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Gottesman-Kitaev-Preskill (GKP) encoding holds promise for continuous-variable fault-tolerant
quantum computing. While an ideal GKP encoding is abstract and impractical due to its nonphysical
nature, approximate versions provide viable alternatives. Conventional approximate GKP codewords are
superpositions of multiple large-amplitude squeezed coherent states. This feature ensures correctability
against single-photon loss and dephasing at short times, but also increases the difficulty of preparing the
codewords. To minimize this tradeoff, we utilize a neural network to generate optimal approximate GKP
states, allowing effective error correction with just a few squeezed coherent states. We find that such
optimized GKP codes outperform the best conventional ones, requiring fewer squeezed coherent states,
while maintaining simple and generalized stabilizer operators. Specifically, the former outperform the latter
with just one-third of the number of squeezed coherent states at a squeezing level of 9.55 dB. This
optimization drastically decreases the complexity of codewords while improving error correctability.
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Introduction—Quantum error correction (QEC),
employing syndrome measurements or environmental
engineering to restore encoded quantum information, plays
a pivotal role for realizing large-scale fault-tolerant quan-
tum computing [1–9]. Notably, bosonic quantum error
correction promises to enable information storage in a
single bosonic mode by leveraging the infinite-dimensional
Hilbert space of the mode to provide redundancy for
effective error resilience [10–15]. The extended lifespan
and the well-defined error model of superconducting
microwave cavities offer practical experimental support
for this type of coding [16–20].
Among the bosonic codes, the Gottesman-Kitaev-

Preskill (GKP) code is distinguished by its performance
in correcting arbitrary small oscillator displacement errors.
For the ideal GKP code, such errors can be corrected by an
appropriate QEC method, which exclusively involves
Gaussian operations [21–29]. The ideal GKP code is a
powerful concept, yet its impracticality restricts its direct
application to quantum computing. Feasible finite-energy
approximate GKP states are required. The commonly used
approximate GKP states are superpositions of highly
squeezed coherent states, which gradually approach the

ideal GKP states with increasing squeezing levels. A large
squeezing, often above 9.5 dB, is required for effective
QEC against single-photon loss and dephasing [30,31].
However, raising the squeezing level increasingly dis-

perses the approximate GKP states within the Fock state
space, ultimately amplifying the effect of dephasing chan-
nels [32]. For conventional GKP codes, the very small
probability amplitudes of large-amplitude squeezed coher-
ent states critically impact the simultaneous error-correct
ability for both dephasing and single-photon loss at short
times. However, these large-amplitude components are
difficult to control precisely, resulting in fundamental
obstacles to producing high-quality GKP codewords with
superior error correction capabilities [33–38]. In particular,
their optical preparation process requires breeding large-
amplitude cat states, a task complicated by low success rates,
limited amplitudes, and inadequate squeezing [39–43].
In this Letter, we use neural networks to model the

coefficient functions of squeezed coherent states in
approximate GKP states. In this approach, the optimized
GKP code aims to minimize the number of squeezed
coherent states while maximizing error correctability as
determined by the Knill-Laflamme (KL) criterion [44,45].
Furthermore, we ensure that the produced approximate
GKP states maintain the same distance to the ideal GKP
states as the best conventional GKP code defined by a fixed
coefficient function with optimum parameters. We find that
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GKP states optimized by the neural network outperform the
error correction bound set by the best conventional GKP
code while significantly reducing the number of large-
amplitude squeezed coherent states. For example, at a
squeezing level of 9.55 dB, our optimized GKP states, with
just seven squeezed coherent states, surpass the best
conventional GKP approximation, which requires 21
squeezed coherent states. The optimized approximate
GKP encoding also allows for simple stabilizer operators
and quantum gates. Our approach relies on the theoretical
result that finite neural networks can approximate any
continuous function with arbitrary precision [46–49].
Finite-energy GKP code—We focus on the square GKP

codewords, defined as the common eigenstates for the
operators Sq ¼ expði2 ffiffiffi

