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In this Supplementary Information document, we present further details of the system Hamilto-
nian we use for the time-dependent quantum Rabi model, as well as the general Floquet theory, and
include additional results and discussions, further numerical simulations, as well as different modu-
lation profiles for the time-dependent oscillations (specifically, different from the purely sinusoidal
case shown in the main text).
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S1. SYSTEM HAMILTONIAN AND GAUGE INVARIANCE FOR THE MATTER-TRUNCATED
QUANTUM RABI MODEL

We consider a typical cavity-quantum electrodynamic (QED) system made up of a single atom coupled to a single-
mode optical cavity, described by the quantum Rabi model (QRM). In the dipole gauge (specifically, the dipole
approximation in the multipolar gauge), the QRM describes the TLS-cavity system via the Hamiltonian [1, 2] (in
units of ℏ = 1):

HD
QR = ωca

†a+
ωa

2
σz + ig(a† − a)σx, (S1)

up to a constant (1ωcη
2), where ωc is the cavity transition frequency, a (a†) is the cavity photon annihilation (creation)

operator, ωa is the TLS transition frequency, σz = σ+σ− − σ−σ+ and σx = σ+ + σ−, with σ+ = |e⟩⟨g| (σ− = |g⟩⟨e|)
the atomic raising (lowering) operator; also, g is the atom-cavity coupling in the dipole gauge (g ∝ √

ωc), and η = g/ωc

is the normalized coupling parameter.

When the system is subjected to matter truncation, HD
QR produces the correct eigenenergies [3], and following the

steps outlined in Ref. [2] for the time-independent Hamiltonian, by applying an appropriate unitary gauge transfor-
mation (namely, the Power–Zienau–Woolley transformation modified in the truncated matter space) to the dipole
gauge-independent QRM model, the correct gauge-fixed Coulomb QRM Hamiltonian is [2]

HC
QR = ωca

†a+
ωa

2

(
σz cos[2(a+ a†)η] + σy sin[2(a+ a†)η]

)
, (S2)

which produces identical eigenenergies to HD
QR. This modification to the Hamiltonian arises due to the canonical

transformation of the field coordinates that does not alter the Hamiltonian with the time-independent constraints [4].
The nonperturbative nature of the quantum light-matter interaction in the USC regime forces the gauge correction
due to the emergence of a nonlocal potential of the truncated matter (the TLS) part originating in the dipole gauge,
and then gauge-transformed to the Coulomb gauge. This gauge-correction appears in a transcendental trigonometric
form in the Coulomb gauge, implying its nonperturbative nature [2].

Our goal is to incorporate the time variation to the system Hamiltonian nonperturbatively via applying Floquet
theory in the USC regime of cavity QED or the QRM, where the defining features are caused by Hamiltonian
interactions of the form g(a+a†)(σ++σ−) [or for coupled bosons g(a+a†)(b+b†)], which is required when g/ω0 > 0.1
with ω0 being a typical transition energy scale in the system (usual definition of the USC regime). Keeping the counter
rotating-wave terms (e.g., aσ−, a†σ+) in the system-level interaction Hamiltonians is the crux of USC (these cannot be
dropped). To ensure gauge invariance for a truncated matter system, and also to include time-dependent interactions,
it is preferable and easier to use the Coulomb gauge picture for the Hamiltonian [4, 5], which takes the form

HC
FQR(t) = ωca

†a+
ωa

2

{
σz cos

[
2(a+ a†)η(t)

]
+ σy sin

[
2(a+ a†)η(t)

]}
, (S3)

which we refer to as a Floquet-engineered quantum Rabi (FQR) Hamiltonian as we will consider periodic time-
modulations as discussed below. In the Coulomb gauge, the time-dependence of the cavity-matter coupling is simply
included through the time-dependent coupling rate, which we define from η(t) = η0 + ηM (t), with the dynamical
part having the peak value of ηM . Calligraphic notation is used to clarify that we model the truncated quan-
tum system [2, 4, 6]. Without time-modulation, then η0 = g/ωc is the usual form for the truncated-matter QRM,
HQRM = HFQR(0).

It has been shown in Refs. [4, 5] that while the treatment of an arbitrary time-dependece in the multipolar gauge
has severe complications, e.g., the quantization procedure must undergo with time-dependence constraint [4], it is
easy to directly adapt the time-dependence in the Coulomb gauge. Hence, we obtain the FQR Hamiltonian as the
form given in Eq. (S3). We next rewrite this Hamiltonian by representing the trigonometric functions via exponential
functions, dropping the explicit “C” superscript, in a form that will make the FQR model Hamiltonian clearer:

HFQR(t) = ωca
†a+

ωa

2

{
σz − iσy

2
ei2(a+a†)η0 ei2(a+a†)ηM (t) +

σz + iσy
2

e−i2(a+a†)η0 e−i2(a+a†)ηM (t)

}
. (S4)

It is also worth noting that if one naively uses the dipole-gauge Hamiltonian model to Floquet engineer the QRM,
it follows that

HD,naive
FQR (t) = ωca

†a+ (ωa/2)σz − ig(t)σx(a
† − a),
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then letting g(t) = g0 + gM sin(ωM t), the model reads

HD,naive
FQR (t) = HD

QR − igM sin(ωM t)σx(a
† − a).

