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I. DEFINING THE APPROXIMATE SQUARE GKP CODEWORDS

Here, we give the form of the approximate GKP codewords and analyze their features. Specifically, the approximate
GKP state can be expanded as a superposition of squeezed coherent states [1]

|uL⟩ =
1

N (u)

M∑
k=−M

c
(u)
k

∣∣∣α(u)
k , r

〉
, u ∈ {0, 1} , (S1)

where
∣∣∣α(u)

k , r
〉

= D̂(α
(u)
k )Ŝ (r) |0⟩ is a squeezed coherent state with the displacement D̂(α) = exp

(
αâ† − α∗â

)
and squeezing Ŝ(r) = exp

[
1
2

(
r∗â2 − râ†2

)]
operators, N (u) is the coefficient for normalization, and the coeffi-

cients c
(u)
k are functions of the parameters [β

(u)
k , u, k] [i.e., c

(u)
k = f(β

(u)
k , k, u)] with the two-photon coherent

parameter β
(u)
k = cosh(r)α

(u)
k + sinh(r)α

(u)∗
k [2]. Specifically, we rewrite the squeezed coherent state as |α(u)

k , r⟩ =

Ŝ(r)Ŝ(−r)D̂(α
(u)
k )Ŝ(r)|0⟩ = Ŝ(r)D̂(β

(u)
k )|0⟩, which is the eigenstate of the squeezed mode b̂ = Ŝ(r)âŜ(−r) with eigen-

value β
(u)
k . This allows us to calculate analytical solutions for the expectation values of operators in the squeezing

frame and avoids numerical truncations, that is, α
(u)
k → β

(u)
k and â → b̂. Here, we focus on the square GKP codewords

and assume a real squeezing parameter r. According to Eq. (S1), we can express the normalization coefficient N (u)
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as:

N 2(u) =
∑
k,l=0

f∗
(
β
(u)
k , k, u

)
f
(
β
(u)
l , l, u

)〈
α
(u)
k , r|α(u)

l , r
〉

=
∑
k,l=0

f∗
(
β
(u)
k , k, u

)
f
(
β
(u)
l , l, u

)
exp

−
∣∣∣β(u)

k

∣∣∣2 + ∣∣∣β(u)
l

∣∣∣2
2

+ β
(u)∗
k β

(u)
l

. (S2)

The codewords in Eq. (S1) can be regarded as the shared approximate eigenstates of the two stabilizer operators of
the square GKP code

Ŝq = exp
(
i2
√
πq̂

)
= D̂

(√
2πi

)
, Ŝp = exp

(
−i2

√
πp̂

)
= D̂

(√
2π

)
, (S3)

with the same eigenvalue one, where q̂ = (â† + â)/
√
2 and p̂ = (â − â†)/

√
2i represent the position and momentum

operators, respectively. Using the relation D̂(β)D̂(α) = exp [(βα∗ − β∗α)/2] D̂(α + β), we can derive the following
expressions:

Ŝq

∣∣∣α(u)
l , r

〉
= D̂

(√
2πi

)
D̂

(
α
(u)
l

)
Ŝ (r) |0⟩ = exp

[√
2πi

2

(
α
(u)∗
l + α

(u)
l

)] ∣∣∣α(u)
l +

√
2πi, r

〉
,

Ŝp

∣∣∣α(u)
l , r

〉
= D̂

(√
2π

)
D̂

(
α
(u)
l

)
S (r) |0⟩ = exp

[√
2π

2

(
α
(u)∗
l − α

(u)
l

)] ∣∣∣α(u)
l +

√
2π, r

〉
.

