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Introduction

In this Supplemental Material, we investigate in detail dispersive qubit readout (DQR) with injected
external squeezing (IES) in Sec. S1, and then the case with intracavity squeezing (ICS) in Sec. S2. We
demonstrate that these two cases cannot enable a significant and practically useful increase in the signal-to-
noise ratio (SNR). In Sec. S3, we show a detailed analysis of the qubit-cavity dispersive coupling enhanced
by squeezing. In Sec. S4, we present more details of the derivation of the SNR of DQR with both IES and
ICS. In this case, we find that, in sharp contrast to the case of using IES or ICS alone, their simultaneous
use can lead to an exponential improvement of the SNR. In particular, for a short time measurement,
the SNR is improved exponentially with twice the squeezing parameter. Finally, the effects of parameter
mismatches in realistic experiments on our readout proposal are discussed in Sec. S5.

S1. Dispersive qubit readout with injected external squeezing

In this section, we discuss dispersive qubit readout (DQR) with injected external squeezing (IES). Specifically, we
derive in detail the measurement signal, the measurement noise, and as a result, the signal-to-noise ratio (SNR).
We demonstrate that IES is able to exponentially improve the SNR only in the two impractical limits κτ → 0 and
∞, corresponding to a strong measurement tone and a long measurement time, respectively. However, in the regime
κτ ∼ 1, which is of most interest in experiments, a qubit-state-dependent rotation of squeezing becomes dominant and
increases the overlap of the pointer states, thus largely limiting the SNR improvement. Thus, IES cannot significantly
improve the SNR at an experimentally feasible measurement time.

We begin with the readout Hamiltonian given by

Ĥ = χâ†âσ̂z, (S1)

where χ = g2/∆, with g denoting the coupling of the qubit to the cavity and ∆ denoting their detuning. Moreover,
σ̂z is a Pauli operator of the qubit. Correspondingly, the Langevin equation of motion for the cavity mode â reads

˙̂a = −(σχ− iκ/2)â−
√
κ âin(t), (S2)

where κ is the photon loss rate of the cavity. Here, the qubit has been assumed to be in a definite state, such that the
operator σ̂z has been rewritten as a c-number σ = ±1, corresponding to the excited and ground states of the qubit,
respectively. Moreover, âin (t) represents the input field of the cavity. We assume that a squeezed vacuum reservoir,

acting as IES, is injected into the cavity. In this case, the correlations for the noise operator Âin (t) = âin (t)−〈âin (t)〉
are:

〈Â†in (t) Âin (t′)〉 = sinh2(r)δ(t− t′), 〈Âin (t) Â†in (t′)〉 = cosh2(r)δ(t− t′), (S3)

〈Âin (t) Âin (t′)〉 =
1

2
eiϕ sinh(2r)δ(t− t′), 〈Â†in (t) Â†in (t′)〉 =

1

2
e−iϕ sinh(2r)δ(t− t′), (S4)
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where r is the squeezing parameter of IES and ϕ is the reference phase. It follows, after formally integrating Eq. (S2),
that

â(t) = exp[−i(σχ− iκ/2)t]â(0)−
√
κ

∫ t

0

exp[−i(σχ− iκ/2)(t− s)]âin(s)ds, (S5)

where the initial measurement time has been assumed to be zero for simplicity.
The dispersive coupling of the cavity mode and the qubit causes the qubit state information to be encoded in the

output quadrature,

Ẑout (t) = âout (t) exp (−iφh) + â†out (t) exp (iφh) , (S6)

which can be recorded by homodyne detection. Here, φh is the measurement angle and âout (t) = âin (t) +
√
κâ (t)

refers to the output field of the cavity. The essential parameter quantifying homodyne detection is the SNR. To
evaluate the SNR, we typically use the measurement operator,

M̂ =
√
κ

∫ τ

0

dt Ẑout (t) , (S7)

with τ being the measurement time. Its average 〈M̂〉 corresponds to the qubit-state-dependent signal. The fluctuation

noise of the measurement operator M̂ is described by M̂N = M̂ − 〈M̂〉. With these quantities, the SNR is defined as

SNR =

∣∣∣〈M̂〉↑ − 〈M̂〉↓∣∣∣√
〈M̂2

N 〉↑ + 〈M̂2
N 〉↓

, (S8)

where the arrows ↑ (i.e., σ = +1) and ↓ (i.e., σ = −1) refer to the excited and ground states of the qubit, respectively.
Consider a coherent measurement tone 〈âin (t)〉 = αine

iφin . The averaged cavity field can be expressed as

〈a(t)〉 = i

√
καine

iφin

σχ− iκ/2
{1− exp[−i(σχ− iκ/2)t]} , (S9)

under the initial condition 〈â(0)〉 = 0, and the number of cavity photons is accordingly given by

n (t) = 〈â† (t) â (t)〉 = sinh2(r) +
4α2

in

κ
cos2(ψ)

[
1 + e−κt − 2 cos(χt)e−κt/2

]
, (S10)

where tan(ψ) = 2χ/κ. Here, we have assumed that at the initial measurement time t = 0, the cavity subject to IES
is already in a steady state. Then, we find

〈M〉↑ − 〈M〉↓ =
4αin√
κ

sin(2ψ) sin(φh − φin)

{
κτ − 4 cos2(ψ)

[
1− sin(2ψ + χτ)

sin(2ψ)
e−κt/2

]}
. (S11)

Note that this expression of the signal separation is the same as that in the standard dispersive readout of no squeezing.
We now derive the measurement noise. The quantum fluctuation operator, Âout(t) = âout(t) − 〈âout(t)〉, of the

output field has the form

Âout(t) = Âin(t) +
√
κÂ(t). (S12)

Here, Â(t) = â(t)− 〈â(t)〉 represents the quantum fluctuation of the cavity field, and from Eq. (S5), it is found to be