π
p

q̂Þ and Sp ¼ expð−i2 ffiffiffi
π

p
p̂Þ with

a shared unit eigenvalue [50]. Here, q̂ and p̂ are quadrature
coordinates of a harmonic oscillator and satisfy the com-
mutation relation ½q̂; p̂� ¼ i. These codewords are non-
normalizable and impractical. Utilizing a superposition of
squeezed coherent states, however, allows us to approxi-
mate them,

juLi ¼
1

N ðuÞ
XM
k¼−M

cðuÞk jαðuÞk ; ri; u∈ f0; 1g; ð1Þ

where jαðuÞk ; ri is a squeezed coherent state with squeezing

magnitude r (phase θ ¼ 0) and displacement αðuÞk , N ðuÞ is
the normalization coefficient, and (2M þ 1) is the number
of squeezed coherent states. Increasing the squeezing
magnitude r reduces the difference between the approxi-

mate and ideal GKP states. The coefficients cðuÞk , as

nonlinear functions of αðuÞk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiðπ=2Þp ð2kþ uÞ and the
squeezing magnitude r, are optimizable and play a crucial

role in QEC. Note that αðuÞk is kept fixed to ensure that
Eq. (1) approximates the square GKP codewords (the
Wigner function is a square grid). The various choices

for the nonlinear functions cðuÞk may offer alternatives that
are superior to conventional GKP codewords. For the

conventional GKP code, the coefficients cðuÞk are defined

as cðuÞk ¼ exp½−πζ2ð2kþ uÞ2=2� [51–53], where ζ−1

describes the Gaussian envelope width [22,54]. Optimizing
ζ then yields the best conventional GKP code for QEC
performance.
The noise channel is represented asN tðρ̂Þ ¼ expðLtÞρ̂ ¼P
i ÂiðtÞρ̂Â†

i ðtÞ, where ÂiðtÞ and L denote the Kraus
operator and Lindblad superoperator, respectively. This
noise channel incorporates both single-photon loss and
dephasing. In practical QEC, we focus on recovering
short-term errors quickly and repeatedly. For small
timescales κτ ≪ 1 and κϕτ ≪ 1, we can approximate the
Kraus operators as Â1 ¼ Î − ðκτ=2Þâ†â − ðκϕτ=2Þðâ†âÞ2,
Â2 ¼

ffiffiffiffiffi
κτ

p
â, and Â3 ¼ ffiffiffiffiffiffiffi

κϕτ
p â†â [32,55], where κ (κϕ) is the

rate of single-photon loss (dephasing). With increasing the
squeezing, the approximate GKP codewords exhibit a more
spread-out distribution in Fock space, indicating that
dephasing becomes the dominant source of error [32].
Thus, finding optimal GKP codes is critical for simulta-
neously correcting single-photon loss and dephasing errors
while maintaining a small M.
The error correctability of a code can be assessed

through deviations from the KL criterion [44,45,56].
Specifically, minimizing the errors ϵji ¼ h1LjÂ†

j Âij1Li −
h0LjÂ†

j Âij0Li ensures equal error probabilities for the two

logical basis states; ζji ¼ h0LjÂ†
j Âij1Li maintains the

orthogonality of the error space; δ ¼ h0Lj1Li keeps the
logical basis orthogonality. If all these errors vanish (i.e.,
ϵji; δ; ζij ¼ 0), the KL condition is satisfied and exact QEC
is, in principle, possible [57–60]. However, achieving such
exact QEC is challenging for approximate GKP codes at
finite squeezing levels. Realistically, errors in the approxi-
mate GKP code space caused by single-photon loss and
dephasing channels can only be incompletely corrected on
actual experimental platforms. Therefore, our goal is to find
codewords that satisfy the KL condition to the greatest
extent possible, which is equivalent to maximizing QEC
performance in an error correction cycle. Consequently, we
define the loss function

Ler ¼ jδj þ
X
ij

ðjϵjij þ jζijjÞ: ð2Þ

We evaluate huLjŜqjuLi and huLjŜpjuLi to gauge the
difference between the approximate and ideal GKP code,
and find

huLjŜqjuLi ¼ exp ð−πe−2rÞ: ð3Þ

This value is solely determined by the squeezing parameter

r and unaffected by M or the coefficients cðuÞk . It implies
that the approximation with a few squeezed coherent states
can be as effective as utilizing many. However, huLjŜpjuLi
depends on M and cðuÞk , necessitating an additional cost
function,