(S4)

By combining the Eqs. (S1) and (S4), we obtain the inner products〈
uL

∣∣∣Ŝq

∣∣∣uL

〉
=exp

(
−πe−2r

)
,

〈
uL

∣∣∣Ŝp

∣∣∣uL

〉
=

1

N 2(u)

∑
k,l=0

f∗
(
β
(u)
k , k, u

)
f
(
β
(u)
l , l, u

)
exp

−
∣∣∣β(u)

k

∣∣∣2 + ∣∣∣β(u)′

l

∣∣∣2
2

+ β
(u)∗
k β

(u)′

l

, (S5)

where we have defined the relation β
(u)′

l = β
(u)
l +

√
2πer and

(
α
(u)
k

√
2
π − u

)
/2 ∈ Z. Note that we focus on the

most general form of the GKP code, more specifically the square GKP code, whose Wigner function is a square

grid. The positions of the grid points in this code are determined by the parameters α
(u)
k . Thus, we have fixed these

parameters to ensure a precise approximation and to maintain the consistency with the ideal square GKP code. The
difference between the approximate GKP codewords and the eigenstates of the operator Ŝq [i.e., the right side of the
first line in Eq. (S5)] depends solely on the squeezing parameter r. However, the gap between the approximate GKP

codewords and the eigenstate of the operator Ŝp is determined by the squeezing strength r and the coefficients c
(u)
k

of the squeezed coherent states. These results provide us with the potential to obtain an optimal code. Since the
distance between the ideal GKP code and the approximate GKP code is determined by the squeezing strength, and
the level of approximation along the Ŝq direction is fixed, we only need to ensure that Ŝp meets or exceeds this level

of approximation to qualify as a square GKP code. Therefore, we strive to keep ⟨uL|Ŝp|uL⟩ ⩾ exp
(
−πe−2r

)
, thereby

ensuring a good approximation to the ideal codewords. To achieve this, we incorporate the following component into
the loss function:

Leg =
∑
u=0,1

max
(
0, exp

(
−πe−2r

)
−
〈
uL

∣∣∣Ŝp

∣∣∣uL

〉)
(S6)

II. QUANTUM ERROR CORRECTION ABILITY

This section provides a detailed calculation of the QEC ability. The primary source of errors in a bosonic mode are
single-photon loss and dephasing. Hence, the system dynamics is governed by the Lindblad master equation

dρ̂

dt
=

κ

2
D [â] +

κϕ

2
D
[
â†â

]
, D [x̂] = 2x̂ρ̂x̂† − x̂†x̂ρ̂− ρ̂x̂†x̂. (S7)
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FIG. S1. The average fidelity F̄ of the logical code space versus time t for various squeezing strengths: (a) κϕ = 0 and
κ = 0.01; (b) κϕ = 0.01 and κ = 0.

To demonstrate the effects of dephasing and single-photon loss, we evaluate the evolution of the average fidelity for
the conventional GKP codespace, as shown in Fig. S1. The average fidelity is F̄ = 1

6

∑
i Tr[ρ̂iN (ρ̂i)], where N (·)

represents the dynamical map governed by the master equation in Eq. (S7) and ρ̂i denotes the six Pauli eigenstates
of the logical space. The impact of the dephasing channel becomes more pronounced with increasing the degree of
squeezing. To elucidate the effect of dephasing in detail, we provide an analytical solution for the dephasing channel
in the Fock space

Nϕ(ρ) =
∑
nm

exp
{[

−κϕ

2
(n−m)2

]}
⟨n|ρ|m⟩|n⟩⟨m|, (S8)

where the dynamic mapNϕ(·) describes the pure dephasing process. As the squeezing degree increases, the distribution
of codewords in the Fock space becomes more dispersed (i.e., the magnitude of |n−m| increases), which exacerbates
the detrimental effects of dephasing.

By considering short times κτ, κϕτ ≪ 1, we can expand the time-dependent density matrix ρ (τ) by using the

Kraus operators Âk(τ) [3]

ρ̂(τ) =
∑
k

Âk(τ)ρ̂(0)Âk(τ)
† +O(τ2),

Â1(τ) =

√
Î − κτâ†â− κϕτ(â†â)2 ≈ Î−κτ

2
â†â− κϕτ

2
(â†â)2, Â2(τ) =

√
κτâ, Â3(τ) =

√
κϕτ â

†â.