Â(t) = exp[−i(σχ− iκ/2)t]Â(0)−
√
κ

∫ t

0

exp[−i(σχ− iκ/2)(t− s)]Âin(s)ds. (S13)

Since, as assumed above, the cavity subject to IES is already in a steady state at t = 0, we therefore have:

〈Â†(0)Â(0)〉 = sinh2(r), 〈Â(0)Â†(0)〉 = 1 + 〈Â†(0)Â(0)〉, (S14)

〈Â(0)Â(0)〉 =
1

2
eiϕ sinh(2r), 〈Â†(0)Â†(0)〉 = 〈Â(0)Â(0)〉

∗
. (S15)
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With these initial conditions, we find that the measurement noise, expressed as

〈M̂2
N 〉 = κ

∫ τ

0

∫ τ

0

dt1dt2

{
〈Âout(t1)Âout(t2)〉e−i2φh + 〈Â†out(t1)Âout(t2)〉

+ 〈Âout(t1)Â†out(t2)〉+ 〈Â†out(t1)Â†out(t2)〉ei2φh
}
, (S16)

is given by

〈M̂2
N 〉 = κτ cosh(2r) +

1

2

[
3 cos(ϕ− 2φh)− (3− 2κτ) cos(4σψ − ϕ+ 2φh)

+ 6 sin(2σψ) sin(4σψ − ϕ+ 2φh)− 16e−κτ/2 cos(σψ) sin(2σψ) sin(3σψ − ϕ+ 2φh + χτ)

+ 4e−κτ cos(σψ) sin(2σψ) sin(3σψ − ϕ+ 2φh + 2χτ)

]
sinh(2r), (S17)

and therefore we obtain

〈M2
N 〉↓ + 〈M2

N 〉↑ = 2κτ [cosh(2r) + cos(ϕ− 2φh) sinh(2r)F(τ)] . (S18)

Here,

F(τ) =
1

2κτ

{
3 + 3 cos(2ψ)− (3− 2κτ) cos(4ψ)− 3 cos(6ψ)

+ 4 cos(ψ) sin(2ψ)
[
e−κτ sin(3ψ + 2χτ)− 4e−κτ/2 sin(3ψ + χτ)

]}
. (S19)

It is seen that for a given measurement time κτ , the noise, 〈M2
N 〉↓ + 〈M2

N 〉↑, can be optimized for ϕ − 2φh = π if

F(τ) > 0, or ϕ− 2φh = 0 if F(τ) < 0.
In Fig. S1(a), we compare the optimal SNR of DQR using IES to that of the standard case of no squeezing; and

the corresponding optimal angle ψ and squeezing parameter r are plotted in Figs. S1(b) and S1(c), respectively. It is
seen from Fig. S1(a) that there is almost no improvement in the SNR at a measurement time τ ∼ 1/κ, which is the
most interesting experimentally. Note that in the limits of κτ → 0 and κτ →∞, we can have

〈M2
N 〉↓ + 〈M2

N 〉↑ ' 2κτ exp(−2r), (S20)

which indicates an exponential decrease in the measurement noise, and in turn an exponential increase in the SNR.
However, both of these limits are impractical in experiments. In the limit κτ → 0, the resulting SNR is extremely
small, although exponentially increased. As can be seen in Fig. S1(a), in order to have a significant increase of the
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FIG. S1. Comparison of DQR with IES (solid curve) and no squeezing (dashed curve). (a) Optimal SNR as a function of the
measurement time κτ . (b), (c) Optimal angle ψ and squeezing parameter r, corresponding to the optimal SNR in (a).
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FIG. S2. (a) Squeezing direction, (b) squeezing degree, and (c) phase-space representation of the measurement noise 〈M̂2
N 〉,

corresponding to the optimal SNR in Fig. S1. Solid (dashed) curves in (a) and (b), and the Wigner functions on the left-
(right-) hand side of the vertical dashed line in (c) correspond to the excited (ground) state of the qubit. In (c), we chose three
different measurement times, i.e., κτ = 1, 2, 5, as an example; θN ∈ [−π/2, π/2] refers to the angle between the squeezing
direction and the horizontal axis (i.e., the measurement direction).

SNR, the measurement time τ needs to be ∼ 10−2/κ, at which the amplitude of the measurement tone, αin, needs
to be ∼ 102

√
κ to make the SNR larger than 1. Such a measurement tone is too strong, and is often not feasible in

practice; because it can easily break down the dispersive approximation and, thus, destroy the measurement system.
At the same time, as shown in Fig. S1(b), the qubit-cavity dispersive coupling χ reaches ∼ 102κ, which is also
rather unfortunate due to the fact that how to achieve such a strong nonlinearity in experiments is still an extremely
challenging task. In the opposite limit κτ → ∞, a significant increase in the SNR needs a measurement time much
larger than 102/κ, which, clearly, is not desired in experiments. Hence, using IES alone cannot improve the SNR in
a practical manner.

In order to further understand why IES is practically not useful for DQR. In Fig. S2, we plot the squeezing direction,
the squeezing degree, and the phase-space representation of the measurement noise 〈M̂2

N 〉 for the ground and excited
states of the qubit for the optimal case of Fig. S1. Here, the squeezing direction is described by an angle θN from the
horizontal axis, i.e., the measurement direction [see Fig. S2(c)], and the squeezing degree is defined as

ξ2N =
〈M̂2

N 〉
κτ

. (S21)

Moreover, following Refs. [S1, S2], the Wigner function in phase space is defined as:

W (Xout, Yout) =
1

2π
√

Det (D)
exp

(
−1

2
GTD−1G

)
, (S22)
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where

G =
(
Xout − 〈X̂out〉, Yout − 〈Ŷout〉

)T
, (S23)

D =

(
〈X̂2

out〉 − 〈X̂out〉
2

〈X̂outŶout + ŶoutX̂out〉/2− 〈X̂out〉〈Ŷout〉
〈X̂outŶout + ŶoutX̂out〉/2− 〈X̂out〉〈Ŷout〉 〈Ŷ 2

out〉 − 〈Ŷout〉
2

)
. (S24)

Here,

X̂out =
1

2

(
Â+ Â†

)
, Ŷout =

1

2i

(
Â− Â†

)
, and Â =

1√
τ

∫ τ

0

dt âs,out (t) . (S25)

It can be readily verified that
[
Â, Â†

]
= 1 and

[
X̂out, Ŷout

]
= i.