Leg ¼
X
u¼0;1

maxð0; expð−πe−2rÞ − huLjŜpjuLiÞ; ð4Þ

to ensure that juLi are the approximate eigenstates of Ŝp
and keep the comparability with the conventional codes.
Note that the ideal stabilizers only roughly stabilize the
approximate codes at finite squeezing levels. Therefore, we
consider more precise stabilizer operators,

Ŝq;ap ¼ exp½i2 ffiffiffi
π

p ðf11q̂þ f12p̂Þ�;
Ŝp;ap ¼ exp½−i2 ffiffiffi

π
p ðf21q̂þ f22p̂Þ�; ð5Þ
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with a complex coefficient vector f ¼ ½f11; f12; f21; f22�.
We impose the condition f11f22 − f12f21 ¼ 1 to preserve
the relation Ŝq;apŜp;ap ¼ Ŝp;apŜq;ap. We thus define the loss
function

Lst ¼
X
u¼0;1

X
Ô

j1 − huLjÔjuLij2; ð6Þ

which ensures that the approximate GKP codewords are
eigenstates of Eq. (5) with eigenvalue one, where Ô∈
fŜq;ap; Ŝp;ap; Ŝ†q;apŜq;ap; Ŝ†p;apŜp;apg. The resulting total loss
function, then, reads

Ltot¼ð1−η1−η2ÞL̄erþη1Lstþη2Leg;0< η1;2<1; ð7Þ

where L̄er ¼ ð1=NÞPκτ;κϕτ Ler probes various timescales
κτ and κϕτ to ensure that the codewords maintain a good
error correctability over a broad time span, and N is the
number of terms summed over in L̄er. Note that we possess
an exact analytical expression for the loss function in
Eq. (7), avoiding the need for numerical truncation and
diminishing computational cost, especially for highly
squeezed codewords [32].
Our protocol is illustrated schematically in Fig. 1. With

the initial f and network parameters chosen randomly, the
neural network captures the complex nonlinear function

cðuÞk ½βðuÞk ; u; k�, yielding a neural network-based quantum

state, where βðuÞk ¼ coshðrÞαðuÞk þ sinhðrÞαðuÞ�k represents
the two-photon coherent parameters for convenient com-
putation [32,61]. Optimizing the neural network and the
coefficient matrix f by minimizing the loss function in
Eq. (7) promises improved GKP codes. Note that we
optimize the neural network instead of directly optimizing

cðuÞk to achieve a fair comparison with the conventional

GKP code, which maintains a specific relation between cðuÞk

and ½βðuÞk ; u; k�. Here, we use the Adam optimizer with the
CosineAnnealingWarmRestarts algorithm in PyTorch to
optimize the neural network and minimize the risk of
getting stuck in local minima. After finding the optimum

codewords, we search for the optimal recovery channel
Roptð·Þ to examine the error-correction performance
of this encoding. Maximizing the channel fidelity
F ¼ ð1=4ÞPij jTrðR̂jÂiÞj2 is a convex optimization prob-

lem with semidefinite constraints, where R̂j is the recovery
operator [62–65]. This recover channel represents the upper
boundary for QEC.We employ the QuTip library to solve the
associated master equation [66–69] and the Cvxpy library for
the semidefinite convex optimization in PYTHON [70,71].
Learning outcomes—We optimize the quantum states

with r ¼ 1.1, for example, where r ¼ 1.1 corresponds to
the squeezing level ≈9.5 dB attainable in current experi-
ments [30,33,34]. After a meta parameters exploration, we
settle for two hidden layers, each containing five neurons.
The learning rate and ðη1; η2Þ are 10−4 and (0.02,0.02),
respectively. The optimized GKP code with M ¼ 3 (i.e.,
seven squeezed coherent states) exhibits a significantly
lower value of the loss function L̄er than the conventional
code with M ¼ 10 (i.e., 21 squeezed coherent states), as
shown in Fig. 2(a). The conventional code’s QEC ability
improves as M increases, but it has an upper bound due to
the constraints on the squeezing magnitude r and the fixed
envelope. Surprisingly, we find that the envelope exceeds
this threshold and significantly decreases the number of
superposed squeezed states. The optimal coefficients are
listed in Table I.
The fidelity between ideal and approximate GKP states

