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Floquet Engineering the Quantum Rabi Model in the Ultrastrong Coupling Regime
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We study the quantum Rabi model for a two-level system coupled to a quantized cavity mode under
periodic modulation of the cavity-dipole coupling in the ultrastrong coupling regime, leading to rich
Floquet states. Exploiting the quantum vacuum, we show how purely mechanical driving can produce real
photons, depending on the strength and frequency of the periodic coupling rate. This scheme is promising
for the coherent manipulation of hybrid quantum systems and quantum vacuum effects, with potential
applications for quantum state engineering, quantum information processing, and the study of non-

equilibrium quantum phenomena.
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Since the early observations with intersubband polar-
itons [1,2], the ultrastrong coupling (USC) regime of light-
matter interactions has emerged as a fascinating and
distinctive phenomenon in quantum optics, particularly
within the realm of cavity quantum electrodynamics (QED)
[3-5]. One intriguing facet of USC is the occupation of
virtual excitations (e.g., photons), even in the ground state
of the dressed system, which is a consequence of counter-
rotating wave effects and breaking U(1) symmetry [3,5,6].
This raises the question of whether it is possible to convert
virtual photons into real ones [3,7], which requires input
energy, e.g., coherent or incoherent excitation [8,9], to
introduce time-dependent characteristics into the system,
nonadiabatically [10,11]. Although virtual excitations are
not detectable, ideas have been proposed to release them as
real excitations [8—10,12-28], e.g., through time modula-
tion of the Rabi frequency [10,14], using flying atoms [28],
and exploiting phonon pumping [27,29]. Related ideas
have been proposed [30-32] and measured [33,34] in the
context of the the dynamical Casimir effect [29,35-37].

In this Letter, we study the nonperturbative “shaking” of
a two-level system (TLS), coupled to a single quantized
cavity, while in the USC regime. In such a regime, the
Jaynes-Cummings model, a cornerstone model under the
rotating-wave approximation for explaining weak and
strong coupling effects, fails [38—40]. Instead, one must
consider the joint atom-cavity dressed states [3,39-41],
where even the ground state is an entangled state of photons
and matter, which is caused by counter-rotating wave terms
in the cavity-TLS interaction Hamiltonian. With such
terms, the definitive model in cavity QED is the quantum
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Rabi model (QRM), which contains nonlinear saturation
effects even in vacuum.

However, for driven cavity-QED systems, the QRM can
also fail, since strong hybridization of the bare subsystems
demands a nonperturbative treatment [39,41]. Often, peri-
odic driving is considered as a weak perturbation that
induces transitions between the (predriving) hybrid states
[39,42] so that one can utilize a sufficiently low number of
the time-independent QRM basis states and employ per-
turbation theory after the driving. Yet, when the strength of
the driving amplitude is also significant, the dressed (joint)
light-matter states of the entire system transforms into a
Floquet picture, an important theoretical framework for
understanding periodically driven systems [43,44]. Apart
from its fundamental interest, Floquet theory is a powerful
tool for engineering quantum systems [44-55] and reser-
voirs [50,56,57], and has been used for describing photon-
assisted quantum tunneling and transport [44,58—63] and
various high-field classical drives including the so-called
strong and ultrastrong Floquet drives of bosonic systems
[64,65] and carrier-wave Rabi flopping [66—68], where
the rotating-wave approximation is relaxed in the (time-
dependent) drive term, but the system-level interaction is
still of the Jaynes-Cummings model type.

In this Letter, we describe how one can Floguet engineer
the QRM, in the USC regime, by applying nonperturbative
periodic oscillations to the TLS-cavity coupling rate.
Moreover, in USC, it is essential to uphold the gauge-
invariance principle when dealing with truncated matter
systems [38—40,69-73]. The hybrid system states evolve
nonadiabatically into Floquet quasienergy states, forming
new transitions via the newly introduced anticrossings in
the Floquet picture. Such periodic modulation can connect
to various experimentally accessible regimes, such as the
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dynamical Casimir effect [29,30], surface acoustic waves
in semiconductors [74,75], and optomechanical inter-
actions [9], including molecular optomechanics [76-78].
Our significant findings include (i) a double-field (photon
plus mechanical oscillation)-assisted splitting of the QRM
states due to the renormalization of the time-independent
energy states, (ii) production of real photons and TLS
excitations from vacuum, and (iii) higher-order nonlinear
quantum processes that are effective only in the USC
regime.
We begin with the time-dependent QRM Hamiltonian