Clearly, there is a direct correspondence between the results of Fig. S1 and Fig. S2. It is seen from Fig. S2(a) that

with increasing the measurement time, the squeezing directions of the measurement noises 〈M̂2
N 〉↓ and 〈M̂2

N 〉↑ are

rotated in opposite directions. In the two opposite limits κτ → 0 and κτ → ∞, these two squeezing directions are
almost the same, thus giving an exponential but impractical increase in the SNR. However, in the experimentally
most interesting regime where τ ∼ 1/κ, there is a large angle between them, as can be seen more clearly in Fig. S2(c).
The presence of such an angle increases the overlap between the two pointer states. In order to reduce this overlap
and achieve an optimal SNR, the squeezing degrees of the measurement noises 〈M̂2

N 〉↓ and 〈M̂2
N 〉↑ have to decrease

(even to zero, corresponding to the perpendicular squeezing directions), as plotted in Fig. S2(b). These competing
processes lead to almost no improvement of the SNR.

S2. Dispersive qubit readout with intracavity squeezing

Having discussed the case using IES, we consider in this section DQR with intracavity squeezing (ICS) generated
by a two-photon driving. We demonstrate that in the case of using ICS, there also exists a rotation of squeezing
similar to the case of using IES; and even worse, the degree of squeezing needs to increase gradually from the zero
initial value by increasing the measurement time κτ . Consequently, ICS leads to almost no improvement in the SNR
at any measurement time.

The Hamiltonian for DQR with a two-photon driven cavity reads

Ĥ = Ω
[
â2 exp (−iθ) + H.c.

]
+ χâ†âσ̂z, (S26)

where Ω and θ are the amplitude and phase of the two-photon driving, respectively. The Langevin equation of motion
for the cavity mode â is accordingly given by

˙̂a(t) = −i (σχ− iκ/2) â− i2Ω exp (iθ) â† −
√
κâin (t) . (S27)

Moreover, the correlations for the noise operator Âin (t) = âin (t)− 〈âin (t)〉 are:

〈Âin (t) Â†in (t′)〉 = [Âin (t) , Â†in (t′)] = δ (t− t′) , (S28)

〈Â†in (t) Âin (t′)〉 = 〈Âin (t) Âin (t′)〉 = 0. (S29)

According to Eq. (S27), the cavity mode â is found to be

â (t) = Λ(t)a(0)− Γ(t)a†(0)

−
√
κ

∫ t

0

dsΛ(t− s)ain(s) +
√
κ

∫ t

0

dsΓ(t− s)a†in(s), (S30)

where

Λ(t) =
1

λ
[λ cos(λt)− iσχ sin(λt)] exp(−κt/2), (S31)

Γ(t) =
2

λ
ieiθΩ sin(λt) exp(−κt/2), (S32)

λ =
√
χ2 − 4Ω2. (S33)
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As a direct result of Eq. (S30), the averaged cavity field is given, under the initial condition of 〈â (0)〉 = 0, by

〈â (t)〉 =
2
√
καin

κ2 + 4λ2

{
i4Ωei(θ−φin) − (κ− i2σχ)eiφin

− 1

λ

[
(2λ2 + iκσχ)eiφin + i2Ωκei(θ−φin)

]
sin(λt)e−κt/2

+
[
(κ− i2σχ)eiφin − i4Ωei(θ−φin)

]
cos(λt)e−κt/2

}
. (S34)

It is seen that in order to stabilize the system, we need to restrict our discussions to the case either when λ is a real
number (i.e., χ > 2Ω) or an imaginary number but with |λ| < κ/2. It then follows, according to the input-output
relation âout (t) = âin (t) +

√
κâ (t), that

〈M̂〉↑ − 〈M̂〉↓ =
16(χ/κ)αin√

κ
cos2(ψ) sin(φh − φin)

{
κτ − 4 cos2(ψ)

[
1− sin(2ψ + λτ)

sin(2ψ)
e−κτ/2

]}
. (S35)

Note that here, we have defined tan(ψ) = 2λ/κ, instead of tan(ψ) = 2χ/κ as in Sec. S1.

Furthermore, the quantum fluctuation operator of the cavity field â(t) is given by

Â(t) = Λ(t)Â(0)− Γ(t)Â†(0)−
√
κ

∫ t

0

dsΛ(t− s)Âin(s) +
√
κ

∫ t

0

dsΓ(t− s)Â†in(s), (S36)

according to Eq. (S30). We further assume that the two-photon driven cavity is already in a steady state at the initial

measurement time t = 0. Under this assumption, the correlations for the cavity-field noise operator Â(0) read:

〈Â†(0)Â(0)〉 =
8Ω2

κ2 − 16Ω2
, 〈Â(0)Â†(0)〉 = 1 + 〈Â†(0)Â(0)〉, (S37)

〈Â(0)Â(0)〉 = − ieiθ 2κΩ

κ2 − 16Ω2
, 〈Â†(0)Â†(0)〉 = 〈Â(0)Â(0)〉

∗
. (S38)

Then after a straightforward but tedious calculation, we find the measurement noise to be

