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Frustration, that is, the impossibility of satisfying the energetic preferences between all spin pairs
simultaneously, underlies the complexity of many fundamental properties in spin systems, including the
computational difficulty in determining their ground states. Coherent Ising machines (CIMs) have been
proposed as a promising analog computational approach to efficiently find different degenerate ground
states of large and complex Ising models. However, CIMs also face challenges in solving frustrated Ising
models: frustration not only reduces the probability of finding good solutions, but it also prohibits the
leveraging of quantum effects in doing so. To circumvent these detrimental effects of frustration, we show
how frustrated Ising models can be mapped to frustration-free CIM configurations by including ancillary
modes and modifying the coupling protocol used in current CIM designs. Such frustration elimination may
empower current CIMs to benefit from quantum effects in dealing with frustrated Ising models. In addition,
these ancillary modes can also enable error detection and searching for excited states.
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Introduction—Ising models [1–5] have been widely
studiedbecause thesemodelsexhibit,despite their seemingly
simple Hamiltonians, a rich variety of interesting properties,
exemplified, e.g., by the theory of spin glasses [6–10]. The
price to pay is that the properties of large Ising models with
random all-to-all couplings are notoriously difficult to study
both experimentally and numerically [11–16]. For instance,
finding their ground states is known to be NP-hard.
Coherent Ising machines (CIMs) [17–30] have been

developed as optical analog computers with the potential to
simulate Ising models more efficiently. These machines
feature flexible optical couplings that can, in principle, be
adjusted to realize any desired Ising interaction, over-
coming the nearest-neighbor restrictions of other hardware
approaches. In particular, this allows them to enter deeply
into, and explore, the realm of frustrated Ising problems.
Frustrated couplings, which are omnipresent in generic
Ising models, lie at the heart of many intriguing properties
of Ising models, including the computational hardness of
finding ground states [31–38]. Therefore, dealing with
frustrated Ising models is a core objective of CIMs.
However, frustrated couplings represent challenges as

well for CIMs. Most Ising models with frustrated couplings

correspond to CIM configurations where loss acts inho-
mogeneously on different effective optical spins [39–45],
thus breaking the homogeneous-amplitude requirement of
CIMs [17]. Moreover, frustration in CIMs results in
intrinsic single-photon loss, which decoheres quantum
states [46–52] and thus impedes the advancement of
quantum CIMs. Therefore, finding improved ways to deal
with frustrated couplings can significantly affect the per-
formance of CIMs.
Although frustration is an intrinsic property of generic

Ising models, frustrated optical couplings can be circum-
vented in CIMs while preserving the to-be-found ground
states. Since the energy difference between different spin
configurations is mapped to the total-loss difference
between optical modes in CIMs [17,19,53], frustration is
absent in CIMs whenever ground states of Ising models are
mapped to loss-free optical configurations. Unfortunately,
these “zero points,” i.e., the Ising energies corresponding to
vanishing optical loss, cannot be adjusted freely in cur-
rent CIMs.
To solve this obstacle in CIMs, we provide a method to

shift the lossless point of CIMs with the help of ancillary
modes. In our proposal, the signal degenerate-optical-
parametric-oscillator (DOPO) modes express the spin
configurations in the same way as in the current CIMs,
while the additional ancillas shift the correspondence
between Ising energy and optical loss, so that Ising ground
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states are mapped to lossless optical configurations.
Eliminating frustration this way promotes current CIMs
mainly in three aspects: First, it allows for the presence of
stronger quantum effects in CIMs, e.g., steady states can
emerge as superpositions of all the degenerate ground states
of the underlying Ising models despite their frustration.
Enabling these quantum effects is essential for developing
CIMs operating in the quantum regime. Second, inhomo-
geneities caused by frustration are absent, thus improving
the performance of CIMs in the semiclassical regime.
Finally, by shifting the lossless point of CIMs to excited
energies, it is possible to search for excited states.
Mapping Ising models to CIMs—In a CIM, the spin

states j↑i and j↓i are expressed by coherent states jαi
and j − αi, respectively, which are steady states of the
uncoupled DOPOs described by the Hamiltonian H ¼P

k Sða2k þ a†k
2Þ and the two-photon loss LdðρÞ ¼P

kðΓtp=2Þð2a2kρa†k2 − a†k
2a2kρ − ρa†k

2a2kÞ. At the same
time, Ising coupling terms,

Jn;mσ
ðnÞ
z σðmÞ

z ; ð1Þ

are represented by collective loss channels Lm;nðρÞ ¼
ðΓc=2Þð2Ln;mρL

†
n;m − L†

n;mLn;mρ − ρL†
n;mLn;mÞ, with the

Lindblad operator,

Ln;m ¼ an þ signðJm;nÞam; ð2Þ

effectively mapping the energies of different spin configu-

rations to the total loss in the CIM. Here, σðnÞz is the Pauli
matrix of the nth spin, Jn;m ¼ �J with J > 0, an is the
annihilation operator of the nth optical mode in the CIM,
and ρ is the density matrix [54].
For Jn;m > 0, the Ising coupling term (1) contributes a