Higr(1) = wea’a + 5 (o cosle(n)] + o, sinle ()]}, (1)

in the Coulomb gauge [69,73] (A = 1), called the Floquet-
engineered quantum Rabi (FQR) Hamiltonian, where w,
(w,) is the cavity (TLS) transition frequency, a (a') is the
cavity photon annihilation (creation) operator, o; are the
TLS Pauli operators, and ¢(t) = 2(a + a")n(t). Note this
QRM Hamiltonian is quite different from historical (and
textbook) QRMs since matter truncation (i.e., a reduced
Hilbert space) introduces a nonlocal potential, which
causes the minimal coupling replacement to take on a
modified form that satisfies the gauge principle [69,73].
This manifests in a gauge-invariant QRM that necessarily
contains photon terms to all orders, and it is more
convenient (and fundamental) to solve time-dependent
interactions in the Coulomb gauge [72,73]. The normalized
TLS-cavity coupling rate is 7(t) = ng + 1y sin(@yt),
where 1y =g/w. (g is the atom-cavity coupling rate),
and ny, (wy) is the amplitude (frequency) of the time-
dependent coupling. The calligraphic notation of the
Hamiltonian indicates that the gauge-fixed Hamiltonian
is used for the truncated matter Hilbert space [39,69,73].
Note that when 7(7) — 5, Eq. (1) fully recovers previous
time-independent (and gauge-invariant) models [39,40,69].

Figure 1 shows a schematic of our time-dependent QRM.
Because of the periodic time-dependent coupling, with
period T =2x/w);, the Hamiltonian is also periodic:
Hpor(t) = Hpgr(t + T), which can be expanded as a
Fourier series Hyqr (1) = Y.,y 7 Hne™¥’, with

H,y=w.a’asd, "’% {GZ _216—y ei2(a+a)mo

m Oz T10y
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where J,, is the Bessel function of the first kind of order m,
and we have used the Anger-Jacobi expansion [79] of
Eq. (1). When 7,, — 0, then J;(0) = 1 and J,,2,(0) = 0,
and we recover the time-independent QRM Hamiltonian. In
practice, we must also truncate |m| < my,,,. Note also that
‘H,, separates into a time-independent part for m =0
(including a shift due to 7, # 0), and a time-dependent
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FIG. 1. (a) Schematic of a TLS with a mechanical vibration
inside a cavity with a dominant single mode. (b) Without the
mechanical vibration, the system is identified by the usual (time-
independent) QRM Hamiltonian with N; dressed states (left);
after the periodic vibration is turned on, the FQR quasienergies
and states govern the system (right) transitions, with N; of them
in one Brillouin zone (BZ).

interaction (for m # 0). Thus, while 7, is related to the
time-dependent light-matter interaction, there is a static
contribution from the J, term. While Eq. (1) accounts for
the static dressing via photon-matter interactions, Eq. (2)
dresses the entire cavity-QED system with periodic
mechanical oscillations. Similar expressions are widely
considered for single quantum systems, including field-
driven TLSs [80].

For numerical calculations, the time-independent H,, is

first diagonalized with the eigenbasis {E;, |j) ?Z(_)l, where

N; is the number of truncated ac-shifted quantum-Rabi-
dressed states, obtained from H,|j) = E;|j), which sat-
isfies the conditions (j|j") = &;7 and ), |j) (j’| = 1; here,
E;(|j)) are shifted QRM eigenenergies (eigenstates) renor-
malized by the presence of the nonzero 7y, since the time-
independent portion of the Hamiltonian is 7, and not
Horm =w.a’ a+(w,/2){c,cos[c(0)] +o,sin[c(0)]}. This
also ensures that we use the correct static states of the joint
light-matter system in the presence of driving.

Solving the time-dependent Schrodinger equation,
10, (1)) = Hrqr (1) |y (1)), yields |, (1)) = e™|a(1)),
where ¢, is the Floquet quasienergy [81], and the
Floquet mode |a(#)) is T-periodic [43,82]. The Floquet
states, {|w, (7))}, form a complete basis for any value of 7,
thus [y (1)) = > calya(1)). where ¢, = {aly(0)), with
|a) = |a(0)). Transition resonances occur at differences
between Floquet energies [83]. To compute the Floquet
modes, we use a Fourier series expansion of |a(7)) =
ez €™la;), where the Fourier coefficient states |a;)
are Floquet sidebands. There are N ; quasienergies confined
within a [—wy,/2, 0y /2] energy range (first BZ), associ-
ated with N; linearly independent Floquet modes [84].

