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In this Supplemental Material, we present the technical details of the effective Hamiltonian and multiquanta
resonances discussed in the main text. In Sec. I, we derive the system’s effective Hamiltonian using the standard
linearization procedure. In Sec. II, we provide a detailed derivation of multiquanta resonance conditions within the
Mollow regime. In Sec. III, we discuss the entanglement witness based on quantum Fisher information and covariance.
In Sec. IV, we discuss the experimental feasibility of our theoretical model in detail.

I. DERIVATION OF THE EFFECTIVE HAMILTONIAN VIA THE QUANTUM MASTER EQUATION

The Hamiltonian of the system we consider is

Ht =(ωa + ∆F )a†a+ ωbb
†b+ ωmm

†m+ ωσσ
†σ + λ′aba

†a(b† + b) + λ′ama
†a(m† +m) + λ′aσ(a†σ + aσ†)

+ ξd(a
†e−iωdt + aeiωdt) + ξp(σ

†e−iωdt + σeiωdt), (S1)

where a (b, m) is the annihilation operator of the optical (mechanical, magnon) mode with corresponding frequency
ωa (ωb, ωm), σ = |g〉〈e| is the lowering operator of the atom with frequency ωσ, ∆F is the Fizeau shift, λ′aσ (λ′ab,
λ′am) is the coupling strength between the optical mode and atom (mechanical mode, magnon mode), ξd (ξp) and ωd
are the amplitude and frequency of the driving at the optical mode (atom), respectively. In the frame rotating with
frequency ωd, Eq. (S1) becomes

Ht =(ωa − ωd + ∆F )a†a+ ωbb
†b+ ωmm

†m+ (ωσ − ωd)σ†σ + λ′aba
†a(b† + b) + λ′ama

†a(m† +m) + λ′aσ(a†σ + aσ†)

+ ξd(a
† + a) + ξp(σ

† + σ). (S2)

Taking dissipations into consideration, the dissipative dynamics of the system can be described by the quantum master
equation

d

dt
ρ =− i[Ht, ρ] +

κa
2

(2aρa† − a†aρ− ρa†a) +
κb
2

(2bρb† − b†bρ− ρb†b)

+
κm
2

(2mρm† −m†mρ− ρm†m) +
γ

2
(2σρσ† − σ†σρ− ρσ†σ). (S3)



2

We shift the optical, phonon, and mechanical modes with their mean values α, β, and µ, i.e., a = α+ δa, b = β + δb,
and m = µ+ δm, Eq. (S3) becomes

d

dt
ρ =− i[Ht, ρ] +

κa
2

[2(α+ δa)ρ(α∗ + δa†)− (α∗ + δa†)(α+ δa)ρ− ρ(α∗ + δa†)(α+ δa)]

+
κb
2

[2(β + δb)ρ(β∗ + δb†)− (β∗ + δb†)(β + δb)ρ− ρ(β∗ + δb†)(β + δb)]

+
κm
2

[2(µ+ δm)ρ(µ∗ + δm†)− (µ∗ + δm†)(µ+ δm)ρ− ρ(µ∗ + δm†)(µ+ δm)]

+
γ

2
[2σρσ† − σ†σρ− ρσ†σ]

=− i[Ht, ρ] +
κa
2

(α∗δaρ− α∗ρδa− αδa†ρ+ αρδa†)

+
κb
2

(β∗δbρ− β∗ρδb− βδb†ρ+ βρδb†) +
κm
2

(µ∗δmρ− µ∗ρδm− µδm†ρ+ µρδm†)

+
κa
2

(2δaρδa† − δa†δaρ− ρδa†δa) +
κb
2

(2δbρδb† − δb†δbρ− ρδb†δb)

+
κm
2

(2δmρδm† − δm†δmρ− ρδm†δm) +
γ

2
(2σρσ† − σ†σρ− ρσ†σ)

=− i[H1 +H2, ρ] +
κa
2

(2δaρδa† − δa†δaρ− ρδa†δa) +
κb
2

(2δbρδb† − δb†δbρ− ρδb†δb)