(S9)

We consider an approximate QEC characterized by a finite squeezing amplitude r and the form of the codewords;
that is, the codewords satisfies approximately the Knill-Laflamme (KL) condition

P̂CÂ
†
i ÂjP̂C = TijP̂c + ∆̂ij , (S10)

where P̂C is the projector onto the code space, Tij are the elements of a Hermitian matrix T , and ∆̂ij is a residual
error operator. We use the eigendecomposition of the T matrix, T = UΛU†, and then remodel the Kraus operators
as F̂i =

∑
k UkiÂk, resulting in ∑

i

F̂iρ̂F̂
†
i =

∑
kl

∑
i

UkiU
∗
liÂkρ̂Â

†
l =

∑
k

Âkρ̂Â
†
k. (S11)

With this, we can further expand the KL condition as [4]

P̂C F̂
†
i F̂jP̂C =

∑
kl

U∗
kiUljP̂CÂ

†
kÂlP̂C =

∑
kl

U∗
kiUlj(TklP̂C + ∆̂kl) = δijΛjjP̂C + ˆ̃∆ij , (S12)

where we have defined ˆ̃∆ij =
∑

ki U
∗
kiUlj∆̂kl.

We can employ the recovery operator R̂j to correct the error resulting from Âi(τ). The recovery operator is not

unique. If we consider the recovery operator R̂i = P̂C F̂
†
i /

√
Λii and R̂0 =

√
Î −∑

i R̂
†
i R̂i to correct the errors, we
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obtain the recovery channel

E(ρ̂) = R ◦N (ρ̂) =
∑
ij

1

Λii
P̂ F̂ †

i F̂j ρ̂F̂
†
j F̂iP̂ =

∑
i

Λiiρ̂+
∑
ij

ˆ̃∆ij ρ̂+ ρ̂ ˆ̃∆ji +
1

Λjj

ˆ̃∆ij
ˆ̃∆ji + R̂0N (ρ̂)R̂†

0, (S13)

which indicates that if the KL criteria is satisfied (i.e., ∆̂ij = ˆ̃∆ij → 0), the information can be corrected fully [i.e.,
R(ρ̂) = N (ρ̂) = ρ̂].
Hence, we aim to bring the approximate GKP codewords as close as possible to the KL condition

ϵji = ⟨1L|Â†
jÂi|1L⟩ − ⟨0L|Â†

jÂi|0L⟩, ζji = ⟨0L|Â†
jÂi|1L⟩, ζ∗ij = ⟨1L|Â†

jÂi|0L⟩, δ = ⟨0L|1L⟩. (S14)

It should be noted that the above recovery may not be the optimal solution. We can address this by solving convex
optimization problems to obtain the optimal channel fidelity [5–7]. To ensure that the logical basis vectors meet the
KL criteria as close as possible, we define the following loss function

L̄er =
1

N

∑
κτ,κϕτ

Ler, (S15)

where we have considered Ler as

Ler = |δ|+
∑
ij

(|ϵji|+ |ζij |) . (S16)

Here N is the number of terms summed over in L̄er to guarantee the loss function can be sufficiently minimal.
Moreover, we calculate the following relation

P̂CÂ
†
jÂiP̂C = ⟨0L|Â†

jÂi|0L⟩P̂C + ϵji|1L⟩⟨1L|+ ζ∗ij |1L⟩⟨0L|+ ζji|0L⟩⟨1L|, (S17)

which implies that ϵji and ζji describe the Pauli σ̂z errors and also σ̂x or σ̂y errors, respectively. If ζji and ϵji
vanish, the KL conditions are satisfied (i.e., no noise bias). These noise biases are reduced roughly equally during
the optimization process due to the consistent weights of errors in the loss function, ensuring that the final noise bias
reaches small values.

Moreover, the Eq. (S14) can be expressed as the sum of ⟨uL|K̂†
i K̂j |vL⟩, where K̂i and K̂j are operators selected

from the set {Î , â, â†â, â†ââ†â} and u, v are binary values (i.e., u, v ∈ {0, 1}). Since numerical truncation can be

computationally expensive and memory-intensive, we perform an analytical calculation of the parameter ⟨uL|K̂†
i K̂j |vL⟩

to simplify the numerical simulation. We can expand ⟨uL|K̂†
i K̂j |vL⟩ into the form〈

uL

∣∣∣K̂†
i K̂j

∣∣∣ vL〉 =
1

N (u)N (v)

∑
k,l=0

f∗
(
α
(u)
k , r

)
f
(
α
(v)
l , r

)〈
α
(u)
k , r

∣∣∣K̂†
i K̂j

∣∣∣α(v)
k , r

〉

=
1

N (u)N (v)

∑
k,l=0

f∗
(
α
(u)
k , r

)
f
(
α
(v)
l , r

)
Gj

(
β
(u)
k , β

(v)
l

)
exp

−
∣∣∣β(u)

k

∣∣∣2 + ∣∣∣β(v)
l

∣∣∣2
2

+ β
(u)∗
k β

(v)
l

 .