〈M̂2
N 〉 = G0(τ)− sin(2φh − θ)Gs(τ) +

σχ

κ
cos(2φh − θ)Gc(τ), (S39)

no squeezingICS
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FIG. S3. Comparison of DQR with ICS (solid curve) and no squeezing (dashed curve). (a) Optimal SNR as a function of the
measurement time κτ . (b), (c) Optimal angle ψ and squeezing parameter r, corresponding to the optimal SNR in (a). In (b),
tan(ψ) = 2λ/κ for the readout with ICS, but tan(ψ) = 2χ/κ for the standard case of no squeezing.
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FIG. S4. (a) Squeezing direction, (b) squeezing degree, and (c) phase-space representation of the measurement noise 〈M̂2
N 〉,

corresponding to the optimal SNR in Fig. S3. Solid (dashed) curves in (a) and (b), and the Wigner functions on the left-
(right-) hand side of the vertical dashed line in (c) correspond to the excited (ground) state of the qubit. In (c), we chose three
different measurement times, i.e., κτ = 1, 2, 5, as an example; θN ∈ [−π/2, π/2] refers to the angle between the squeezing
direction and the horizontal axis (i.e., the measurement direction).

where

G0(τ) =
1

2
κτ
{

1 + cosh(r) + [5 + 8 cos(2ψ) + 2 cos(4ψ)− cosh(r)] tanh2(
r

2
)
}

− 2 cos2(ψ) {5 + 3 cos(4ψ) + cos(2ψ) [9− 2 cosh(r)]− 3 cosh(r)} tanh2(
r

2
)

− e−κτ [2− cos(2ψ + 2λτ)− cos(4ψ + 2λτ)] [cos(2ψ)− cosh(r)] cot2(ψ) tanh2(
r

2
)

− 8e−κτ/2 cos2(ψ) tanh2(
r

2
)

{
[cos(λτ)− cot(ψ) sin(4ψ + λτ)] cosh2(

r

2
)

+ 4 cos2(ψ) cot(ψ) sin(2ψ + λτ) sinh2(
r

2
)

}
, (S40)

Gs(τ) = 2 cos2(ψ) {−1− 3 cos(4ψ) + cosh(r) + cos(2ψ) [−3 + 2κτ + 2 cosh(r)]} tanh(
r

2
)

− 2e−κτ cos(ψ) cot(ψ) sin(3ψ + 2λτ) [cos(2ψ)− cosh(r)] tanh(
r

2
)

− 4e−κτ/2 cos(ψ) cot(ψ)
[
sin(3ψ + λτ) sinh(r)− 2 cos(ψ) sin(4ψ + λτ) tanh(

r

2
)
]
, (S41)
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Gc(τ) = 8 cos4(ψ) [3− 2κτ + 6 cos(2ψ)− 2 cosh(r)] tanh(
r

2
)

− 16e−κτ/2 cos4(ψ) cot(ψ) sinh2(
r

2
)
[
coth(

r

2
) sec2(ψ) sin(4ψ + λτ)− 4 sin(2ψ + λτ) tanh(

r

2
)
]

+ 8e−κτ cos2(ψ) sinh(
r

2
)

{
cos(ψ) cos(3ψ + 2λτ) cosh(

r

2
)

− [1− cos(ψ) cos(3ψ + 2λτ)] cot2(ψ) sinh(
r

2
) tanh(

r

2
)

}
. (S42)

Here, we have defined a squeezing parameter,

r = ln

(
κ+ 4Ω

κ− 4Ω

)
, (S43)

which, in fact, determines the squeezing degree of the output field of the two-photon driven cavity in the absence of
the qubit. Consequently, we have

〈M̂2
N 〉↓ + 〈M̂2

N 〉↑ = 2G0(τ)− 2 sin(2φh − θ)Gs(τ). (S44)

It is seen that for a given measurement time κτ , the noise, 〈M̂2
N 〉↓ + 〈M̂2

N 〉↑, can be optimized for 2φh − θ = π/2 if

Gs(τ) > 0, or for 2φh − θ = −π/2 if Gs(τ) < 0. The number of cavity photons is accordingly given by

n (t) = 〈â† (t) â (t)〉 =
1

8

[
4 cos2(ψ)− e−κtQ0

]
tanh2(

r

2
) +

(
αin√
κ

)2

Q1,

where

Q0 = [2− cos(2λt)− cos(2ψ + 2λt)] [cos(2ψ)− cosh(r)] csc2(ψ), (S45)

Q1 =4

(
αin√
κ

)2

cos2(ψ)

{
1 + e−κt − 2e−κt/2 cos(λt)

+
[
sin(2ψ)− 2e−κt/2 sin(2ψ + λt) + e−κt sin(2ψ + 2λt)

]
cot(ψ) tanh(

r

2
)

+ 2
[
cos(ψ)− e−κt/2 cot(ψ) sin(ψ + λt)

]2
tanh2(

r

2
)

}
. (S46)

In Fig. S3(a), we compare the optimal SNR of DQR using ICS (i.e., using a two-photon driven cavity) to that of
the standard case of no squeezing; and the corresponding optimal angle ψ and squeezing parameter r are plotted in
Figs. S3(b) and S3(c), respectively. It is seen that there is almost no improvement in the SNR for any measurement
time.

We now discuss the physical reasons why the SNR can hardly be improved by ICS. In analogy to the analysis of the
case of using IES in Sec. S1, we plot in Fig. S4 the squeezing direction θN , the squeezing degree ξ2N , and the phase-

space representation of the measurement noise 〈M̂2
N 〉 for the ground and excited states of the qubit for the optimal

case of Fig. S3. We find from Figs. S4(a) and S4(b) that, when κτ → 0, the squeezing directions of the measurement

noises 〈M̂2
N 〉↓ and 〈M̂2

N 〉↑ are almost the same, but at the same time, their squeezing degrees are extremely weak.

Moreover, as κτ increases, the squeezing degrees are increased and gradually converged to a value of ' 1.27 dB in the
limit κτ →∞; but at the same time, the squeezing directions are rotated in opposite directions as can be seen more
clearly in Fig. S4(c), and they even become mutually perpendicular in the limit κτ →∞. These features prevent the
SNR improvement from using ICS.