+
κm
2

(2δmρδm† − δm†δmρ− ρδm†δm) +
γ

2
(2σρσ† − σ†σρ− ρσ†σ), (S4)

where the Hamiltonians H1 and H2 are, respectively,

H1 =(ωa − ωd + ∆F )|α|2 + ωb|β|2 + ωm|µ|2 + λ′ab|α|2(β∗ + β) + λ′am|α|2(µ∗ + µ) + ξd(α
∗ + α)

+ [(ωa − ωd + ∆F )α∗ + λ′abα
∗(β∗ + β) + λ′amα

∗(µ∗ + µ) + ξd +
i

2
α∗κa]δa

+ [(ωa − ωd + ∆F )α+ λ′abα(β∗ + β) + λ′amα(µ∗ + µ) + ξd −
i

2
ακa]δa†

+ (ωbβ
∗ + λ′ab|α|2 +

i

2
β∗κb)δb+ (ωbβ + λ′ab|α|2 −

i

2
βκb)δb

†

+ (ωmµ
∗ + λ′am|α|2 +

i

2
µ∗κm)δm+ (ωmµ+ λ′am|α|2 −

i

2
µκm)δm†, (S5)

and

H2 =[ωa − ωd + ∆F + λ′ab(β
∗ + β) + λ′am(µ∗ + µ)]δa†δa+ ωbδb

†δb+ ωmδm
†δm+ (ωσ − ωd)σ†σ

+ λ′ab(αδa
† + α∗δa)(δb† + δb) + λ′am(αδa† + α∗δa)(δm† + δm) + λ′aσ(δaσ† + δa†σ) + λ′aσ(ασ† + α∗σ)

+ λ′abδa
†δa(δb† + δb) + λ′amδa

†δa(δm† + δm) + ξp(σ
† + σ). (S6)

Setting λab = λ′ab|α|, λam = λ′am|α|, λaσ = λ′aσ, and ξ = λ′aσ|α|+ ξp, the above equation Eq. (S6) becomes

H2 =[ωa − ωd + ∆F + λ′ab(β
∗ + β) + λ′am(µ∗ + µ)]δa†δa+ ωbδb

†δb+ ωmδm
†δm+ (ωσ − ωd)σ†σ

+ λab(δa
† + δa)(δb† + δb) + λam(δa† + δa)(δm† + δm) + λaσ(δaσ† + δa†σ) + ξ(σ† + σ)

+ λ′abδa
†δa(δb† + δb) + λ′amδa

†δa(δm† + δm). (S7)

The steady-state mean values α, β, and µ satisfy

(ωa − ωd + ∆F )α+ λ′abα(β∗ + β) + λ′amα(µ∗ + µ) + ξd −
i

2
ακ = 0,

ωbβ + λ′ab|α|2 −
i

2
βκb = 0,

ωmµ+ λ′am|α|2 −
i

2
µκm = 0, (S8)

the system dynamics is then decided by

d

dt
ρ =− i[H2, ρ] +

κa
2

(2δaρδa† − δa†δaρ− ρδa†δa) +
κb
2

(2δbρδb† − δb†δbρ− ρδb†δb)

+
κm
2

(2δmρδm† − δm†δmρ− ρδm†δm) +
γ

2
(2σρσ† − σ†σρ− ρσ†σ). (S9)
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Under the condition of strong driving at the optical mode, the higher-order terms λ′abδa
†δa(δb† + δb) and

λ′amδa
†δa(δm† + δm) can be neglected safely because of |α| � 1 and λ′ab, λ

′
am � λab, λam. Then the system

Hamiltonian H2 can be further simplified as

Heff =[ωa − ωd + ∆F + λ′ab(β
∗ + β) + λ′am(µ∗ + µ)]δa†δa+ ωbδb

†δb+ ωmδm
†δm+ (ωσ − ωd)σ†σ

+ λab(δa
† + δa)(δb† + δb) + λam(δa† + δa)(δm† + δm) + λaσ(δaσ† + δa†σ) + ξ(σ† + σ). (S10)

Assuming δa→ a, δb→ b, and δm→ m, the above equation becomes

H =[ωa − ωd + ∆F + λ′ab(β
∗ + β) + λ′am(µ∗ + µ)]a†a+ ωbb

†b+ ωmm
†m+ (ωσ − ωd)σ†σ

+ λab(a
† + a)(b† + b) + λam(a† + a)(m† +m) + λaσ(aσ† + a†σ) + ξ(σ† + σ)