(S18)

The following is an analytic formulation of Gj

(
β
(u)
k , β

(v)
l

)
. We have assumed λ = cosh(r) and λ1 = sinh(r) for more

concise expressions.

1. For the operator K̂†
i K̂j = Î, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
= 1; (S19)

2. For the operator K̂†
i K̂j = â, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
= λβ

(v)
l − λ1β

(u)∗
k ; (S20)

3. For the operator K̂†
i K̂j = â†â, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
= β

(v)
l β

(u)∗
k

(
λ2 + λ2

1

)
+ λ1

[
λ1 − λ

(
β
(v)
l

)2
]
− λλ1

(
β
(u)∗
k

)2

; (S21)



S5

4. For the operator K̂†
i K̂j = â†â2, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
=− λ1

(
2λ2 + λ2

1

) (
β
(u)∗
k

)
2β

(v)
l +

(
λ2 + 2λ2

1

)
β
(u)∗
k

[
λ
(
β
(v)
l

)2

− λ1

]
+ λλ2

1

(
β
(u)∗
k

)
3

+ λλ1β
(v)
l

[
3λ1 − λ

(
β
(v)
l

)2
]
;

(S22)

5. For the operator K̂†
i K̂j = (â†â)2, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
=− 2λλ1

(
λ2 + λ2

1

) (
β
(u)∗
k

)3

β
(v)
l +

(
β
(u)∗
k

)2
[
λ4

(
β
(v)
l

)2

+ 4λ2
1λ

2
(
β
(v)
l

)2

− 2λ1λ
3 − 4λ3

1λ

+λ4
1

(
β
(v)
l

)2
]
+ β

(u)∗
k β

(v)
l

[
−2λ1λ

3
(
β
(v)
l

)2

− 2λ3
1λ

(
β
(v)
l

)2

+ λ4 + 8λ2
1λ

2 + 3λ4
1

]
+ λ2λ2

1

(
β
(u)∗
k

)4

+ λ1

{
−2λ3

(
β
(v)
l

)2

+ λ1λ
2

[(
β
(v)
l

)4

+ 2

]
− 4λ2

1λ
(
β
(v)
l

)2

+ λ3
1

}
;

(S23)

6. For the operator K̂†
i K̂j =

(
â†â

)2
â, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
=λλ2

1

(
3λ2 + 2λ2

1

) (
β
(u)∗
k

)4

β
(v)
l − λ1

(
β
(u)∗
k

)3
[
3λ4

(
β
(v)
l

)2

+ 6λ2
1λ

2
(
β
(v)
l

)2

− 4λ1λ
3

+λ4
1

(
β
(v)
l

)2

− 6λ3
1λ

]
+
(
β
(u)∗
k

)2

β
(v)
l

[
λ5

(
β
(v)
l

)2

+ 3λ4
1λ

(
β
(v)
l

)2

− 5λ1λ
4 − 20λ3

1λ
2

+6λ2
1λ

3
(
β
(v)
l

)2

− 5λ5
1

]
+ β

(u)∗
k

{
λ5

(
β
(v)
l

)2

− λ1λ
4

[
2
(
β
(v)
l

)4

+ 1

]
+ 16λ2

1λ
3
(
β
(v)
l

)2

−λ3
1λ

2

[
3
(
β
(v)
l

)4

+ 10

]
+ 13λ4

1λ
(
β
(v)
l

)2

− 4λ5
1

}
− λ2λ3

1

(
β
(u)∗
k
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(v)
l

{
−2λ3

(
β
(v)
l
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+ λ1λ
2
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β
(v)
l

)4

+ 6

]
− 8λ2

1λ
(
β
(v)
l

)2

+ 9λ3
1

}
;