This model is gauge-dependent and does not produce a renormalization of the QRM (it is simply not correct to use
such a model with time-dependent interactions, as described in detail in [4]). The renormalization of the QRM in the
corrected Coulomb gauge is a result of correct gauge-invariant model treated nonperturbatively and is substantially
different from the usual DC/AC Stark shift. This time-modulated USC effect is even more striking as it causes an
effective splitting of the eigenenergy lines, even if there is no initial splitting due to light-matter dressing (i.e., when
η0 = 0), and it enhances the creation of effective anticrossings in the Floquet picture for all values of η0 (see Fig. 2
in the main text). Moreover, it may only occur in the Floquet engineering of a quantum system not simply Floquet
driving, and it produced real photons with no input photons.

S2. FLOQUET THEORY AND FLOQUET-DRESSING THE QUANTUM RABI MODEL

Since we consider a time-periodic Hamiltonian, we can write a solution (quasienergy state) of the time-dependent
Schrödinger equation (TDSE), i∂t|ψ(t)⟩ = HFQR(t)|ψ(t)⟩, yielding a Floquet state, in the form of |ψα(t)⟩ =
e−iεαt|α(t)⟩, where εα the Floquet (time-independent) quasienergy [7], and |α(t)⟩ is a T -periodic, Floquet mode
(analogous to Bloch modes in periodic lattices). Although these are also quantum states, we use the term “mode”
to be consistent with the common literature on Floquet theory, where |ψα(t)⟩ are termed Floquet states, |α(t)⟩ are
Floquet modes, and |αl⟩, defined below, refer to the lth sideband of the Floquet state [8].

The Floquet Hamiltonian is then defined from HF(t) ≡ HFQR(t) − i∂/∂t, associated with a set of quasienergies
{εα}. Therefore, |α(t)⟩ is an eigenket of the Floquet Hamiltonian HF(t), where

HF(t)|α(t)⟩ = εα|α(t)⟩. (S5)

Although time-dependent, the set of Floquet states, {|ψα(t)⟩}, form a complete basis for any value of t, and as
such, the general solution to the TDSE can be expanded in terms of the Floquet states, i.e., |ψ(t)⟩ = ∑

α cα|ψα(t)⟩,
where cα = ⟨α|ψ(0)⟩, with |α⟩ ≡ |α(0)⟩, are time-independent complex coefficients. If the system is prepared in a
single Floquet state, |cα| = δαα0

, its time evolution will be periodic and (apart from the irrelevant overall phase
factor, e−iεα0 t) can be described by the Floquet mode |α0(t)⟩. If the system is prepared in a coherent superposition
of several Floquet states, the time evolution will no longer be periodic in general and will instead be determined
by two contributions [8]: (i) the contribution that stems from the periodic time dependence of the Floquet modes
|α(t)⟩ (called the micromotion contribution), and (ii) the contribution which leads to deviations from a periodic
evolution, originating from the relative dephasing of the factors e−iεαt. Thus, beyond the periodic micromotion, the
time evolution of a Floquet system is governed by the quasienergies εα of the Floquet states in much the same way
as the time evolution of an autonomous system (with time-independent Hamiltonian) is governed by the energies of
the stationary states [9].

As the modes |α(t)⟩ are periodic, Eq. (S5) suggests that energies in Floquet systems are only conserved modulo ωM ,
and it can be shown that the transition resonances of the system occur at differences between Floquet quasienergies [10].
The periodicity of the Floquet modes also suggests writing them as a Fourier series

|α(t)⟩ =
∑
l∈Z

eilωM t|αl⟩, (S6)

where |αl⟩ are the Fourier coefficients, called Floquet sidebands, with the normalization condition
∑

l⟨αl|αl⟩ = 1, and
⟨αl|βk⟩ = 0 for α ̸= β and l ̸= k. Moreover, in a general quantum basis set {|j⟩}, obtained for the time-independent
portion of the Hamiltonian, H0, one can always expand the Floquet sidebands as a superposition |αl⟩ =

∑
j fαlj |j⟩

(with
∑

lj |fαlj |2 = 1), and hence expand the Floquet modes in terms of the time-independent basis. Inserting
Eq. (S6) in Eq. (S5) yields a quasienergy eigenvalue equation, similar to the time-independent Schrödinger equation,
in an extended (spatial and temporal) Hilbert space (or Sambe space) [11]. By solving this eigenvalue problem, one
finds quasienergies and Floquet sidebands and, accordingly, can construct the Floquet modes and states [9, 12, 13].