=[ωa − ωd + ∆F + λ′ab(β
∗ + β) + λ′am(µ∗ + µ)]a†a+ ωbb

†b+ ωmm
†m

+ [ωσ − ωa + ωa − ωd + λ′ab(β
∗ + β) + λ′am(µ∗ + µ)− λ′ab(β∗ + β)− λ′am(µ∗ + µ)]σ†σ

+ λab(a
† + a)(b† + b) + λam(a† + a)(m† +m) + λaσ(aσ† + a†σ) + ξ(σ† + σ)

=(∆ad + ∆F )a†a+ ωbb
†b+ ωmm

†m+ (∆ad + ∆σa)σ†σ

+ λab(a
† + a)(b† + b) + λam(a† + a)(m† +m) + λaσ(aσ† + a†σ) + ξ(σ† + σ), (S11)

where ∆ad = ωa − ωd + λ′ab(β
∗ + β) + λ′am(µ∗ + µ) and ∆σa = ωσ − ωa − λ′ab(β∗ + β)− λ′am(µ∗ + µ).

II. DERIVATION OF MULTIQUANTA RESONANCES CONDITIONS

In the large pumping regime, the strong driving laser can dress the atom, and the system forms new eigenstates
that are a quantum superposition of the bare states {|e〉, |g〉}. The subsystem Hamiltonian for the strongly driven
atom is

Hσ =(∆σa + ∆ad)σ
†σ + ξ(σ† + σ), (S12)

with the eigenvalues

E|±〉 =
∆σa + ∆ad ±

√
(∆σa + ∆ad)2 + 4ξ2

2
, (S13)

and corresponding eigenstates

|+〉 = c+|g〉+ c−|e〉, |−〉 = c−|g〉 − c+|e〉, (S14)

where

c± =

√
2ξ2

(∆σa + ∆ad)2 + 4ξ2 ± (∆σa + ∆ad)
√

(∆σa + ∆ad)2 + 4ξ2
(S15)

and c2+ + c2− = 1. Together with the photon, phonon, and magnon modes, and ignoring the influences of the JC
interaction and the linear interactions in the optomagnetic system on the energy structure, the eigenvalues of the
system Hamiltonian become

E|nanbnm±〉 = na(∆ad + ∆F ) + nbωb + nmωm +
∆σa + ∆ad ±

√
(∆σa + ∆ad)2 + 4ξ2

2
. (S16)

In the following, we discuss the resonance conditions considered in the main text. For convenience, we always fix the
resonator spinning along the counterclockwise direction. The Fizeau shifts ∆F > 0 and ∆F < 0 correspond to the
situations of driving the resonator from the left and right, respectively.

First, when the spinning resonator is driven from the left, and the total energy of a single clockwise photon and a
single magnon matches the transition between the states |+〉 and |−〉, i.e., E|000+〉 = E|101−〉, we have

(∆ad + |∆F |) + ωm −
√

(∆σa + ∆ad)2 + 4ξ2 = 0, (S17)
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and

∆ad =
∆2
σa + 4ξ2 − (ωm + |∆F |)2

2(ωm + |∆F | −∆σa)
. (S18)

In other words, these two states |000+〉 and |101−〉 are degenerate when the atom is driven at the photon-magnon
resonance. When the spinning resonator is driven from the right, and the total energy of a single counterclockwise
photon and a single magnon matches with the transition between the states |+〉 and |−〉, the photon-magnon resonance
condition becomes

∆ad =
∆2
σa + 4ξ2 − (ωm − |∆F |)2

2(ωm − |∆F | −∆σa)
. (S19)

The above results correspond to the excitation of the photon-magnon state |101−〉. The parameter conditions are
in agreement with the results shown in the blue area of Fig.1(c) and the orange area of Fig.1(c) in the main text,
respectively.