(S24)

7. For the operator K̂†
i K̂j = (â†â)3, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
=3λ2λ2

1

(
λ2 + λ2

1

) (
β
(u)∗
k

)5

β
(v)
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(
β
(u)∗
k
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[
λ4

(
β
(v)
l
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2
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β
(v)
l
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(
β
(v)
l
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1λ
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+
(
β
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k

)3

β
(v)
l

[
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(
β
(v)
l
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(
β
(v)
l
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2
(
β
(v)
l
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+λ6
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(
β
(v)
l
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]
+
(
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(u)∗
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(
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(
β
(v)
l

)4
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]
+6λ6

1

(
β
(v)
l

)2
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1λ

4
(
β
(v)
l

)2

− λ3
1λ

3

[
9
(
β
(v)
l

)4
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]
− λ5

1λ

[
3
(
β
(v)
l

)4

+ 13

]
+45λ4

1λ
2
(
β
(v)
l
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}
+ β

(u)∗
k β

(v)
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{
−9λ1λ
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(
β
(v)
l

)2
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[
3
(
β
(v)
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]
−36λ3
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(
β
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2
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3
(
β
(v)
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)4
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]
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1

}
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(
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(
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(v)
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+ 2λ1λ
4

[
3
(
β
(v)
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+ 2

]
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(
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(v)
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[(

β
(v)
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)4
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]
+λ3

1λ
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9
(
β
(v)
l
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+ 10

]
− 13λ4

1λ
(
β
(v)
l
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+ λ5
1

}
;

(S25)

8. For the operator K̂†
i K̂j = (â†â)4, we obtain

Gj

(
β
(u)
k , β

(v)
l

)
=λ4λ4

1

(
β
(u)∗
k
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− 4λ3λ3
1

(
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1

)
β
(v)
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(
β
(u)∗
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+ 2λ2λ2
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[
3
(
β
(v)
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β
(v)
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(
β
(v)
l
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β
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k

)6
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(v)
l

[
2
(
β
(v)
l

)2
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1

(
β
(v)
l

)2

λ4
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−15λ1λ
5 − 48λ3

1λ
3 + 12λ4

1

(
β
(v)
l

)2

λ2 − 21λ5
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III. THE OPTIMAL RECOVERY CHANNEL

Here we elaborate the numerical method to identify the optimal recovery channel. We assume that the error space

consists of the bases |i(u)⟩ = Ai|uL⟩/
√
⟨uL|A†

iAi|uL⟩, where Âi are the Kraus operators of the error channel and |uL⟩
is the logical basis. Therefore, the recovery operators are linear superpositions of the operators B̂i,

R̂k =
∑
i

xk,iB̂i, (S27)

where we have defined the operator B̂i ∈ {|0L⟩⟨i(u)|, |1L⟩⟨i(u)|} to restore the encoded information from the error

space into the logical space. We can find the optimal coefficients xk,i to obtain the optimal recover operators R̂k. To
this end, we need to maximize the entanglement fidelity by optimizing the coefficient xk,i [5–8],

F =
1

4

∑
ij

∣∣∣Tr{R̂iÂj

}∣∣∣2 , (S28)

which is equivalent to solving the following convex semidefinite program

Xopt = argmax
X

1

4
Tr {XW} , with

∑
ij

XijB̂
†
i B̂j = Î , X ≽ 0, (S29)
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FIG. S2. (a) The gain of optimal GKP codewords relative to the best conventional GKP codewords versus the squeezing
amplitude r. Here, (Mo, Mc) represents the fewest M values needed by the optimized GKP and the best conventional GKP
codewords, respectively. The gains are above one for various squeezing amplitudes r, showing that the optimal GKP codewords
significantly reduce the necessary M while maintaining higher error-correctability. (b) The distance between the stabilizer
operators of the ideal and optimal approximate GKP codewords versus the squeezing strength. We set a target limit of
Lst ∼ 10−3.