The secular matrix of this system of eigenvalue equations is real and symmetric, so it possesses NF (truncation
number of the eigenvalue problem) real eigenvalues εα, with Nj of them confined within a ωM range of energy scale,
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and their corresponding real eigenvectors |αl⟩. In addition, εαn ≡ εα+nωM (note that we can set εα = εα0 for the first
BZ) and |αl+n⟩ are also eigenvalues and eigenvectors for any integer n. This means that the following transformations
ε′α = εα+nωM and |α′(t)⟩ = einωM t|α(t)⟩, convert any eigenstate of the Floquet Hamiltonian into another eigenstate.
This yields an identical solution to that in |ψα(t)⟩, but with the shifted quasienergy εα → εαn ≡ εα + nωM . This
repetition (periodicity in the quasienergies) constructs Brillouin zones (BZs) of length ωM for each l in the energy
scale of the system. Consequently, the distinction between the ground and the excited states is expressed before the
mechanical oscillation is turned on where there is no Floquet system, yet. After the vibration is turned on and the
system is in the Floquet picture, there is no distinction between the quasienergy states. The nomenclature based on
the parameter α used here is then related to the nomenclature prior to the vibration and their order in the primary
BZ to be able to refer to them precisely, but does not mean/imply the order of the states and/or a distinction between
the ground or excited states [14, 15].

In the Fourier expansion of the time-dependent Hamiltonian, it is expected to collect a sufficient number of terms
to project on the desired higher-order processes. Namely, mmax describes, mathematically, the maximum order of
the Hamiltonian terms in the Fourier expansion (|m| ≤ mmax), and, physically, implies the number of particles
(mechanical oscillation quanta) that the source can provide to exchange with the system through the first-order
process. On the other hand, lmax is the maximum number of quanta that the subsystems can potentially exchange
through the process, in all different orders, so that potentially it is expected to meet mmax ≤ lmax. Here, it is also
expected to choose mmax ≥ Nj and lmax ≥ Nj , so that the drive and the internal interaction provide enough external
quanta for the system to at least be able to make the transition between the ground state and the highest potentially
possible truncated excited state if necessary. In the present work, we calculate εα and |α(t)⟩ typically for the QRM
with Nj dressed levels by retaining only |l| ≤ lmax [therefore, NF = Nj(2lmax + 1)] terms and numerically solving the
resulting finite system of equations until convergence within this section. After normalization, these solutions must
satisfy the orthogonality and completeness criteria, and also [10]

∑
α εα =

∑
j Ej , modulus ωM .

A. Floquet master equation approach to calculate the expectation value of an operator

Observables can also be computed from the master equation density matrix (with a finite basis). Knowing that the
Floquet states construct a complete basis, it is desirable to expand the density matrix in the Floquet representation
as ρ(t) =

∑
αβ ραβ(t) |α(t)⟩⟨β(t)|, where ραβ(t) ≡ ⟨α(t)|ρ(t)|β(t)⟩. This allows us to write the von-Neumann equation

for the system density matrix as [16]

∂tραβ(t) = −i(εα − εβ)ραβ(t), (S7)

for a closed system without any dissipation, where it yields the analytical solution,

ραβ(t) = ραβ(0) exp {−i(εα − εβ)t}, (S8)

up to a given initial condition. In order to configure this initial condition into the above solution, one should express
the initial condition in the Floquet modes basis. To do so, we obtain the Floquet matrix elements of both sides to
give ραβ(0) = ⟨α|j = 0⟩⟨j = 0|β⟩. Having obtained the time evolution of the density matrix, we can calculate the
average value of observables throughout the time progression. In the Schrödinger picture, for any arbitrary operator
O, we have: ⟨O(t)⟩ = tr {Oρ(t)}. We note that the periodicity of an averaging quantity concerning an observable can
be attained by the same technique of adding dissipation as mentioned in the main text.