Second, when the spinning resonator is driven from the left, and the total energy of a single clockwise photon and
a single phonon matches the transition between the states |+〉 and |−〉, i.e., E|000+〉 = E|110−〉 (the states |000+〉 and
|110−〉 are degenerate), we have

(∆ad + |∆F |) + ωb −
√

(∆σa + ∆ad)2 + 4ξ2 = 0, (S20)

and

∆ad =
∆2
σa + 4ξ2 − (ωb + |∆F |)2

2(ωb + |∆F | −∆σa)
. (S21)

When the spinning resonator is driven from the right, and the total energy of a single counterclockwise photon and
a single phonon matches with the transition between the states |+〉 and |−〉, the photon-phonon resonance condition
becomes

∆ad =
∆2
σa + 4ξ2 − (ωb − |∆F |)2

2(ωb − |∆F | −∆σa)
. (S22)

The above results correspond to the excitation of the photon-phonon state |110−〉. The parameter conditions are
in agreement with those displayed in the orange area of Fig.1(c) and the pink area of Fig.1(d) in the main text,
respectively.

Lastly, because of the system parameters chosen in the main text, the results from the right sides of Eq.(S19)
and Eq.(S21) are the same, as shown in the orange areas of Figs.1(c) and 1(d). This demonstrates that, in this
parameter regime, the photon-phonon state is resonantly excited when the resonator is driven from the left, while the
photon-magnon state is also resonantly excited when the resonator is driven from the right.

III. THE OPTIMAL LOCAL OPERATORS IN QUANTUM FISHER INFORMATION

Multipartite entanglement can be characterized based on quantum Fisher information (QFI) and covariance. For
an arbitrary separable quantum states of N particles, the QFI and covariance must satisfy the inequality [1, 2]

FQ[ρsep,

N∑
j=1

Aj ] ≤ 4

N∑
j=1

Var(Aj)ρsep ≡ Bn, (S23)

where Aj is a local observable for the jth particle, and Var(Aj)ρ = 〈A2
j 〉ρ − 〈Aj〉2ρ. The violation of Eq. (S23)

for any choice of Aj is a sufficient criterion for entanglement. However, certain choices of operators Aj may be
better suited than others to detect the entanglement of a given state ρ. The optimal local operator can be given

by a combination of accessible operators Aj =
∑
m c

(m)
j A

(m)
j = cj · Aj , where Aj = (A

(1)
j , A

(2)
j , . . . )T and cj =

(c
(1)
j , c

(2)
j , . . . ) are the set of operators for jth particle and corresponding coefficients. The full operator is given by

A(c) =
∑N
j=1 cj ·Aj = c ·A, with the combined vectors c = (c1, c2, . . . , cN ) and the operators A = [A1, . . . ,AN ]. To

detect the multipartite entanglement in our model, we choose the family of accessible operators Aj = (σxj , σ
y
j , σ

z
j )T
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for the atom and Aj = (xj , pj , x
2
j , p

2
j , (xjpj + pjxj)/2)T for the mode o (o = {a, b,m}), where x = o + o† and

p = −i(o − o†) [2]. Then the optimal local operators can be given by finding the optimal combined vectors c.

According to Eq. (S23), FQ[ρ,A(c)]−4
∑N
j=1 Var(cj ·Aj) must be nonpositive for arbitrary choices of c whenever ρ is

separable. To find the optimal c, we expand the QFI and covariance in their matrix forms. The QFI can be written
as FQ[ρ,A(c)] = cQAρ c

T [3], where QAρ is the QFI matrix with elements

(QAρ )mm
′

jj′ = 2
∑
k,k′

(pk − pk′)2

pk + pk′
〈ψk|A(m)

j |ψk′〉〈ψk′ |A(m′)
j′ |ψk〉 (S24)

on the basis of spectral decomposition ρ =
∑
k pk|ψk〉〈ψk| [4]. The covariance can be written as

∑N
j=1 Var(cj ·Aj) =

cΓAρ c
T , where the covariance matrix ΓAρ has elements (ΓAρ )mm

′

jj′ = Cov(A
(m)
j , A

(m′)
j′ )ρ and (ΓAρ )mm

′

jj = 0. Combining

the quantum Fisher matrix QAρ with the covariance matrix ΓAρ , the separability criterion reads

c(QAρ − ΓAρ )cT < 0. (S25)

The optimal c can be given by finding the optimal eigenvalue and corresponding eigenstate of the matrix QAρ − ΓAρ .
Further, we obtain the optimal local operators Aj for the entanglement witness.