positive energy if the two spins are aligned, and negative
energy if they are antialigned. In the corresponding optical
coupling (2), the Lindblad term causes loss if the two
optical modes have the same phase α, while two optical
modes with opposite phases describe a dark state of the loss
term. Similarly, if Jn;m < 0, two optical modes with the
same phases describe a dark state of the corresponding
loss term.
Therefore, the total energy of a spin configuration, i.e.,

the summed-up contributions of all the Ising coupling terms
(1), is proportional to the total optical loss in the CIM. In
particular, the ground state of the Ising model corresponds
to the optical configuration with minimum loss. Note that
an optical configuration without loss in a CIM corresponds
to a spin configuration with minimum possible energy
EMPE ¼ −JNc, where Nc is the total number of coupling
terms (1). In such cases, the steady states of CIMs are
catlike superposition states in the frustration-free ground-
state space [50,54,58]. As the phase transition point
(threshold pump power) of a CIM depends on the loss,

the optical configuration with minimum loss, which is
located at the transition point, can be found by gradually
increasing the pump [54].
Obstacles caused by frustrated couplings—For illustra-

tion, let us consider the simplest possible situation featuring
frustration, realized by three DOPO modes, as shown in
Fig. 1(a). In this example, all three optical couplings
energetically prefer coupled modes with opposite phases,
which cannot be simultaneously satisfied by any configu-
ration. Therefore, the system unavoidably sustains loss
from at least one coupling channel, thus prohibiting
quantum superposition and entanglement. The resulting
decoherence represents an intrinsic obstacle for developing
quantum CIMs.
In addition to suppressing quantum effects, frustration

hinders the original function of CIMs, that is, finding
ground states of Ising models in the semiclassical regime.
In a frustrated CIM configuration, the loss is distributed
inhomogeneously among the modes, as illustrated in
Fig. 1(b). Consequently, different modes assume different
amplitudes, e.g., mode 1 is above threshold while modes 2
and 3 remain below threshold. Such inhomogeneous
amplitudes render the mapping in Eqs. (1), (2) defective,
thus preventing CIMs from finding correct solutions [54].

FIG. 1. Illustration of frustration elimination. (a) Paradigmatic
three-mode example featuring frustration, reflected by the ab-
sence of a dark state. (b) One of the three degenerate ground states
of the configuration in (a), sustaining loss due to the coupling
between mode 2 and mode 3. The red double arrow represents the
coupling contributing loss, and the green double arrows represent
the loss-free couplings. (c) Flipping the coupling between modes
2 and 3 eliminates frustration for the ground state in (b).
(d) Simultaneous frustration elimination for all degenerate
ground states with the help of an ancilla. Although frustration
in general prohibits dark states in CIMs, it is possible to map all
the ground states of a frustrated Ising model to an optical dark
state with the help of ancillary modes.
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In general, Ising models with ground-state energies
larger than EMPE are, in the current CIM design, mapped
according to Eqs. (1), (2) to such frustrated couplings.
Frustration elimination: General idea—For a specific

ground state, e.g., j − αijαijαi, the loss in the frustrated
configuration shown in Fig. 1(b) can be removed by
flipping the sign of the lossy coupling term, as shown in
Fig. 1(c). However, such direct manipulation cannot
address all the degenerate ground states of the original
Ising model, e.g., it fails for the solution jαijαij − αi.
Therefore, we introduce an ancilla that controls the

flipping of the coupling terms. As the ancilla, by design,
removes the loss, the steady state can then be a super-
position of the different solutions, as illustrated in Fig. 1(d)
and explicitly verified below. In the resulting state, the
ancillary part mediates the superposition of three different,
unfrustrated Ising models, the ground states of which are
encoded in the signal modes. The set of these frustration-
free ground states comprises all the degenerate ground
states of the original frustrated model.
Figure 1(d) illustrates how to adapt frustration elimina-

tion to general frustrated Ising models (1). Flipping an
appropriate coupling term, e.g., coupling 5 in Fig. 1(d),
reduces the energy by at most 2J for all spin configurations,
and the corresponding ground states of the original model
maintain to carry the lowest energy. The lowest energy can
be further reduced by flipping several coupling terms, each
flip enabled by a separate ancilla as illustrated in Fig. 1(d),
while preserving the ground states. Given a sufficient
number of ancillary modes, the energy of the ground states
Eground can then be reduced to the minimum possible
energy EMPE, and the frustration is completely eliminated.
Specifically, the number of necessary ancillas is determined
by ðEground − EMPEÞ=ð2JÞ, which can be identified by either
current CIMs or by gradually increasing the number of
ancillas.
Ancilla realization in CIMs—The desired ancillas for

frustration elimination can be realized in CIMs by addi-
tional optical modes. For a Lindblad operator ðL ¼ a1 þ
a2Þ with the dark states jαij − αi and j − αijαi, the dark
states can be modified by including a third mode as