One can find the density matrix and then calculate the expectation value in the time-independent basis of the
renormalized DC Hamiltonian. However, knowing that the change of basis does not change the trace, we can find a
simpler and more computationally efficient formula using the Floquet basis via

⟨O(t)⟩ =
∑
αβ

Oαβ(t)ρβα(t)

=
∑
αβl

Oαβlρβα(0) e
i(εα−εβ+lωM )t,

(S9)

where Oαβl = (1/T )
∫ T

0
dt e−ilωM tOαβ(t). Therefore, in the steady state, we obtain ⟨O(t)⟩ss =

∑
αlOααlραα(0) e

ilωM t,
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and the average of the expectation value reads

O ≡ 1

T

∫ T

0

dt ⟨O(t)⟩ss =
∑
α

Oαα0ραα(0). (S10)

This formula gives the same results as the formula presented in the main text, but using the extended space formal-
ism [12, 13], in less computational time.

B. Time evolution and transition probability

To find the evolution of an arbitrary state |ψ(t)⟩, we use the fact that the set of solutions to Schrödinger’s equation,
|ψα(t)⟩ forms a complete basis. A general time-periodic Hamiltonian satisfying the unitary time evolution generates
the operator,

U(t, t0) = T exp{−i

∫ t

t0

dt′HFQR(t
′)}, (S11)

where T is the Wick’s time-ordering operator. The time evolution operator, expressed in Floquet quasienergy eigen-
states of HFQR(t), is

U(t, t0) =
∑
α

e−iεα(t−t0) |α(t)⟩⟨α(t0)|. (S12)

The transition probability from an initial quantum state of the renormalized static Hamiltonian, |j = i⟩, to a
final quantum state, |j = f⟩, is closely related to the matrix elements of the time evolution operator Ufi(t, t0) ≡
⟨f |U(t, t0)|i⟩. In Floquet theory, Ufi(t, t0) can be interpreted as the amplitude that the system initially in the Floquet
joint state |i⟩ and zero mechanical oscillation at time t0 evolves to the Floquet joint state |f⟩ and k mechanical
oscillation by time t, according to the time-independent Floquet Hamiltonian HF, with some weighting factors that
must be summed over all final quantum processes and states [17–19]. The transition probability going from the initial
quantum state and a coherent mechanical oscillation state to the final quantum state summed over all final mechanical
oscillation quantum process orders reads Pf←i(t, t0) = |Ufi(t, t0)|2.

The quantity of practical (experimental) interest, however, is the transition probability averaged over initial times
t0 (or, equivalently averaged over the initial phases of the external drive seen by the system), keeping the elapsed
time (t− t0) fixed. Moreover, averaging over (t− t0), one obtains the long-time average transition probability [17–19],
P f←i =

∑
l,l′ P

(l,l′)

f←i , with

P
(l,l′)

f←i =
∑
α

|⟨f |αl⟩⟨αl′ |i⟩|2. (S13)

Also, the order of the mechanical oscillation involved in the quantum process for the higher-order processes is portrayed
by the number n = l − l′, with the associated probability of P

(n)

f←i =
∑

l−l′=n P
(l,l′)

f←i , so that P f←i =
∑

n P
(n)

f←i.

S3. ALTERNATIVE FORMS OF PERIODIC TIME MODULATION

Instead of a pure sinusoidal modulation, one may use other forms of periodic modulation to Floquet-engineer
quantum systems [20]. Indeed, provided that the waveform is still periodic, we can always use Floquet theory.

We can let the general form of the normalized coupling with an arbitrary shape be η(t) = η0 + ηM (t), with the
dynamical part having the peak value of ηM . Accordingly, the FQR model Hamiltonian becomes

HFQR(t) = ωca
†a+

ωa

2

{
σz − iσy

2
ei2(a+a†)η0 ei2(a+a†)ηM (t) +

σz + iσy
2

e−i2(a+a†)η0 e−i2(a+a†)ηM (t)

}
. (S14)
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Now we can expand in the Fourier series: HFQR(t) =
∑Hm eimωM t, where Hm = (1/T )

∫ T

0
dt e−imωM t HFQR(t).

Popular shapes of modulation exist that can be more productive than the pure sinusoidal case (shown in the main
text), since they can produce more effective nonadiabatic evolutions, such as the latching modulation and the ramp
modulation [20]. A latching modulation is, in one cycle, given by

s(t) =

{
2d, 0 < t/T < 1− d,

−2(1− d), 1− d < t/T < 1,
(S15)

where d is the duty-cycle ratio. Note that for a symmetric latching modulation, with d = 1/2, we have s(t) =
sgn{cosωM t}. Then, we take ηM (t) = ηMs(t), and obtain

H0 = ωca
†a+

ωa

2

{
σz + iσy

2
e−i2(a+a†)η0 +

σz − iσy
2

ei2(a+a†)η0

}
cos[2(a+ a†)ηM ],

Hm =
ωa[1− (−1)m]

2πm

{
σz + iσy

2
e−i2(a+a†)η0 − σz − iσy

2
ei2(a+a†)η0

}
sin[2(a+ a†)ηM ], m ̸= 0.