A photon-phonon separable state can be described as ρab =
∑
k pkρ

k
a⊗ρkb (ρj is the reduced density operator). The

right-hand side of of Eq. (S23) characterizes the bounds of a given state and local operator Aj . In our case, we have

B1(ρab) = 4[Var(Aa)ρa + Var(Ab)ρb ],

B2(ρab) = 4[Var(Aa +Ab)ρab ]. (S26)

If the quantity W ab
1 = FQ[ρab, A(c)]− 4

∑
j=a,b Var(Aj)ρj = FQ[ρab, A(c)]−B1(ρab) > 0, the photon-phonon state is

not separable, i.e., there is entanglement between the photon mode and phonon mode. The inequality FQ[ρab, A(c)] ≤
B2(ρab) is a bound valid for all physical states ρab.

A photon-phonon-atom fully separable state can be described as ρabσ =
∑
k′ pk′ρ

k′

a ⊗ ρk
′

b ⊗ ρk
′

σ . In this case, the
bounds become

B1(ρabσ) = 4[Var(Aa)ρa + Var(Ab)ρb + Var(Aσ)ρσ ],

B2(ρabσ) = 4 max{Var(Aa +Ab)ρab + Var(Aσ)ρσ ,Var(Aa +Aσ)ρaσ + Var(Ab)ρb ,Var(Ab +Aσ)ρbσ + Var(Aa)ρa},
B3(ρabσ) = 4[Var(Aa +Ab +Aσ)ρabσ]. (S27)

If W abσ
1 = FQ[ρabσ, A(c)] − 4

∑
j=a,b,σ Var(Aj)ρj = FQ[ρabσ, A(c)] − B1(ρabσ) > 0, there is entanglement between

the atom, photon mode, and phonon mode. Furthermore, if W abσ
2 = FQ[ρabσ, A(c)] − B2(ρabσ) > 0, the state is

fully inseparable, i.e., there is a fully inseparable photon-magnon-atom tripartite entanglement [2]. The inequality
FQ[ρabσ, A(c)] ≤ B3(ρabσ) is a bound valid for all physical states ρabσ. Here it is only necessary to replace mode b
with mode m to characterize the entanglement between the magnon mode and others.

IV.DISCUSSION OF EXPERIMENTAL FEASIBILITY

Regarding experimental implementations, our proposal could be implemented in a hybrid setup [5, 6], where a
coherently driven two-level atom is coupled to a spinning a spinning yttrium iron garnet (YIG) microsphere fixed on
a rotating platform [7]. The microsphere supports a mechanical breathing mode and two countercirculating optical
whispering gallery modes (WGMs), with the WGM being strongly driven by the input light [5]. Access to the input and
output light fields of the microresonator is provided by a tapered optical fiber coupler interfaced with the resonator.
The WGMs are modulated by the mechanical breathing mode when the input light pumps at the WGM. Moreover,
because of the spin-orbit coupling of light, the WGMs have a spin along the z direction. By applying a magnetic field
parallel to the equator to the microsphere and exciting the magnon mode with an antenna coupling to a microwave
field, the WGMs could also be modulated by the dynamic magnetic field via the Faraday effect [6]. Here, scaling down
the microsphere size to reduce the mode volumes of both magnon and optical fields, or engineering the microresonator
structure such as microrings to increase the overlap between optical and magnon fields, can enhance the coupling
between the optical mode and magnon mode. The effective linear coupling strength between the optical and magnon
(mechanical) mode that is proportional to the classical cavity amplitude can also be adjusting by the strong driving
on the optical mode.
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Moreover, the selection of microresonator is not limited to a microsphere and can also be replaced with a toroidal or
bottle microresonator [8]. The two-level atom of choice can be a cesium atom (e.g., the 6S1/2, F = 4→ 6P3/2, F

′ = 5
transition in cesium atom) [9–11] or rubidium atom (e.g., the 5S1/2, F = 3 → 5P3/2, F