consistently surpasses the predefined threshold of
expð−πe−2rÞ for M ≥ 2 [see Fig. 2(b)]. It follows that
the optimal GKP code represents an approximation to the
ideal GKP code comparable to the conventional GKP code
while drastically reducing the number of squeezed coherent
states. The average gain Ḡ ¼ L̄erðcgkpÞ=L̄erðogkpÞ, pro-
portional to the infidelity ratio, consistently exceeds one
[see Fig. 2(c)]. Hence, the optimal GKP codes are robust
across a wide range of κτ and κϕτ values, beyond those
involved in the training process. Moreover, the optimal
GKP code at ≈9.5 dB consistently outperforms the best
conventional GKP code across a wide squeezing range of
8 ∼ 10 dB, keeping it approximately optimal without addi-
tional neural network retraining [see Fig. 2(d)]. Notably,
reoptimizing the neural network may yield even better
results. Similarly, when the coefficients are constrained to
the real-number domain, our conclusions still hold, albeit
with diminished performance compared to the complex
coefficients [32].
The optimized GKP encoding minimizes unnecessary

large-amplitude squeezed coherent state components by
optimizing the envelope distribution [see Figs. 2(e)–2(h)].
Note that ζ is separately optimized for fixed r to obtain the
best conventional GKP code. Therefore, the code exhibits a
bias between p̂ and q̂ accounting for dephasing errors, unlike
the special conventional GKP code [ζ ¼ Δ ¼ expð−rÞ],
which lacks this bias and thus performs worse under

FIG. 1. Diagram of the code optimization process. The output
of the neural network contains the real and imaginary compo-
nents of the coefficients cðuÞk ½βðuÞk ; u; k�, and the corresponding

input parameters are ½βðuÞk ; u; k�, while keeping M constant. The
gradient-based optimization of the loss function Ltot determines

the coefficients cðuÞk ½βuk; u; k�.

PHYSICAL REVIEW LETTERS 134, 060601 (2025)

060601-3



dephasing, as shown in Fig. 2(a). The momentum marginals
of the Wigner functions are invariant, consistent with the
description of Eq. (3). However, for the conventional GKP
code, substantial squeezed coherent state components are
essential to correct single-photon loss and dephasing, even if
these are small disturbances. In particular, minor coefficient
perturbations can substantially deteriorate the QEC ability in
the conventional GKP code, while the optimizedGKP code is
more robust [32]. The optimal codewords significantly
mitigate the challenge of preparing the encoded states by
substantially reducing the need for generating large-ampli-
tude cat states in optical systems and the dependence on
precise control in superconducting systems [33–35,39–43].
The operators in Eq. (5) can approximately stabilize

the codewords, as indicated by the loss function
Lst ≈ 1.6 × 10−3, with each term in Eq. (6) reaching
10−4. The corresponding coefficient matrix is

f ¼
�
1.000214þ 0.000054i −0.000001þ 0.110828i

0.002603 − 0.025265i 1.002585þ 0.00023i

�
;

which describes a small deviation from the ideal stabilizer
operators. Additionally, the values hujσ̂zjui ≈ ð−1Þu0.99,
hujσ̂xjvi ≈ 0.99 (u ≠ v), and kσ̂x=zjuik ≈ 1 suggest that the

Pauli operators are given by σ̂z ¼ Ŝ1=2q;ap and σ̂x ¼ Ŝ1=2p;ap. We

can thus use the operators d̂1 ¼ lnðŜq;aqÞ and d̂2 ¼ lnðŜq;aqÞ
coupled with an auxiliary qubit to effectively design the
stabilizer protocols, where d̂jjuLi ≈ 0. The Hamiltonian is
Ĥ ¼ d̂jb̂

†
t þ d̂†j b̂t, where b̂t describes a highly dissipative

auxiliary system. Applying the Trotter decomposition to
the unitary operator Û ¼ T exp ð−i R t

0 ĤðτÞdτÞ, we obtain
the Big-Small-Big and Small-Big-Small protocols [72].
Optimized codes with other squeezing levels or real
coefficients share the same stabilizer operators in
Eq. (5), with the sole difference being the coefficient
matrix f [32].
Quantum error correction across multiple cycles—A

single QEC cycle can only protect information over a short
duration; multiple cycles are required to uphold the
encoded information for a long time. We evaluate the
optimized GKP encoding and the best conventional GKP
code for a multiple error correction process. The entire
QEC procedure can be expressed as

ENcðρ̂Þ ¼ ðR∘N ÞNcðρ̂Þ; ð8Þ

where Nc represents the number of QEC cycles. We obtain
the optimal recovery channel (which puts an upper bound
on the achievable fidelity) by solving a semidefinite convex
optimization problem [11,32,73,74]. Additionally, the

TABLE I. Real and imaginary parts of the optimal coefficients cðuÞk ½βðuÞk ; u; k�=N ðuÞ.