(S16)

The ramp modulation (sawtooth wave) is defined via

r(t) = 2(t+ τ)/T, −T/2 ≤ t < T/2, r(t+ T ) = r(t), (S17)

and we take ηM (t) = ηMr(t). In this case,

Hm = ωca
†a δm0 + (−1)m

ωa

2

{
σz − iσy

2

ei2(a+a†)(η0+2ηMτ/T )

−mπ + 2(a+ a†)ηM
− σz + iσy

2

e−i2(a+a†)(η0+2ηMτ/T )

−mπ − 2(a+ a†)ηM

}
sin[2(a+ a†)ηM ].

(S18)

This can also be separated as

H0 = ωca
†a+

ωa

2

{
σz − iσy

2
ei2(a+a†)(η0+2ηMτ/T ) +

σz + iσy
2

e−i2(a+a†)(η0+2ηMτ/T )

}
sin[(a+ a†)ηM ]

2(a+ a†)ηM
,

Hm = (−1)m
ωa

2

{
σz − iσy

2

ei2(a+a†)(η0+2ηMτ/T )

−mπ + 2(a+ a†)ηM
− σz + iσy

2

e−i2(a+a†)(η0+2ηMτ/T )

−mπ − 2(a+ a†)ηM

}
sin[2(a+ a†)ηM ], m ̸= 0.

(S19)

We later show a selection of results on the productivity of the sawtooth (ramp) modulation using Eq. (S19) with
having τ = 0 fixed.

S4. ADDITIONAL NUMERICAL RESULTS AND DISCUSSIONS

In this section, we provide some additional numerical results to complement the understanding of the main paper
results.

A. Ground-state virtual photons as a function of the static and dynamical coupling rates

First, we show the ground-state virtual populations of the cavity-QED system, which are unique to the USC regime.
In Fig. S1(a), we plot the H0 ground-state virtual photons versus the static and dynamical coupling rates. Note that
when ηM = 0, we obtain the limit of the pure QRM, and its renormalized case occurs when ηM ̸= 0. In panel (b),
we fix the value of ηM = 0.5 for the renormalized time-independent (TI) Hamiltonian and compare the result with
the pure QRM case where ηM = 0. From this panel, we see that, as expected, due to the dipole nonlinearity, the
TLS excitation plots are generally lower than their cavity counterparts for larger η0. Moreover, we see that the DC
renormalization due to the mechanical oscillation lowers the occupation of the virtual excitations. Note, because the
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effect of the dynamical coupling is in the USC range, it adds a nonzero value to the starting tale of the cavity virtual
excitation even before when the static coupling enters the USC regime, i.e. η0 < 0.1, while there is no contribution for
that of the TLS counterpart. This is because the renormalization is due to the Bessel function with the photonic-only
operator argument 2(a† + a)ηM , thus it only influences the photonic portion when there is no static light-matter
coupling. We note that, in the absence of the static light-matter coupling, the eigenstate of the time-independent
system is the joint state of the bare light and the bare matter eigenstates, so that the photonic and the matter
operators can be disjointed and separately applied to the joint bare ground states; hence, there is no new effect for
the TLS ground state excitation when η0 = 0 due to the renormalization of the QRM.

We stress that the virtual populations are not physical in the sense that they cannot be measured, and indeed their
value, like the definition of entanglement, is a gauge-dependent quantity. This is in contrast to the real populations
and the physical observables that are computed with a gauge-invariant theory [5].
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Figure S1. Ground-state virtual excitations. We show the population of the QR-dressed ground state excitations, also
known as the virtual excitations in the ground state of the (time-independent) QRM. Panel (a) depicts a 2D plot of the virtual
cavity photons, versus the static and dynamical coupling strengths. In panel (b), the variations of the cavity and TLS virtual
excitations are shown when ηM = 0 and ηM = 0.5 versus the change of the static coupling, η0. In this panel, the solid blue
line/dashed cyan line represents the populations of virtual photons/TLS excitations in the QR-dressed ground state. This
population is finite because the initial-time ground state of the system is an entangled state of photonic and atomic excitations,
defined from |j = 0⟩ =

∑∞
k=0⟨g, 2k|j = 0⟩|j = 0⟩+ ⟨e, 2k + 1|j = 0⟩|j = 0⟩.