In Fig. 2(a), we plot the eigenenergies versus #, from the
time-independent part of the total Hamiltonian in Eq. (1),
i.e., using H, from Eq. (2), for a fixed value of 1, = 0.5
(solid curves), and show how these compare with the
standard QRM (dashed curves). This demonstrates how
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FIG. 2. (a) Eigenenergies obtained from Eq. (2) for m = 0 with
ny = 0 (QRM, dashed curved), and for #,, = 0.5 (solid lines),
versus 7. (b) Eigenenergies obtained from Eq. (2) again for
m = 0 (i.e., static part), but now as a function of finite #,, (solid
lines), with 7y = 0, as well as the QRM eigenenergies (dashed
lines). (c) Floquet quasienergies in the first BZ for , = 0, versus
ny- Thin solid (with every other purple and dark orange color to
show anticrossings) lines represent different Floquet quasiener-
gies. Thicker lower and upper blue curves are the first two shifted
eigenenergies from panel (b). The parameters used are
oy = 0.50., 0, = 0., Nj =16, mpy,, = I, = 20 (see text).

time modulation introduces an effective static (dc) dressing
of the QRM eigenenergies. Also, we note from the form of
the solid curves that the levels are initially split, i.e., at
no = 0, with more significant splittings for higher energy
levels. As n, increases, we then enter a regime of double
dressing, emphasizing that the (nonperturbatively) dressed
light-matter QRM states undergo mechanical dressing,
nonperturbatively, again.

In Fig. 2(b), we show the eigenenergies of the time-
independent part of the total Hamiltonian in Eq. (1),
characterized by H, in the expansion terms in Eq. (2),
in comparison with the eigenenergies of the QRM, versus
Ny, for ng = 0. There is a renormalization of the eigene-
nergies, and then a modified anticrossing of the time-
independent (static) eigenenergies. The renormalization
of the QRM in the Coulomb gauge is a result of the
correct gauge-invariant model treated nonperturbatively
with the mechanical dressing and is substantially differ-
ent from the usual dc/ac Stark shift. Note that as one
transitions toward USC (i.e., 1, > 0.1), the shifts (which
are independent of w,,;) are amplified until they form
new anticrossing regions. When 7y = 1, = 0, there is no
QRM dressing and no hybridization between the light and
matter states [dashed lines in panel 2(b)]. By increasing
the static coupling 7y > 0 when 7, = 0 [dashed lines in
panel 2(a)], the light-matter hybridization begins, where
the states are closer to each other, e.g., the first excited
state is pushed closer to the ground state, and the second
and third excited states move closer. As 77,, increases, this
boosts the hybridization in such a way that they form new
anticrossings at certain field strengths, which depends on
the state levels.

We next transform the problem to the Floquet picture. In
Fig. 2(c), the Floquet quasienergies within the first BZ are
shown for the QRM truncated with 16 states, so that at each
value of the drive’s parameters, there exist (nominally) 16
quasienergy states within one BZ. Although the original
initial-time states are the QRM states, the Floquet states are
built upon the renormalized states from the dynamical
coupling. The dc component alters the transition strength
between dressed states and induces intermixing of the
QRM states. Because of the greater number of strongly
coupled nearby states in the dc-renormalized Hamiltonian,
nonlinear optical effects can occur at a much lower
dynamical coupling strength than they would in the
absence of the dc coupling, strongly enhancing the tran-
sition probabilities [94-96]. This manifests in a rich
Floquet quasienergy diagram, shown in Fig. 2(c), which
yields a large number of anticrossings [95-100]. These
quasienergies are continuous functions of the drive ampli-
tude that shows avoided crossings if there are no sym-
metries that allow crossings.

In USC, transitions are not between the system bare
states (with fixed numbers of photons and atomic excita-
tions), but between the dressed states of the composite
system [18,28,39,73]. Thus, one must uses the correct
dressed operators [39,41] s =37, S41j)(k|, where
s = [sM]7, with A = {cav, TLS} and S}, = (j|S"[k) is
the matrix element of the system operator in the
Schrodinger picture. Specifically, we use S = a(1 + 1)/
V2 +H.c. [101], and S™S = g,.