′ = 4 transition in rubidium
atom) [12–15]. The atom can be coupled with the microresonator by trapping the atom in the vicinity of the
microresonator. However, trapping a single atom in the vicinity of a microresonator is indeed a daunting task
due to several technical and physical complexities. First, precisely positioning and maintaining a single atom near
a microresonator requires extremely high stability and accuracy in spatial control, since the optical fields around
microresonators can vary significantly over nanometer scales. The use of optical tweezers or other trapping methods
to hold a single atom in place involves complex manipulations of light fields. The intensity, phase, and polarization of
these light fields must be precisely controlled to create stable trapping potentials without causing excessive heating or
ionization of the atom. Second, efficient coupling of the atom to the microresonator’s evanescent field requires the atom
to be placed within a fraction of the wavelength of the light used, further complicating the spatial control challenge.
Lastly, atoms must typically be cooled to very low temperatures to reduce thermal motion, which otherwise could lead
to loss of control over the atom’s position relative to the microsphere. Any perturbations from the environment (like
mechanical vibrations, electromagnetic noise, etc.) can displace the atom from its optimal position, making sustained
interaction with the microresonator difficult.

In recent years, several experiments have successfully achieved coupling between individual cesium atoms (or
rubidium atoms) and various types of microresonators, including microspheres, microtoroidal resonators, and bottle
microresonators [9–15]. Initially, these experiments utilize a magneto-optical trap to trap and cool atomic clouds
in a ‘magneto-optical trap chamber’. Subsequently, the trapping and cooling beams are switched off, allowing the
atoms to fall onto the microresonator, thus facilitating the coupling of the individual atoms with the evanescent field
of the microresonator’s WGMs. Furthermore, the addition of an optical dipole trap—created by the interference
of the incoming laser beam with its reflection from the microresonator surface—is more likely to trap the falling
atoms, thereby increasing the interaction time between the atom and the microresonator [15, 16]. Based on the
experimental groundwork, our model can also employ the techniques described in these studies to achieve the trapping
of a single atom and its coupling with a microresonator. In our approach, the atom is initially cooled and trapped
within a chamber using a magneto-optical trap, then transported to the vicinity of the microresonator. Here, the
microresonator’s WGM evanescent field, which decays exponentially outside the resonator’s surface, interacts with the
atom [9–16]. An optical dipole trap may be introduced to enhance the atom’s trapping and prolong its interaction time
with the microresonator [15, 16]. The decay rate of the cesium or rubidium atom used in trapping near a microresonator
has linewidth of tens of MHz. The coupling strength between the selected atom and the microresonator depends on
the properties of the microresonator and the distance between the atom and the microresonator’s surface. Placing the
atom closer to the surface of the microresonator [11, 15], or reducing the size of the microresonator to reduce the mode
volume [17, 18], can enhance this coupling strength. H. J. Kimble and his collaborators, using finite element models,
have given the atom-microresonator coupling rate can exceed 2π×700 MHz in microresonator structure given suitable
experimental parameters [17, 18]. In addition to these microresonator-specific techniques, the atom-microresonator
coupling can also be enhanced by other physical methods. For instance, both theoretical and experimental evidence
suggests that a quantum squeezing method can enhance interactions between quantum systems, even without precise
knowledge of the system parameters [19–23]. Additionally, the counting of phonons (magnons) and other types of
statistical processing of photons and phonons (magnons) can be measured by applying an auxiliary system to convert
the mechanical (magnon) signals [24, 25]. The multipartite entanglement can be characterized by a class of nonlinear
squeezing parameters [2, 26]. For this special design, we theoretically predicts that the nonreciprocal entangled

photon-phonon pairs and photon-magnon pairs with corresponding antibunching g
(2)
2,ab = 0.29 and g

(2)
2,am = 0.49 could

be achieved with the parameters ωb = 2π × 2 GHz, ωm = 2π × 2.1 GHz, ∆σa = −2π × 6.2 GHz, |∆F | = 2π × 50 MHz,
λaσ = 2π×600 MHz, λab = λam = 2π×44 MHz, ξ = 2π×1.6 GHz, γ = 2π×2 MHz, and κ = 2π×16 MHz [5, 6, 8–18].
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