To appreciate the physics of the excitation number trends, we need to gain insight into the higher-order quantum
and time-driven harmonic processes, and the interplay among them that generate peak and valley structures (in the
plots of populations versus pumping parameters and frequency). Generally, higher multi-oscillation peaks are narrower
than one-oscillation peaks and they also form earlier (smaller values) in amplitude and frequency of the drive. In
order to analyze the spectral structures in panels (c) and (d) of Fig. 3 of the main text, we plot the same spectra here,
i.e., in Figs. S2 and S3, along with their associated eigenenergy, quasienergy, and transition probability diagrams.
The structure of the excitation number spectrum is related to the transition probability between the initial (ground)
state and the final state and the interplay among those transitions which are, in turn, related to each individual
anticrossing, as well as the interplay between neighbouring anticrossings in the Floquet quaienergy spectra. We also
note that the anticrossings in the quasienergy spectra are the outcomes of the original crossings and/or anticrossings
in the eigenenergy spectra. More precisely, in the limit of zero drive, the quasienergies map to the eigenenergies
εαl = Ej=α+ lωM (considering the redundant periodicity of quasienergies in the extended space) [21]. As the external
perturbation takes place, the quasienergies evolve from these initial values by the effect of not only the superposition
of the other eigenenergy states at the places of anticrossings but also due to the AC-Stark shift. Nevertheless, the
original eigenenergy crossings/anticrossing between two eigenenergy states which leads the anticrossing between two
quasienergies states |αl⟩ and |α′l′⟩ shifted by ∆l = l − l′ is a clear indicative of an existing transition mediated by ∆l
mechanical oscillation.
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B. Variation of the Floquet engineering process versus
the amplitude of the dynamical coupling parameter ηM

To help appreciate the dynamically-modified transitions, consider the QRM ground state at t = 0+. As time
evolves, with ηM ̸= 0, the ground state adiabatically transforms into a Floquet state. At the first anticrossing
between a Floquet sideband of the lower state and a Floquet sideband of a higher state, where a superposition of the
Floquet sidebands is constructed, a diabatic transition occurs, |αl⟩ → |α′l′⟩ at the anticrossing where a superposition
a|αl⟩ + a′|α′l′⟩ is provided. Then, the created superposition, generally oscillating at a multiple of the stimulation
frequency ∆ε = nωM , adiabatically transforms into the superposition of the two original QRM states, and now
oscillates at their energy difference, Ekj = Ek − Ej . Depending on the size of ωM , one can go back and forth among
different BZs to form a transition between the QRM states, if it is parity allowed.

In Fig. S2, we plot the variation of the Floquet engineering process versus the amplitude of the dynamical coupling
parameter ηM , where we show: (a) the eigenenergies (shifted) in the extended space, (b) quasienergies in a BZ,
(c) transition probabilities for the major contributions, and (d) the exciation number spectra. We highlight that
the major cavity double-peak and valley structure in Fig. S2(d) is actually formed by the combination of a 3-ωM

resonance transition (from |j = 0⟩ → |j = 3⟩) and a 15-ωM resonance transition (from |j = 0⟩ → |j = 15⟩). These
peaks are associated with the major green and red peaks in the corresponding transition probability plot in panel (c),
respectively, and the most effective associated anticrossing (shown by green and red circles) in panel (b). Remarkably,
the red-circle anticrossing is originally created due to the anticrossings of the ground eigenstate (solid blue) and the
fifteenth eigenstate (dashed red), altogether shifted by 15ωM , as shown in panel (a); this also has a gradual AC-Stark
shift, as seen in panel (b), and is power broadened as the number of oscillating harmonics increases, as shown in panels
(c,d). Thus, in the first BZ, as depicted in Figs. S2(b), we observe the most effective corresponding anticrossing at
the same point (red circle) between the two Floquet sidebands |αl = 12l⟩ (indigo-colored line) and |αl = 14l⟩ (dark
orange-colored line). Here, we name the Floquet mode α ≡ j based on the fact that at the limit of ηM → 0+ they
reach their corresponding number j (renormalized DC states). The former sideband is connected adiabatically to
|j = 15⟩ via |α′l′ = 12l+14⟩, and the latter sideband translates to |α′l′ = 14l−1⟩, to adiabatically construct the |j = 0⟩
renormalized-QRM state. Hence, the transition is a 15-ωM event.

Similarly, by investigation and comparison of the plots in Figs. S2, one can conclude that the other major peak
at ηM ≈ 0.56 in Fig. S2(d) corresponds to the transition probability [left dashed red peak in panel (c)] and the
anticrossing shown by the left red circle in panel (b) between the two Floquet sidebands |αl = 12l⟩ and |αl = 4l⟩. This
anticrossing is due to the crossing of the dashed red line representing E15−14ωM (or, more generally, E15− l′ωM ) and
the solid blue line representing E0+ωM (or, more generally, E0+ lωM ) in panel (a) which is modified through the AC-
Stark shift. According to the transition probability plot in panel (b), this is then a 15-ωM peak (n ≡ ∆l = l′−l = −15,
meaning that fifteen energy packets of mechanical oscillation are absorbed from the external mechanical drive) that
is coming from the transition between the ground state and the fifteenth excited state of the renormalized-QRM DC
Hamiltonian. The former sideband is again connected adiabatically to |j = 0⟩ via |α′l′ = 12l−1⟩ sideband, and the
latter sideband translates to |α′l′ = 4l+14⟩ to adiabatically construct the |j = 15⟩ renormalized-QRM state. Hence,
the transition is a 15-ωM quantum process.