.

where the elements Xij and Wij of the matrix X and W can be written as

Xij =
∑
l

xrix
∗
rj , Wij = Tr

[
N

(
B̂i ⊗ B̂†

j

)]
, (S30)

respectively. From the solution to the above convex optimization problem we acquire the corresponding optimal
recovery channel, where the optimal recovery operators can be given by a singular value decomposition of Xopt,

Xopt = V ΩV †,

Ropt =
√
Ωr

∑
i

VirBi,
(S31)

where Ωr is the singular value and V is an unitary matrix. We utilize Cvxpy for semidefinite convex optimization
in Python [9, 10]. This recovery channel represents the optimal recovery channel, which defines the upper bound for
QEC. As an example, we calculate the upper fidelity bounds for the optimal and conventional GKP codes at the time
scales κτ = 0.0004 and κϕτ = 0.0004/1.5, as shown in Tab. S1. Our results show that, although both the optimal
and conventional codes exhibit some noise bias for different encoded states, due to the incomplete satisfaction of the
KL condition, the optimal code surpasses the conventional code for all six states.

TABLE S1. Comparison of the fidelity upper bounds for the optimal and conventional GKP codes

Encoding state |0L⟩ |1L⟩ (|0L⟩+ |1L⟩)/
√
2 (|0L⟩ − |1L⟩)/

√
2 (|0L⟩+ i|1L⟩)/

√
2 (|0L⟩ − i|1L⟩)/

√
2

Optimal GKP 0.999968 0.999978 0.999964 0.999957 0.999954 0.999954

Conventional GKP 0.999918 0.999926 0.9999251 0.999919 0.999919 0.999919

IV. UNIVERSALITY OF THE NEURAL-NETWORK-BASED GKP CODEWORDS

Here, we investigate the universality of the neural network-based GKP codewords, including the performance of
these approximate GKP codewords under various squeezing levels, the impact of small perturbations in the codeword
coefficients, and the performance when the codeword coefficients are restricted to real numbers.
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FIG. S3. (a) Mean gain of optimal GKP codewords versus conventional GKP codewords as a function of the noise magnitude

of the coefficients c
(u)
k . (b) Mean-variance ratio of optimal and conventional approximate GKP codewords versus noise size ϵ.

A. Universality for various squeezing strengths

To illustrate the university of our proposal, we investigate the minimum number of squeezed coherent states required
to optimize GKP under different squeezing levels. Our proposal effectively reduces the number of squeezed coherent
states and enhances error correction performance under different strength squeezing levels, as shown in Fig. S2(a).
Specifically, the optimized approximate GKP codewords lower the number of squeezed states to seven in each logical
base (1/3 of the conventional approximate GKP for squeezing amplitudes r > 1) while maintaining better error
correction performance.

The ideal stabilizers only offer rough stabilization for the approximate code at finite squeezing degrees. To address
this, we propose more precise stabilizer operators, inspired by the special conventional GKP code in the limit ζ−1 =
er ≫ 1,

Ŝq,ap = exp
[
i2
√
π (f11q̂ + f12p̂)

]
,

Ŝp,ap = exp
[
−i2

√
π (f21q̂ + f22p̂)

]
,

(S32)

where the elements of the coefficient matrix f = [f11, f12; f21, f22] can be complex numbers. The matrix elements

have the relation f11f22 − f12f21 = 1, which preserves the commutation Ŝq,apŜp,ap = Ŝp,apŜq,ap.

We assume that the optimized stabilizers also follow this general form, with |uL⟩ = Ŝp,ap|uL⟩ and |uL⟩ =

Ŝq,ap|uL⟩. Satisfying this condition is equivalent to satisfying the relations ⟨uL|Ŝq,ap|uL⟩ ≈ 1, ⟨uL|Ŝp,ap|uL⟩ ≈ 1,

⟨uL|Ŝ†
q,apŜq,ap|uL⟩ ≈ 1, and ⟨uL|Ŝ†

p,apŜp,ap|uL⟩ ≈ 1. To quantify how well the codewords satisfy these conditions, we
define the following cost function,

Lst =
∑
u=0,1

∑
Ô

|1− ⟨uL|Ô|uL⟩|2, (S33)

where Ô ∈
{
Ŝq,ap, Ŝp,ap, Ŝ†

q,apŜq,ap, Ŝ†
p,apŜp,ap

}
. Therefore, we incorporate the above cost function into the total

loss function. It is important to note that the Pauli operators in the logical code space are represented as σ̂z = Ŝ
1/2
q,ap

and σ̂x = Ŝ
1/2
p,ap, which can converge autonomously without the need to consider an additional loss function.