Next, we study how one can produce real photons.
Initially, the system is in the dressed ground state |j = 0).
The number of real photons or TLS excitations are defined
from [28,39,41] N (t) = (w(t)|s"~s*|y(¢)). In contrast,
the virtual photon number in the ground state of the
time-independent light-matter Hamiltonian is [6,28]
(0]a’al0)qg, which is nonzero in vacuum USC [3,6]. An
observable, (y(7)|O|w(t)), is not necessarily time periodic
due to the presence of off-diagonal terms in the Floquet
eigenbasis [102], el&=)(=) (a(£)|O|p(1)), for a # f (see
Fig. S3 in [84]). However, in real open systems, the off-
diagonal terms are suppressed, and the time evolution of
observables often becomes periodic. We thus add a damp-
ing rate, 7, to the nondiagonal terms, which are damped out
in the long time limit [6,96,102]. Subsequently, we derive
the expectation values

Na(t) =) chegelCaen=r1=0m) (a(1)[s"=s"* (1)) (3)
o

and obtain the steady-state solution N,(f> 1) =
>S4 lcal?{a(t)|sr s |a(f)). The mean real excitation
number is Ny = (1/T) [**" dt Ny(1), where T is suffi-
ciently long to yield a steady-state average.
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FIG. 3. An example of the time-dependent real excitations,

Neay(f) (real photons, solid blue line) and Nqpg(#) (real TLS
excitation, dashed orange line), given by Eq. (3), is shown for
(a) nyy = 0.2 and (b) 1, = 0.5, with y = 0.1w,.. Also, depicted
are the mean excitation numbers that are the temporal average of
the cavity excitation number, N,, (solid blue line) and the TLS
excitation number, Ny ¢ (dashed orange line), versus the ampli-
tude (c) and frequency (d) of the dynamical coupling. The
parameters used are 7y =0, w, = o, and My, = [« = 20.
The gray vertical lines at 77, = 0.1 and 5;; = 1 in panel (c) span
the USC to the deep-USC regime.

In Fig. 3, we show N, 115 (), with zero static coupling,
no = 0, for different dynamical values of (a),(b) 1, = 0.2,
0.5, using wy; = 0.50w, = 0.5w,. The results are periodic
after a sufficiently long time, depending on the strength and
frequency of dynamical coupling. For increasing coupling,
the periodic modulation causes a significant production
of real photons (solid curves) and TLS excitation (dashed
curves). This scenario requires #,; #0 and the USC
regime. Note that the populations of the cavity are different
to the TLS for increasing #,,.

In Fig. 3(c), we plot the average real excitation numbers
(Ncay1Ls)» VETSus 17,4, with @y, = 0.5, and 5y = 0. Finite
no simulations are discussed in the Supplemental Material
[84]. We also observe that the onset of USC (or switching
on and off within the USC, i.e., the joint effect of the static
and dynamical couplings) coincides with the starting point
of turning virtual photons into real ones, where there exists
the discrepancy between real and virtual photons [28], i.e.,
ny > 0.1 since 79 = 0. In Fig. 3(d), we show N 1is
versus m,,, with a fixed 7, = 0.5, for the cavity (solid
blue) and the TLS (dashed orange) excitations. From
panel 3(d), we generally understand that because the
switching on and off process is already in the USC,
namely, because 7, > 0.1, the starting point of turning
virtual photons into real ones begins as soon as w,; > 0,
where we also observe a difference between the real
photons and the TLS excitations.

The results in Figs. 3(c) and 3(d) are obtained for 16
QRM states and m,,,, = [0 = 20. Adding more truncated
QRM states may modify some of the frequency and
coupling peaks, and add additional sharper peaks, but
in practice these will be broadened with dissipation.
Importantly, our main predictions are not qualitatively
affected by a further increase in basis size. The general
intuitive behavior of the spectral shape is that as the
amplitude and frequency of the dynamical coupling
increase within the USC range, the number of real photons
and TLS excitations become larger because of the enhanced
nonlinearity of the quantum processes. However, the
emergence of the peaks related to the higher-order quantum
processes modifies the linearity of the number spectrum
and creates more interesting features. These (doubly non-
linear) peaks are due to nonperturbative double dressing of
the quantum system, once by the quantum field of the
cavity and then by the classical mechanical vibration field.