S3. Qubit-cavity dispersive coupling enhanced by squeezing

The σ̂z term in Eq. (5) in the main article corresponds to an enhanced dispersive coupling between the qubit and

the Bogoliubov mode β̂, which is of the form

V̂sq = χsqβ̂
†β̂σ̂z, (S47)
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where χsq is the dispersive coupling strength given by

χsq = g2
[

cosh2(r)

∆q − ωsq
+

sinh2(r)

∆q + ωsq

]
= χ

[
cosh(r) +

sinh2(r)

cosh(r) + 2ωsqε/g

]
. (S48)

Here, we have defined

χ = gε, (S49)

with

ε =
g cosh(r)

∆q − ωsq
. (S50)

Note that a very recent experiment [S3] in superconducting circuits has demonstrated this enhanced dispersive coupling
and, particularly, the increase of χsq with the squeezing parameter r.

In order to better understand the physical meaning of the dispersive coupling V̂sq, we now present its detailed
derivation. We begin with the full Hamiltonian in Eq. (1) in the main article and, for convenience, we reproduce it
here,

Ĥ = ∆câ
†â+

1

2
∆qσ̂z + g

(
â†σ̂− + âσ̂+

)
+ Ω

(
eiθâ†2 + e−iθâ2

)
. (S51)

Upon introducing a Bogoliubov mode

β̂ = cosh(rc)â+ eiθ sinh(rc)â
†, (S52)

with tanh(2rc) = 2Ω/∆c, the cavity Hamiltonian is diagonalized, yielding

∆câ
†â+ Ω

(
eiθâ†2 + e−iθâ2

)
= ωsqβ̂

†β̂, (S53)

where ωsq =
√

∆2
c − 4Ω2 is the resonance frequency of the mode β̂. Expressed in terms of the mode β̂, the full

Hamiltonian Ĥ is then transformed to

Ĥ = ωsqβ̂
†β̂ +

1

2
∆qσ̂z + g cosh(r)

(
β̂†σ̂− + β̂σ̂+

)
− g sinh(r)

(
e−iθβ̂σ̂− + eiθβ̂†σ̂+

)
. (S54)

Here, we have made a replacement rc → r, since r denotes a squeezing parameter of IES used in our proposal and, in
order to improve the SNR, we need to set rc = r [see Eq. (S72) below].

Furthermore, we work within the regime

ε� 1, (S55)

so that we can make a dispersive approximation [S4], and then obtain the dispersive coupling V̂sq in Eq. (S47). Note
that here, to make the dispersive approximation, we also require to satisfy the condition

(∆q + ωsq)� g sinh(r), (S56)

in addition to ε � 1. But since the condition in Eq. (S56) is certainly satisfied once ε � 1 holds, we can therefore
only consider the condition of ε� 1 for the dispersive approximation.

Below, we compare the dispersive coupling V̂sq and the original dispersive coupling, with no squeezing, of the qubit
and the bare cavity mode â, and explain the reason why the resulting improvement in the dispersive coupling is real.

Let us first consider the original dispersive coupling in the absence of squeezing. For clarity, we begin with the
Jaynes-Cummings Hamiltonian of a qubit coupled to a cavity mode, i.e.,

Ĥ0 = ωcâ
†â+

1

2
ωqσ̂z + g

(
â†σ̂− + âσ̂+

)
. (S57)

In the regime where

ε0 =
g

ωq − ωc
� 1, (S58)
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we can make a dispersive approximation [S4], yielding a dispersive coupling of the qubit and the cavity mode,

V̂0 = χ0â
†âσ̂z, (S59)

where χ0 is the dispersive coupling strength given by

χ0 =
g2

ωq − ωc
= gε0. (S60)

The use of the Jaynes-Cummings interaction given in Eq. (S57) is the simplest and most common way to achieve the

dispersive coupling V̂0.
Note that ε0 is a key parameter, which determines the validity or accuracy of the dispersive approximation applied

to Eq. (S57). Analogously, as described above, the parameter ε in Eq. (S50) determines the validity or accuracy of
the dispersive approximation applied to Eq. (S54), and it plays a role similar to the parameter ε0.

Thus, in order to ensure a fair comparison between the dispersive couplings V̂0 and V̂sq, we need to assume

ε0 = ε, (S61)

such that the dispersive approximations applied for V̂0 and V̂sq, respectively, can have the same validity or accuracy.
In such a case, by comparing Eqs. (S49) and (S60), we see that

χ0 = χ. (S62)

That is, under the condition that the two dispersive couplings V̂0 and V̂sq have the same validity or accuracy, the
parameter χ can be regarded as the original dispersive coupling strength χ0. Consequently, according to Eq. (S48),
our dispersive coupling strength χsq can be regarded as being enhanced by a factor of

cosh(r) +
sinh2(r)

cosh(r) + 2ωsqε/g
, (S63)

compared to the original dispersive coupling strength χ0 (i.e., χ). Moreover, as long as ε� 1, we have

cosh(r) +
sinh2(r)

cosh(r) + 2ωsqε/g
' exp(r) (S64)

and as a result, an exponential enhancement,

χsq ' χ0 exp(r), i.e., χsq ' χ exp(r). (S65)

Hence, according to the above discussions, our proposal leads to a real improvement in the dispersive coupling and
as a result also in the SNR.

Note that in order to obtain the enhanced dispersive coupling V̂sq from Eq. (S54), we assume that the coupling
strengths g cosh(r) and g sinh(r) are small, compared to the detunings ∆q−ωsq and ∆q +ωsq, respectively; i.e., ε� 1
[note that, as mentioned above, ε � 1 ensures (∆q + ωsq) � g sinh(r)]. However, in analogy, obtaining the original

dispersive coupling V̂0 from Eq. (S57) is also based on assuming the coupling strength g to be small compared to the
detuning ωq − ωc; i.e., ε0 � 1. To have a fair comparison, as mentioned above, we need to set ε0 = ε. Thus, in this
case, the assumption of ε� 1 does not affect the improvement of the dispersive coupling.

