,m, a
n,m
ans

and an,mani . In addition to these ancillary modes distributed to each coupling term, we also

need a control mode bcontrol to adjust the number of flipped couplings. Therefore, the relation

between the total number of additional modes Nad and the number of coupling terms Nc in

the original model is

Nad = 3Nc + 1. (S40)

B. Semi-classical equations and error identification

Simulating the quantum model of frustration elimination is in general a challenge. There-

fore, we alternatively use the following semi-classical equations under the mean-field approx-

imation,

∂Ai

∂t
≡ ∂⟨ai⟩

∂t
≈ i⟨[H, ai]⟩ −

∑
k

γk
2

[
⟨[ai, L†

k]⟩⟨Lk⟩ − [ai, Lk]⟩⟨L†
k⟩
]
. (S41)

16



The equations for all the modes in Eq. (S39) are as follows,

∂

∂t
An = PA∗

n − γdAn|An|2 − γc
∑
n>m

(An + Cn,mAm + An,m
ans + An,m

ani )

−γc
∑
n<m

Cn,m(An + Cn,mAm + An,m
ans + An,m

ani ),

∂

∂t
Bn,m = PB∗

n,m − γdBn,m|Bn,m|2 − γc(Bcontrol +Bn,m − iAn,m
ans + iAn,m

ani )

−γc
2

[∑
l>m

Bl,m + (2NF −Nc)Bcontrol

]
,

∂

∂t
An,m

ans = PAn,m
ani

∗ − γdAn,m
ans |A

n,m
ani |2 − γc(An + Cn,mAj + iBcontrol + iBn,m + 2An,m

ans ),

∂

∂t
An,m

ani = PAn,m
ans

∗ − γdAn,m
ani |An,m

ans |2 − γc(An + Cn,mAj − iBn,m − iBn,m + 2An,m
ani ),

∂

∂t
Bcontrol = PB∗

control − γdBcontrol|Bcontrol|2 − γc
∑
n>m

(Bcontrol +Bn,m − iAn,m
ans + iAn,m

ani )−

(2NF −Nc)γc

[∑
l>m

Bl,m + (2NF −Nc)Bcontrol

]
. (S42)

Here An = ⟨an⟩, Bn,m = ⟨bn,m⟩, Bcontrol = ⟨bcontrol⟩, An,m
ani = ⟨an,mani ⟩, and An,m

ans = ⟨an,mans ⟩.

Without frustration, the amplitudes of all modes should have the same absolute value.

Therefore, we can use the amplitude inhomogeneity as an indicator for errors. We first define

the average amplitude as

Ā =

∑
n |An|+

∑
n,m(|Bn,m|+ |An,m

ans |+ |A
n,m
ani |) + |Bcontrol|

N + 3Nc + 1
. (S43)

The cumulative fluctuation of the amplitudes can then be defined as

F =
∑
n

(|An| − Ā)2 +
∑
n,m

[(|Bn,m| − Ā)2 + (|An,m
ans | − Ā)2 + (|An,m

ani | − Ā)2] + (|Bcontrol| − Ā)2.

(S44)

Note that this fluctuation contains the inhomogeneity in both signal modes and ancillary

modes.

C. Additional numerical results

In the main text, we focus on a three-mode example, which is the simplest example of a

frustrated Ising model. Here, we apply the frustration elimination and excited-state search

to larger systems, see Figs. S6 and S7.
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FIG. S6: Relation between the logarithm of the amplitude fluctuation and the Ising energy of

the CIM states obtained with random initial conditions. The Ising model studied is a four-mode

one with all-to-all antiferromagnetic coupling. The seven subfigures correspond to seven different

numbers of flipped couplings. For NF = 0, 1, no solution is found due to the frustration. The

system reaches frustration elimination, and the ground states are found for NF = 2. By further

increasing NF, the excited states with two different excited energies are found for NF = 3 and

NF = 6.

We find that the vanishing fluctuation is also a sufficient condition for correct solutions

for the four-mode case and the five-mode case. Therefore, the amplitude inhomogeneity can

be used as an indicator for the wrong solutions. In addition, the excited states search is also

effective in the examples studied here. By adding more flipped coupling terms, we can find

the states with arbitrary energy, which is not possible in current CIMs.

To conclude, we remark that the probability to find correct solutions is reduced due to

the additional ancillary modes. However, this reduction can be partially compensated by
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the self-checking functionality and the potential advantages brought by quantum effects.

Presently, the main advantage of these ancillary modes in the semi-classical regime is the

search for states with arbitrary energy.
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FIG. S7: Relation between the logarithm of the amplitude fluctuation and the Ising energy of

the CIM states obtained with random initial conditions. The Ising model studied is a five-mode

one with all-to-all antiferromagnetic coupling. The eleven subfigures correspond to eleven different

numbers of flipped couplings. For NF < 4, no solution is found due to the frustration. The system

reaches frustration elimination, and the ground states are found for NF = 4. By further increasing

NF, the excited states with two different excited energies are found for NF = 6 and NF = 10.
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