Similar explanations can be used for the remaining peaks or the spectral variations. However, further investigation
on Fig. S2 shows evidence of additional nonlinear effects. For example, by comparing the peaks versus ηM we observe
the power broadening of the peaks as ηM increases due to the nonlinear addition of the higher-order process as well
as the dynamical AC-Stark shifts. Moreover, the constructive/destructive interplay among the higher-order peaks is
quite remarkable, which can lead to various light-matter phenomena, such as the creation of Fano resonances, elec-
tromagnetically induced transparency, and Autler-Townes (multiplet) splitting effect [see, e.g., the interplay between
the dashed red and black lines in Fig. S2(c)], particularly in the TLS number spectra [17, 22, 23].

C. Spectral features versus the external mechanical oscillation frequency

In Fig. S3, we analyze the spectral features versus the external mechanical oscillation frequency (ωM , in units of
ωc) for fixed values of η0 = 0, ηM = 0.5 and ωa = ωc. Here, again because the switching on/off is already in the
USC regime, ηM > 0.1, with the nonzero input energy one expects to gradually see the production of real excitation
numbers. Further, besides the resonant multi-mechanical oscillation peaks, the production of real excitations generally
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increases, as the input energy increases, unless there is a competing nonlinear effect or destructive superposition of
peaks. The multi-oscillation res onance peaks can be connected to the quasienergy spectrum as before. Moreover,
we know that the time-independent eigenenergy spectra must be constant in ωM because they are independent
of the dynamical coupling frequency. More precisely, the QRM eigenenergies are independent of both amplitude
and frequency of the dynamical coupling, but only depend on the static coupling; whereas the renormalized time-
independent Hamiltonian is independent of the drive frequency but depends on the amplitude of the dynamical and
static couplings. Also, because the dynamical coupling is nonzero, ηM = 0.5, we expect a discrepancy between the
QRM and the renormalized eigenenergies due to the modification of the DC component (similar effect as also seen in
Fig. S1).

In Fig. S3(a), we note that because initially εα = Ej=α is constant versus ωM , the lines with slope l of εαl =
Ej=α + lωM pass through the point εα = Ej=α in the vertical axis. Evidently, one can see a pattern of the AC-
Stark shifted lines resembling those lines in the quasienergy spectrum in panel (b); for example, this is shown with
the lower and upper thick blue lines of E0 and E0 + ωM , respectively, and the pattern of straight lines (with mix
indigo and darkorange colors) closely following it (showing AC-Stark shifting). All these patterns of straight lines in
the quasienergy versus ωM diagram resemble eigenenergy lines of the renormalized DC Hamiltonian shifted among
different BZs with their own specific AC-Stark shifts. A similar analysis of the previous figure can be applied here
to understand the spectrum structure and creation of peaks and dips. For example, one observes a major peak at
ωM ≈ 0.6ωc in Fig. S3(d) which is mainly due to the (9-ωM ) transition between the ground and the tenth excited
stated of the renormalized DC Hamiltonian as shown in panel (c) and the corresponding anticrossing in the quasienergy
diagram of panel (b) shown by the same color circle. Notably, we see in panel (a) that this anticrossing is originally
created due to the crossing of the solid blue and dashed black lines undergone through AC-Stark shift. We see a
complete description of other major peaks and transitions in Fig. S3.

D. Quasienergy and number spectra versus the static coupling

In Fig. S4, we show the variation of the quasienergy and number spectra versus the static coupling for fixed values of
ηM = 0.5, ωa = ωc and ωM = 0.5ωc. We again see the multi-oscillation resonance peaks. An important characteristic
of the plots in panel (d) of this figure is their nonzero values at η0 = 0. This is because we chose ηM = 0.5, which
means that the switching on/off event is already in the USC regime even with the zero static coupling, so that the
production of real excitations occurs even if η0 = 0. The analysis of the peaks is similar to those of the previous two
figures and a description of the peaks is given in the figure.