S4. Improved dispersive qubit readout with both injected external squeezing and intracavity squeezing

In this section, we consider the case when IES and ICS are used simultaneously for DQR, and demonstrate that for
any measurement time, squeezing in this case can enable an exponential increase of the readout SNR. In particular,
the short-time SNR can be increased exponentially with twice the squeezing parameter. This is in stark contrast to the
case of using IES or ICS alone.

To begin, we consider the Langevin equation of motion,

˙̂
β(t) = −i(ωσ − i

κ

2
)β̂ −

√
κβ̂in(t), (S66)
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where ωσ = ωsq + σχsq, and β̂in(t) denotes the input field of the Bogoliubov mode β̂. It is seen that the information

about the qubit state is mapped onto the mode β̂, rather than the bare mode â. The quantum fluctuation operator,

B̂in(t) = β̂in(t)− 〈β̂in(t)〉, of the input field β̂in(t), is given by

B̂in(t) = cosh(rc)Âin(t) + eiθ sinh(rc)Â†in(t), (S67)

according to the Bogoliubov transformation,

β̂in(t) = cosh(rc)âin(t) + eiθ sinh(rc)â
†
in(t). (S68)

The correlations for Âin(t) are given in Eqs. (S3) and (S4) and thus, the correlations for the operator B̂in(t) are found
to be:

〈B†in(t)Bin(t′)〉 = N δ(t− t′), 〈Bin(t)B†in(t′)〉 = (N + 1) δ(t− t′), (S69)

〈Bin(t)Bin(t′)〉 =Mδ(t− t′), 〈B†in(t)B†in(t′)〉 = M∗δ(t− t′), (S70)

where

N = cosh2(rc) sinh2(r) + sinh2(rc) cosh2(r) +
1

2
cos(θ − ϕ) sinh(2rc) sinh(2r),

M =
1

2

[
eiϕ cosh2(rc) sinh(2r) + eiθ sinh(2rc) sinh2(r)

+ eiθ sinh(2rc) cosh2(r) + ei(2θ−ϕ) sinh2(rc) sinh(2r)

]
. (S71)

This indicates that the mode β̂ suffers from thermal noise, characterized by N , and two-photon correlation noise,
characterized by M. These two types of noise are undesired in our proposal, but having

rc = r, and θ − ϕ = π (S72)

can eliminate them completely, i.e.,

N =M = 0, (S73)

so that the mode β̂ suffers only from a simple vacuum noise, i.e.,

〈Bin(t)B†in(t′)〉 = δ(t− t′), (S74)

〈B†in(t)Bin(t′)〉 = 〈Bin(t)Bin(t′)〉 = 〈B†in(t)B†in(t′)〉 = 0. (S75)

In this case, we show below that the measurement noise of the readout can be exponentially suppressed.
As usual, we formally integrate the equation of motion in Eq. (S66) to yield

β̂(t) = β̂(0) exp[−i(ωσ − iκ/2)t]−
√
κ

∫ t

0

ds exp[−i(ωσ − iκ/2)(t− s)]β̂in(s), (S76)

and accordingly, the number of cavity photons in the mode β̂ is found to be

n(t) = 〈β̂(t)†β̂(t)〉 = 4|〈β̂in(t)〉|2 cos2(ψσ)
[
1 + e−κt − 2e−κt/2 cos(ωσt)

]
, (S77)

where tan(ψσ) = 2ωσ/κ. Then, according to the input-output relation β̂out(t) = β̂in(t) +
√
κβ̂(t), we have

β̂out(t) = β̂in(t) +
√
κβ̂(0) exp[−i(ωσ − iκ/2)t]− κ

∫ t

0

ds exp[−i(ωσ − iκ/2)(t− s)]β̂in(s), (S78)

and thus,

B̂out(t) = β̂out(t)− 〈β̂out(t)〉 (S79)

= B̂in(t) +
√
κB̂(0) exp[−i(ωσ − iκ/2)t]− κ

∫ t

0

ds exp[−i(ωσ − iκ/2)(t− s)]B̂in(s), (S80)
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with B̂(t) = β̂(t)− 〈β̂(t)〉 being the quantum fluctuation operator of the Bogoliubov mode β̂. As can be verified by a

straightforward calculation, the correlations for B̂out(t) are:

〈B̂out(t)B̂†out(t′)〉 = δ(t− t′), (S81)

〈B̂†out(t)B̂out(t′)〉 = 〈B̂out(t)B̂out(t′)〉 = 〈B̂†out(t)B̂
†
out(t

′)〉 = 0, (S82)

It then follows, by using the Bogoliubov transformation

Âout(t) = âout(t)− 〈âout(t)〉 (S83)

= cosh(r)B̂out(t)− eiθ sinh(r)B̂†out(t), (S84)

that the correlations for Âout(t) are given by

〈Â†out(t)Âout(t
′)〉 = sinh2(r)δ(t− t′), 〈Âout(t)Â†out(t′)〉 = cosh2(r)δ(t− t′), (S85)

〈Âout(t)Âout(t
′)〉 = −1

2
eiθ sinh(2r)δ(t− t′), 〈Â†out(t)Â

†
out(t

′)〉 = −1

2
e−iθ sinh(2r)δ(t− t′). (S86)

Here, we have assumed that at the initial measurement time t = 0, the cavity field, subject to a two-photon driving

and a squeezed reservoir, is already in a steady state, i.e., the vacuum state of the mode β̂, such that 〈B̂†(t0)B̂(t0)〉 =

〈B̂(t0)B̂(t0)〉 = 0. From Eq. (S16), the measurement noise 〈M̂2
N 〉 takes the simple form

〈M̂2
N 〉 = κτ [cosh(2r)− cos(2φh − θ) sinh(2r)] . (S87)

Clearly, for 2φh − θ = 0, we obtain

〈M̂2
N 〉 = κτ exp(−2r) = 〈M̂2

N 〉std exp(−2r), (S88)

indicating the measurement noise is exponentially suppressed at any measurement time. Here, 〈M̂2
N 〉std = κτ is the

measurement noise of the standard readout with no squeezing. This result is in sharp contrast to the case of using
IES or ICS alone as discussed above.