L ¼ a1 þ a2 þ 2aan: ð3Þ
The collective loss (3) supports the dark states

jαijαij − αian; and j − αij − αijαian; ð4Þ
where the two signal modes now take the same sign.
To control multiple loss channels with a single ancillary

mode, e.g., the case illustrated in Fig. 1(d), we introduce an
effective hyperspin [59,60], which can take different
directions, as the ancillary mode

Lan ¼
X

n;m

eiϕm;n ½an þ signðJm;nÞam� þ 2aan: ð5Þ

Different collective coupling terms are now associated with
different phases ϕn;m, corresponding to rotations of spin
directions; while the ancillary mode (hyperspin) autono-
mously picks up one phase (direction) and flips the
corresponding coupling term. An arbitrary phase can be
imposed on DOPO modes by a phase and amplitude
modulator [19].
Such ancillary states can be realized by nondegenerate

optical parametric oscillators (NDOPOs) described by the
Hamiltonian HNDOPO ¼ Sðaaniaans þ a†ania

†
ansÞ and the

Lindblad operator LNDOPO ¼ aaniaans with an ancillary
idler mode aani and an ancillary signal mode aans. The
steady states of an NDOPO are also coherent states
jαaniijαansi with αaniαans ¼ 2S=ΓNDOPOtp, where ΓNDOPOtp

is the two-photon loss rate of the NDOPO. Note that an
additional loss channel with the same loss rate is required to
fix the “length” of the hyperspin,

Lani ¼
X

n;m

eiϕm;n ½an þ signðJm;nÞam� þ 2aani;

Lans ¼
X

n;m

e−iϕm;n ½an þ signðJm;nÞam� þ 2aans; ð6Þ

with 2S=ΓNDOPOtp ¼ janj2. To satisfy the two loss channels
in Eq. (6) simultaneously, the two NDOPO modes must
have amplitudes with the same absolute value, e.g., aani ¼
expðiϕm;nÞan and aans ¼ expð−iϕm;nÞan.
Numerical demonstration of frustration elimination—

We numerically simulate the evolution of the frustration
eliminated CIM configuration that corresponds to the
frustrated Ising configuration in Fig. 1(a). The DOPOs
and NDOPOs share the same two-photon loss rate
Γtp ¼ ΓNDOPOtp ¼ Γ, and the frustration-eliminating loss
channels (6) denote three coupling terms with the phases,
ϕ1;2 ¼ 0, ϕ2;3 ¼ ðπ=2Þ, and ϕ3;1 ¼ ðπ=4Þ. The three frus-
tration-eliminated configurations in Fig. 1(d) and the Z2

symmetry result in a six-component dark state,

jψð∞Þi ¼ 1ffiffiffi
6

p þ δ

X6

k¼1

jϕiks ⊗ jψikan; ð7Þ

where the signal mode part jϕiks encodes the corresponding
Ising ground state, while the ancillary part jψikan indicates
the unsatisfied coupling.
The high fidelity (≈0.95) with respect to the pure dark

state (7) in Fig. 2(a) implies that the optical effective spin
system is not frustrated and resides in a loss-free
ground mode.
Next, we discuss the realization of ancillary modes in

general cases of multiple coupling flips and the advantages
in the semiclassical regime. Consider the following cou-
pling terms:
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Ln;m
ans ¼ Ln;m þ iðbcontrol þ bn;mÞ þ 2an;mans ;

Ln;m
ani ¼ Ln;m − iðbcontrol þ bn;mÞ þ 2an;mani ;