The peak and valley structures seen in Figs. 3(c) and 3(d)
are connected to the anticrossings of the Floquet quasie-
nergy spectrum. Moreover, higher multioscillation peaks
are narrower than lower-oscillation peaks and they form
earlier (smaller values) in amplitude and frequency of the
drive. This general effect of an increasing spectral width of
an absorption line with the increase in the steady source
intensity is similar to the power broadening effect in atomic
absorption spectra [103].

To highlight some general features, the main cavity
double peak and valley structure in Fig. 3(c) is formed
by the combination of a 3-w,, resonance transition (j =
0 — 3) and a 15-w,, resonance transition (j =0 — 15).
In the first BZ of the quasienergy diagram [Figs. 1(c) and
S2(b)], the most effective corresponding anticrossing
(which is also quite wide due to nonlinear power broad-
ening) at the same points between the two Floquet side-
bands |a; = 12;) and |o; = 14;) (see Fig. S2 of [84]).
Moreover, the very wide power-broadened peak at the far
right of the panel, in the deep-USC regime, is a 4-w,, peak
due to the transition from the ground state to the fourth
excited state. Because of the enhancement of nonlinear
higher-order quantum processes in USC, the peaks are
stronger, narrower, and less power-broadened in compari-
son to those in other regions such as the deep USC.

Note that the creation of each individual peak and also
the interplay between the different order transitions and
peaks are crucial in the overall construction and under-
standing of the population spectra. These manifest in the
constructive and destructive nonlinear interaction of peaks
with various widths and strengths, which can cause a
sudden dip or rise, and nonlinear features [96,104—107]
such as power broadening, dynamical Stark shift, Autler-
Townes multiplet splitting, electromagnetically induced
transparency, and hole burning. For example, the drop
at ny; ~0.9 of the TLS graph in Fig. 3(c) is caused
by the destructive interference of transitions. Spectral
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modifications arise due to Stark splitting of the driven
system energy levels where the decaying system process
(atomic down transition in the dressed states) from the two
dressed states interferes destructively to create a Fano-type
dark line in a single Lorentzian peak [94-96,105]. Similar
explanations are applicable for other resonant peaks in the
same graph as well as those in Fig. 3(d), which shows the
role of increasing w,, for fixed 1, = 0.5 [84].

We note that in the USC regime, due to the presence of
the counter-rotating waves, the Hamiltonian is not number-
conserving. As such, the dressed QRM states provide
excitations with different populations of matter and pho-
tonic fields, even the ground state. Thus, we already have
nonlinearity from this first light-matter dressing, and any
possible transition already provides a nonlinear process
without even having a strong drive, in contrast to the linear
one-photon transitions of weak or strong coupling regimes
of cavity QED. However, the second dressing, which is
the mechanical dressing as a result of the nonperturbative
coupling modulating drive, then causes a second non-
linearity. Thus, additional higher-order processes are
provided with the capability of exchanging multiple
mechanical quanta at a time (we have an exponential time
term with +/w), in the system dynamics), causing rich
spectral features in Figs. 3(c) and 3(d).

Lastly, we comment on the role of the #(¢) waveform.
With a pure harmonic 7(f) waveform, one can drive
frequencies comparable to a few fractions of the photon
frequency, as known in the context of the dynamical
Casimir effect. Generally, one understands that the pro-
duction of virtual to real excitations must be done non-
adiabatically, which means a sudden switch on and switch
off of an interaction. Hence, it is expected that nonsmooth
waveforms, such as a periodic array of sudden ramps
(sawtooth) or top-hat functions, are comparatively highly
productive [108]. These forms are also discussed in the
Supplementary Material [84].

In summary, we have introduced a Floquet engineered
QRM, where a cavity-QED system in the USC regime is
subject to a time-periodic cavity-atom coupling rate. By
using a suitable gauge-invariant model Hamiltonian, we
show how one can generate real excitations out of vacuum
through a mechanical oscillation of the location of the atom
(or the cavity). Beyond fundamental aspects of nonpertur-
bative vacuum field engineering, our Letter can potentially
motivate investigations toward rich quantum light produc-
tion out of vacuum, as well as the coherent manipulation
of quantum systems and nonequilibrium quantum optical
effects such as phase transitions, entanglement, and infor-
mation processing by Floquet engineering the multiphoton
correlation functions.
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