Having achieved an exponentially suppressed measurement noise, let us now consider the measurement signal. We
find from Eq. (S68) that

〈β̂in(t)〉 = αin exp(iφin) {cosh(r) + sinh(r) exp[−i(2φin − θ)]} . (S89)

Here, we have assumed that 〈âin (t)〉 = αine
iφin . Since the signal separation is proportional to |〈β̂in(t)〉| (see below),

we thus choose 2φin − θ = 0, so as to ensure an exponential increase of |〈β̂in(t)〉| with the squeezing parameter r,
yielding

〈β̂in(t)〉 = αin exp(r) exp(iφin). (S90)

Then, according to Eq. (S78), we obtain

〈β̂out(t)〉 = αin exp(r) exp(iφin)

{
1 +

iκ

ωσ − iκ/2
{1− exp[−i(ωσ − iκ/2)t]}

}
, (S91)

under the initial condition of 〈β̂(0)〉 = 0. Subsequently, the measurement signal, defined in Eq. (S7), is found by

taking the Bogoliubov transformation âout(t) = cosh(r)β̂out(t)− eiθ sinh(r)β̂†out(t):

〈M̂〉 =
2αine

r

√
κ

{
[2− κτ + 2 cos(2ψσ)] [cos(ϑ+) cosh(r)− cos(ϑ− + θ) sinh(r)]

− 4e−κτ/2 cos2(ψσ) [cos(ϑ+ + ωστ) cosh(r)− cos(ϑ− + θ + ωστ) sinh(r)]

}
, (S92)

where ϑ± = 2ψσ ± φh − φin. We now divide the signal separation, |〈M̂〉↑ − 〈M̂〉↓|, into two components, one along

the measurement direction of homodyne detection (i.e., the squeezing direction), labelled |〈M̂〉↑ − 〈M̂〉↓|‖; and the

other along the direction perpendicular to the measurement direction of homodyne detection (i.e., the antisqueezing
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FIG. S5. Phase-space representation of DQR simultaneously using IES and ICS. The Wigner functions on the left- and right-
hand sides of the vertical dashed line correspond to the ground and excited states of the qubit, respectively. Here, we assumed
χ = 0.5κ, r = 1 and chose three different measurement times, i.e., κτ = 1, 2, 5, as an example.

direction), labelled |〈M̂〉↑ − 〈M̂〉↓|⊥. It can be seen that |〈M̂〉↑ − 〈M̂〉↓|‖ and |〈M̂〉↑ − 〈M̂〉↓|⊥ are found by setting
2φh − θ = 0, φin − φh = 0 and θ − 2φh = π, φin − φh = π

2 , respectively, yielding

|〈M̂〉↑ − 〈M̂〉↓|‖

=
2αin√
κ

∣∣∣∣ [2− κτ + 2 cos(2ψ−1) + 2 cos(2ψ+1)] [cos(2ψ−1)− cos(2ψ+1)]

− e−κτ/2
[
cos(ω−1τ) + 2 cos(2ψ−1 + ω−1τ) + cos(4ψ−1 + ω−1τ)− 4 cos2(ψ+1) cos(2ψ+1 + ω+1τ)

] ∣∣∣∣, (S93)

|〈M̂〉↑ − 〈M̂〉↓|⊥

=
2αine

2r

√
κ

∣∣∣∣ [2− κτ + 2 cos(2ψ−1)] sin(2ψ−1)− [2− κτ + 2 cos(2ψ+1)] sin(2ψ+1)

− e−κτ/2
[
sin(ω−1τ) + 2 sin(2ψ−1 + ω−1τ) + sin(4ψ−1 + ω−1τ)− 4 cos2(ψ+1) sin(2ψ+1 + ω+1τ)

] ∣∣∣∣, (S94)

respectively.
Intuitively, we can directly maximize |〈M̂〉↑−〈M̂〉↓|‖ so as to maximize the SNR, but in this case, |〈M̂〉↑−〈M̂〉↓|⊥,

which is usually zero in the case of using IES or ICS, may be nonzero. For example, for a give measurement time
κτ = 1 and a given dispersive coupling χ = 0.5κ, the maximum value of |〈M̂〉↑ − 〈M̂〉↓|‖ is ' 0.47αin/

√
κ with

tan(ψ+1) ' 6.5 and tan(ψ−1) ' 4.5; but at the same time, the value of |〈M̂〉↑ − 〈M̂〉↓|⊥ is found to be ' 1.1αin/
√
κ.

Thus for a fair comparison with the two cases of using IES and ICS separately, we require

|〈M̂〉↑ − 〈M̂〉↓|⊥ = 0. (S95)

In fact, for a given measurement time, we can exactly ensure this requirement with an appropriate effective cavity
frequency ωsq. The dependence of ωsq on κτ is plotted in the inset in Fig. 2(a) in the main article. Furthermore,
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in Fig. 2(b) in the main article, we demonstrate an exponential enhancement in the SNR under the condition in
Eq. (S95). This enhancement can be understood more deeply in the phase-space representation in Fig. S5, which is
in sharp contrast to the separate uses of IES and ICS shown in Figs. S2(c) and S4(c).