Lcontrol ¼
X

bn;m þ ð2NF − NcÞbcontrol: ð8Þ

Here, bcontrol and bn;m are DOPO ancillary modes, an;mans and
an;mani are ancillary NDOPO modes, and NF is the number of
coupling terms flipped. The first two lines in Eq. (8) imply
that a flipped coupling term corresponds to an ancilla with
phase 0, so that the corresponding DOPO ancillary mode
bn;m forms a dark mode with the control mode bcontrol. The
third line in Eq. (8) constrains the number of bn;m with
negative phases according to bcontrol to be Nflip. Note that
Eq. (6) is not a special case of Eq. (8). The scheme
presented in (6) is more resource efficient but not suitable
for flipping multiple couplings.
We apply Eq. (8) to the model in Fig. 1(a) and study its

advantages in addition to quantum effects by simulating the

corresponding semiclassical equations [54]. The relation
between the logarithm of the amplitude inhomogeneity and
the Ising energy of the solution candidates is calculated
with 164 random initial conditions and shown in Fig. 2(b).
The results with NF ¼ 0; 1 reflect the frustration elimina-
tion process illustrated in Fig. 1(d). Amplitude inhomoge-
neity is large due to frustration for NF ¼ 0, and can be
strongly suppressed for NF ¼ 1. Although we may get
wrong solution candidates, these errors can be identified by
the amplitude inhomogeneity. In addition to the error
detection, the frustration elimination method can also be
used to search for excited states, as shown with the results
for NF ¼ 2; 3. By flipping more coupling terms NF ¼ 3,
the global minimum with strongly suppressed amplitude
inhomogeneity captures the degenerated first excited
state. More examples are provided in the Supplemental
Material [54].
Realization of the frustration-elimination setup—The

NDOPO modes required in Eq. (6) can be realized
with an additional fiber loop [61–63], and the collective
loss terms in Eq. (6) may be realized by delay lines
with multiple ports [54], or feedback based on a field-
programmable gate array (FPGA). According to Eq. (8),
the necessary number of ancillary modes for a Ising model
with Nc coupling terms is ð3Nc þ 1Þ.
The proposed method can also be extended to qubit-

based Ising machines [2] leveraging the strong nonlinearity
in superconducting circuits [64,65], e.g., in a coupling

Jn;mσ
ðnÞ
z σðmÞ

z σðn;mÞ
z;an . The total number of flipped coupling

terms can be constrained by a coupling among the ancillary

qubits HI ¼
P

gσðn;mÞ−;an σðn
0;m0Þ

þ;an þ H:c:, which conserves the
total number of ancillary qubits with up direction. This
extended method could also be applied to some optical
Ising machines with strong nonlinearity [66]. In the semi-
classical regime, our scheme can also be applied in
oscillator-based Ising machines [67,68] and spatial CIMs
[69], as the coherent couplings applied in these systems are
equivalent to the feedback pulses calculated by a field-
programmable gate array (FPGA).
Conclusions—We have developed a method for mapping

frustrated Ising models to optical effective spin systems
without frustration, while preserving the set of ground
states. In our proposal, the DOPO modes perform, similar
to current CIMs, the ground state search, while additional
ancillary modes autonomously identify and flip the cou-
pling terms causing frustration. The ancillary modes and
switchable couplings can be realized by NDOPO modes
and multiport optical couplings, respectively. As DOPOs
and NDOPOs can share the same pump field, our modified
CIM can be operated in line with the current protocol, i.e.,
by gradually increasing the pump intensity. Moreover, our
numerical results confirm that the system produces a
superposition of all the desired solutions when following
the common CIM solution-searching protocol. Although
researchers debate on whether CIMs with a mixed final

FIG. 2. Ground-state search under frustration elimination for
the frustrated Ising configuration presented in Fig. 1. Shown is
the time-resolved fidelity of the state, generated with a time-
dependent pump, with respect to the pure dark state (7). The latter
describes a superposition of the six possible ground states. The
numerical demonstration of the close reproduction of (7) con-
vincingly confirms the validity of the mapping of the frustrated
Ising model to an optical effective spin system without frus-
tration. The collective loss rate is Γc ¼ 3Γ, and the two-photon
loss rates for the DOPOs and NDOPOs have the same value
ðΓtp ¼ ΓNDOPOtp ¼ ΓÞ. (b) Self error detection and arbitrary state
searching with frustration elimination method for the model
presented in Fig. 1(a). The correct solutions are indicated by
vanishing amplitude inhomogeneity. More active ancillary modes
can shift the target state to excited states.
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state benefit from quantum effects, the quantum advantages
of pure final states enabled by our frustration-elimination
method have been widely studied in spin systems
[54,55,70–73]. For CIMs operated in the semiclassical
regime, our method can realize self-error detection and
excited-state searching.
Our proposal makes it possible to avoid the intrinsic

single-photon loss caused by frustration in the current CIM
design, so that the exploitation of loss-vulnerable quantum
effects becomes conceivable. Such quantum effects would
not only be essential for developing quantum CIMs, but
may also help in the solution searching. In addition, other
severe problems related to frustration (in particular, detri-
mental amplitude inhomogeneity) are resolved by frus-
tration elimination. Finally, our proposal is also compatible
with the measurement-feedback coupling paradigm, and
there, too, can enable error detection and excited-state
searching.
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