The coefficient matrix f for ideal GKP codewords has the elements f11 = f22 = 1 and f12 = f21 = 0. We define fer
as the distance between the stabilizer operators of the approximate and the ideal GKP codewords

fer = |f11 − 1|+ |f22 − 1|+ |f12|+ |f21| . (S34)

In Fig. S2(b), we simulate fer as a function of the squeezing strength. As the squeezing increases, fer decreases
monotonically, showing that these stabilizer operators become closer to the stabilizer operators of the ideal codewords.
Therefore, the optimal GKP codewords are valid and useful at different squeezing levels.
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B. Robustness under disturbances

We investigate how profile perturbations of the coefficient c
(u)
k impact the error correction performance of the en-

coded quantum states. The coefficients of the logical basis can be expressed as the mean values with small fluctuations
due to imperfect control

c(u) = c(u) + ϵc(u)Ξ, (S35)

where ϵ is the magnitude of the noise with a value in ϵ ∈ (0, 0.02], and Ξ is a random matrix whose elements are
sampled from a uniform distribution over the interval Ξ ∈ [−0.5, 0.5]. Since the mean infidelity is proportional to L̄er,
we can define the average gain

Ḡ = L̄er(ogkp)/L̄er(cgkp), (S36)

of the optimal GKP codewords compared to the best conventional ones. We show the average gain and the ratio
v̄arc(L̄er)/v̄aro(L̄er) for randomly generated noise Ξ versus the noise magnitude ϵ in the Fig. S3 (a) and (b). The
mean gains are always above one and increase with increasing noise magnitude ϵ; the variance of the loss function
for the conventional GKP codewords remains more than 3.5 times that of the optimized GKP one. Our encoding
demonstrates significantly greater robustness, whereas the conventional GKP codes are highly susceptible to noise,
with the imperfect state preparation severely impairing error correction. This advantage arises from our codes avoiding
2/3 of the large-amplitude squeezed coherent states that are critical for the conventional codes, but challenging to
prepare accurately. These states, particularly in optical systems, are regarded as a fundamental obstacle to the GKP
state preparation. Thus, our codes enhance the stability and simplifies the state preparation, substantially reducing
the impact of imperfections. This demonstrate that the noise resilience of the optimized GKP encoding outperforms
that of the conventional GKP encoding, allowing for effective error correction and reducing the demand for extremely
precise control to generate the GKP codewords.

C. The real coefficient GKP codewords

Here we restrict to the real coefficients c
(u)
k to investigate the neural-network based GKP codewords. Our results

show that the optimal GKP codewords at squeezing amplitude r = 1.1 still exhibit better quantum error correction
ability than the best conventional one, where the number of squeezing states is seven and corresponding coefficients
are
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FIG. S4. Panels (a) and (b) give the Wigner functions for the optimal codewords |0L⟩ and |1L⟩ with real coefficients c
(u)
k for

M = 3, respectively.

c(0)/N (0) = [0.054826, 0.228328, 0.381576, 0.470909, 0.334463, 0.243658, 0.118351],

c(1)/N (1) = [0.114688, 0.258726, 0.375942, 0.354715, 0.229235, 0.163002, − 0.039539].
(S37)
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For these optimal codewords, the stabilizer operators match those in Eq. (S32), with the coefficient matrix

f =

[
0.999531 + 0.000695i −0.000088 + 0.110767i
−0.000067− 0.032467i 1.004067− 0.000703i

]
(S38)

having an approximation level close to Lst ∼ 10−3. Note that the error correction performance of this GKP state is
only slightly poorer than that of the GKP state with complex coefficients offered in the main text. Moreover, we show
the Wigner function of codewords with the real coefficients Eq. (S37) in Figs. S4 (a) and (b). Clearly, the projection
of the Wigner function in the momentum coordinate system is consistent with that of the complex field. The main
difference is the projection distribution in the position coordinates. This shows that optimizing GKP codewords for
real coefficients is also a reliable and near-optimal alternative.
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