Re½cð0Þ�=N ð0Þ 0.053 086 0.227 33 0.314 502 0.349 696 0.281 129 0.227 219 0.100 26

Im½cð0Þ�=N ð0Þ −0.069 034 −0.219 535 −0.280 702 −0.318 202 −0.254 336 −0.216 339 −0.112 28

Re½cð1Þ�=N ð1Þ 0.124 631 0.243 408 0.300 107 0.278 471 0.230 698 0.163 76 0.009 765

Im½cð1Þ�=N ð1Þ −0.128 982 −0.226 925 −0.272 479 −0.251 869 −0.200 419 −0.137 301 −0.053 407

(a) (b) (c)
(e) (f)

(h)(g)

(d)

FIG. 2. The losses L̄er and Leg for conventional GKP code versus ζ in panels (a) and (b), respectively. The black dotted lines
correspond to the optimal GKP code. Note that we split here Ltot into its components L̄er and Leg to highlight their physical
interpretation. The timescales κτ and κϕτ lie within the range [0, 0.005], with a squeezing strength of ΔdB ≈ 9.55 dB. (c) The gain Ḡ,
defined as the ratio associated with Ler, derived from the optimal GKP code (M ¼ 3), in comparison to the most effective conventional
GKP scenario given in (a). This assessment covers a larger parameter space than the training parameters (i.e., κτ; κϕτ∈ ½0; 0.01�).
(d) Loss function L̄er of the optimal GKP code obtained at ΔdB ≈ 9.55 dB against the disturbances of squeezing in the range of 8 to
10 dB, and compared to the best conventional GKP code. Panels (e),(f) and (g),(h) present the Wigner functions for the conventional and
optimal codewords (j0Li, j1Li) for M ¼ 10 and M ¼ 3, respectively.
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dephasing rate is typically lower than the single-photon
loss, as demonstrated in experiments with κ=κϕ ≈ 1.5 [30].
Hence, we choose this ratio to determine the mean fidelity
versus Nc under the optimal recovery channel. The mean
fidelity is estimated using the six-point intersection of the
coherent Bloch sphere face and axis [11].
As shown in Fig. 3(a), the optimized GKP encoding has

a gain of ≈2.1 compared to the best conventional GKP code
for a reasonable timescale. In Fig. 3(b), we depict how the
fidelity evolves from a specific initial state throughout three
error correction cycles. Specifically, the encoded state
evolves freely over a short period of time, resulting in
errors and a slow fidelity decrease. After a specific time
interval, errors are detected, followed by a recovery
procedure that restores the fidelity to a value near one.
This error correction cycle is conducted iteratively to
ensure long-term data storage. Figure 3(c) demonstrates
that the optimal codewords achieve a higher upper bound
compared to the conventional ones, enabling greater error
tolerance in imperfect recovery processes across various
timescales within the effective range, where the perfor-
mance exceeds the breakeven point (at which logical qubits
begin to outperform physical qubits).
Discussion—We used a neural network to find the

optimal GKP code when the encoded system suffers
single-photon loss and dephasing. Our results show that
the optimized GKP encoding requires just one-third of the
number of squeezed coherent states of the best conven-
tional GKP code to achieve better QEC ability and retain

the general and simple stabilizer operators. These squeezed
coherent states are arranged in close vicinity to the
squeezed vacuum state, eliminating the need for numerous
large-amplitude squeezed coherent states. Consequently,
the optimized codewords substantially reduce the chal-
lenges of the state preparation, offering a superior alter-
native to conventional GKP codes. Additionally, our
method can be adapted to other types of GKP codes, such
as rectangular and hexagonal GKP codes, and it can serve
as a reference for future corrections of single-photon loss
and dephasing, as well as for developing new codes with
simplified gate operations. In conclusion, our technique
may significantly reduce the threshold for continuous-
variable error correction.
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