We consider below the SNR in the two limits of κτ → 0 and ∞. In the limit of κτ → 0, the effective cavity
frequency ωsq can be found from the condition in Eq. (S95),

ωsq '
2.58

τ
, (S96)

which is inversely proportional to the measurement time τ [see inset in Fig. 2(a) in the main article]. As a consequence,
we have

|〈M̂〉↑ − 〈M̂〉↓| = |〈M̂〉↑ − 〈M̂〉↓|‖ '
0.27αin√

κ
tan(ψsq) (κτ)

3 ' 0.81 exp(r)|〈M̂〉↑ − 〈M̂〉↓|std, (S97)

where tan(ψsq) = 2χsq/κ, such that the SNR in the limit of κτ → 0 is given by

SNR ' 0.81 exp(2r)SNRstd. (S98)

Here, |〈M̂〉↑ − 〈M̂〉↓|std and SNRstd refer to the signal separation and the SNR, respectively, of the standard readout

with no squeezing. It can be surprisingly seen from Eq. (S98) that compared to the standard readout, the SNR can
be exponentially improved with 2r, rather than r as usually expected. Such a giant improvement arises from two
contributions. The first contribution comes from the exponentially suppressed measurement noise as in Eq. (S88),
and the second one is due to the exponentially amplified dispersive coupling χsq as in Eq. (7) in the main article and
thus the exponentially amplified signal separation as in Eq. (S97).

Furthermore, in the limit of κτ →∞, the condition in Eq. (S95) gives

ωsq '
κ

2
sec(ψsq), (S99)

which is independent of the measurement time [see inset in Fig. 2(a) in the main article]. This yields

|〈M̂〉↑ − 〈M̂〉↓| = |〈M̂〉↑ − 〈M̂〉↓|‖ '
4αin√
κ

sin(ψsq)κτ ' sin(ψsq)

sin(2ψ)
|〈M̂〉↑ − 〈M̂〉↓|std, (S100)

and then

SNR ' sin(ψsq)

sin(2ψ)
exp(r)SNRstd. (S101)

Equation (S101) indicates that in the limit κτ →∞, the SNR can have an exponential improvement with the squeezing
parameter r. Note that the signal separation in Eq. (S100) is not significantly changed with increasing r, compared
to the standard readout. This is in contrast to the case of κτ → 0. Thus, along with an exponentially suppressed
measurement noise given in Eq. (S88), the SNR in the limit κτ →∞ can be improved exponentially with r, instead
of 2r, as seen in Eq. (S101). For typical parameters er = 10 and χ = κ/2, we can obtain sin(ψsq) ' sin(2ψ) and, thus,
SNR ' exp(r)SNRstd in the limit κτ →∞.

Hence, according to the above discussions, we see that with increasing the measurement time from κτ → 0 to
κτ → ∞, the improvement of the SNR is gradually changed from ∼ e2r to ∼ er, as shown in Fig. 2(b) in the main
article. Furthermore, we see that the SNR improvement originates from two aspects, one of which is due to the
measurement noise exponentially suppressed at any measurement time. The other aspect is due to the exponentially
enhanced dispersive coupling, which can lead to an exponentially increased signal separation and thus SNR for short-
time measurements, but which has almost no contribution to the improvement of the SNR for long-time measurements.

S5. Effects of parameter mismatches on the readout

Our present proposal relies on the simultaneous use of IES and ICS, and further requires to satisfy the parameter
conditions in Eq. (S72). However, in realistic experiments, there are always some parameter mismatches, such that
the conditions in Eq. (S72) are not satisfied perfectly. In such an imperfect case, we assume that

rc = r + δr, and θ − ϕ = π + δp, (S102)
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FIG. S6. SNR in the presence of parameter mismatches as a function of the measurement time κτ for δp = 0.1, 0.05, 0.01, and
for δr = 0.01. Other parameters and what the three dashed curves represent are the same as in Fig. 2(b) in the main article.

where δr and δp are the squeezing degree and direction mismatches, respectively. Below, we analyze the effects of
these parameter mismatches on our readout proposal.

The ideal conditions in Eq. (S72) lead to N = M = 0, as mentioned in Sec. S4; however, due to the parameter
mismatches given in Eq. (S102), N and M are no longer zero. Under such parameter mismatches, the correlations

for the output noise operator B̂out(t) = β̂out(t)− 〈β̂out(t)〉 are found to be〈
B̂out(t)B̂†out(t′)

〉
= (N + 1) δ(t− t′)− κN exp

[
−1

2
(κσt+ κ∗σt

′)

]
, (S103)

〈
B̂out(t)B̂out(t′)

〉
=Mδ(t− t′)− κ

κσ
M exp

[
−1

2
(t+ t′)κσ

]{
(κ+ i2ωσe

κσt
′
) if t ≥ t′,

(κ+ i2ωσe
κσt) if t < t′,

(S104)

where κσ = κ+ i2ωσ. It then follows that the measurement noise is given by〈
M̂2
N

〉
= R0 +R1 +R2, (S105)

where

R0 = κτ [cosh(2r) + cos(ϕ− θ) sinh(2r)] , (S106)

R1 = 8e−2rc−κτ/2 cos2(ψσ)
[
cosh(

κτ

2
)− cos(ωστ)

]
[1− cosh(2rc) cosh(2r)− cosh(θ − ϕ) sinh(2rc) sinh(2r)] , (S107)

R2 = e−2rc−κτ sinh(2r0) cos(ψσ)

{
eκτ [(1− 2κτ) cos(ϑ1)− 2(1− κτ) cos(ϑ3)− 3 cos(ϑ5)]

+ 8eκτ/2 cos(ψσ) cos(ϑ4 + ωστ)− 4 cos2(ψσ) cos(ϑ3 + 2ωστ)

}
. (S108)

Here, ϑn = nψσ + θ − φ0. Moreover, we have set 2φh − θ = 0, and for compact notation, defined

N = sinh2(r0), and M =
1

2
eiφ0 sinh(2r0). (S109)

Furthermore, the measurement signal 〈M̂〉 is the same as in the ideal case where δp = δr = 0 [see Eq. (S92)], but with
a replacement r → rc.

Having obtained the measurement noise and signal, we perform numerical simulations and plot in Fig. S6 the SNR
in the presence of these parameter mismatches. It is seen that the exponential improvement in the SNR can still be
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achieved even for finite parameter mismatches, suggesting that our readout proposal is experimentally feasible.
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