In panels (a-d) of Fig. S5, we show the evolution of real excitations versus time, for a fixed value of η0 and nonzero
dynamical coupling, ηM = 0.2 (a,b) and ηM = 0.5 (c,d). We observe in panels (a) and (c), which is for a closed system
with no dissipation, the excitation numbers are not quite periodic, but when the dissipation (and/or prethermalization)
is introduced in panels (b) and (d), the graphs are pure periodic with the same period of the mechanical oscillation
drive, T = 2π/ωM , after a sufficiently large time, t > tss (we safely see that tss ∼ 5T ) where they settle to a steady-
state. Regardless of the dissipation, we see the discrepancy between the solid curves (real photons) and the dashed
curves (TLS excitation) as the dynamical coupling increases. This is because the real transitions are between the
dressed states with a mixed number of excitations, and hence the production of the real excitations is a nonlinear
quantum process.

E. Sawtooth (ramp-modulated) drive converts more photons from virtual to real

Finally, we also investigate the situation of potentially more-effective waveforms for the dynamical coupling, i.e.,
to produce larger real excitations. As a popular example, we present the results for the dynamical coupling with a
sawtooth waveform [20]. We expect that because this waveform already switches on and off nonadiabatically, its effect
in the production of real excitations must be stronger than the pure oscillatory case, as we indeed generally see in all
panels of Fig. S6 compared to the previous plots. In panels (a-d) of Fig. S6, we see the time evolution of the real
excitation number where we see the periodicity of the graphs after a sufficiently large time when there is dissipation.
Comparing these panels with the same panels in Fig. S5, we see that the plots are notably with larger amplitudes as
well as are highly more nonlinear. We observe the discrepancy between the dashed and solid curves even with smaller
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values of the dynamical coupling.

The lower panels of Fig. S6 show the average number of excitations with a sawtooth mechanical oscillation versus
the variation of the static coupling for fixed values of ηM = 0.5 and ωM = 0.5ωc (e), the variation of the dynamical
coupling for fixed values of η0 = 0 and ωM = 0.5ωc (f), and the variation of the mechanical oscillation frequency for
fixed values of η0 = 0 and ηM = 0.5 (g), all for ωa = ωc. Again, we see a comparatively higher amplitude in all of
these plots due to the effectiveness of the sawtooth excitation as compared to pure sinusoidal excitation.

We also see multi-oscillation peaks in the spectra as expected due to the nonperturbative process of excitation.
Strikingly, we see in panel (g) that when the frequency is quite small, there is a negligible amount of real excitation
production because it takes a large time for the system to see a nonadiabatic change. However, we see numerous
multi-oscillation peaks as the frequency is large enough as well as the stronger discrepancy between the cavity and TLS
excitations. These three stronger characteristics in the sawtooth waveform plots compared to those of the sinusoidal
plots, i.e, the larger amplitudes of graphs, the larger discrepancy between the cavity and TLS graphs, as well as the
larger and stronger multi-oscillation peaks in the graphs, imply the high effectiveness of a more nonadiabatic waveform
in the generation of high-order nonlinear quantum processes.
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Figure S2. Eigenenergies, transition probabilities and populations as a function of dynamical coupling strength
ηM . (a) Original crossing/anticrossings of eigenenergies of the renormalized QRM shifted into the first BZ that show the
quasienergy states in the limit of zero time-dependent perturbation; they resemble the eigenstates and their shifts by multiples
of the drive frequency, i.e., εαl ≡ Ej=α + lωM is the zeroth order perturbation of the Floquet quasienergies. (b) Floquet
quasienergy spectra for the QRM with truncation number of states Nj = 16 in the first BZ. The lower thick blue line is
the ground eigenstate energy line E0 and the upper thick blue line shows its shift by a single drive frequency, E0 + ωM , to
represent it in the first BZ. The bi-colored (indigo and dark orange) patterned lines closely following these two blue lines show
gradual evolution of the quasienergy states of the ground energy state undergone through AC-Stark shift. The color-coded
lines in this panel represent different Floquet quasienergies (for better visualization of the anticrossings), and the circles show
the anticrossings corresponding to some of the major transitions with the same color in panel (c). (c) Major transitions’
probabilities P

(n)
f←i (constructing the total transition probability P f←i, shown by the corresponding same-color shaded area),

and (d) real excitation number spectrum for the cavity (solid) and the TLS (dashed), versus the dynamical coupling amplitude
ηM . The graphs are obtained for η0 = 0, ωa = ωc, ωM = 0.5ωc, mmax = lmax = 20.
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Figure S3. Eigenenergies, transition probabilities and populations as a function of mechanical drive frequency
ωM . As in Fig. S2, but with fixed values of η0 = 0, ηM = 0.5 and ωa = ωc.
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Figure S4. Eigenenergies, transition probabilities and populations as a function of static coupling strength η0.
As in Fig. S2, but with fixed values of ηM = 0.5 and ωM = 0.5ωc and ωa = ωc.
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