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Cat-state qubits formed by photonic cat states have a biased noise channel, i.e., one type of error dominates
over all the others. We demonstrate that such biased-noise qubits are also promising for error-tolerant
simulations of the quantum Rabi model (and its varieties) by coupling a cat-state qubit to an optical cavity.
Using the cat-state qubit can effectively enhance the counterrotating coupling, allowing us to explore several
fascinating quantum phenomena relying on the counterrotating interaction. Moreover, another benefit from
biased-noise cat qubits is that the two main error channels (frequency and amplitude mismatches) are
both exponentially suppressed. Therefore, the simulation protocols are robust against parameter errors of the
parametric drive that determines the projection subspace. We analyze three examples: (i) collapse and revivals
of quantum states; (ii) hidden symmetry and tunneling dynamics; and (iii) pair-cat-code computation.
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Introduction.—The quantum Rabi model (QRM) has
been used to describe the dynamics of a wide variety of
physical setups [1–3]. Generally, the QRM can be divided
into different coupling regimes [4,5], where the most
interesting one is the ultrastrong coupling (USC) regime.
This is because the USC can open new perspectives for
efficiently simulating known effects and observing funda-
mental phenomena in quantum nonlinear optics [1–6].
These coupling regimes are established when the light-
matter interaction energy is comparable to the bare
frequencies of the uncoupled systems.
Though the USC regime has been achieved in several

systems [7–10], it is still difficult to study unexplored
physics and observe its fascinating quantum phenomena at
will because the coupling regimes should be implemented
in a fully tunable and efficient manner [4,5]. In this respect,
proposals in both theory [11–14] and experiments [15–19]
for analog quantum simulation [20,21] of the QRM were
put forward [4,5]. Researchers can therefore study USC-
induced quantum phenomena, such as the asymmetry of the
vacuum Rabi splitting [13,16,22,23], nonclassical photon
statistics, and superradiance transition [17–19]. For simu-
lating the QRM, additional control fields are usually
applied to effectively enhance the ratio between the
coupling strength and the bare frequencies in a specific
rotating frame to reach the USC regime. However, the
simulation protocols [11–21] are sensitive to deviations in
these additional drives because projecting the system onto a
wrong rotating frame can result in a totally wrong effective

Hamiltonian. For instance, in the protocols [12,13,24,25] of
squeezing-induced USC, a small deviation in the squeezing
strength results in a totally different effective Hamiltonian
and breaks the desired dynamical predictions. Similar
problems exist in other simulation protocols [21].
For realizing an error-tolerant simulation of the QRM in

the USC regime, we propose to use a logic qubit, e.g., the
cat-state qubit, instead of a physical qubit. The cat-state
qubit [26–30] formed by photonic cat states was introduced
for fault-tolerant quantum computing because it is noise
biased and experiences only bit-flip noise [31–36]. It can be
realized by parametrically driving a Kerr-nonlinear reso-
nator (KNR) [33–38]. The odd and even cat states are two
degenerate eigenstates of this parametrically-driven KNR.
The coupling between the KNR and a cavity can be linearly
enhanced when we treat the KNR as a cat-state qubit,
allowing to reach the USC regime. Because the cat-state
qubit preserves the noise bias, our simulation protocol is
also noise-biased and can exponentially suppress the errors
caused by deviations in the parametric drive. As examples,
we show how this method can explore the following
phenomena in the USC regime: (i) collapse and revivals;
(ii) hidden symmetry and tunneling dynamics; (iii) pair-cat-
code computation.
Physical model.—As shown in Fig. 1(a), we consider

a general physical model of a KNR of frequency
ωKNR coupled to a cavity of frequency ω, with coupling
strength λ. A two-photon drive (i.e., parametric drive) with
amplitude P and frequency ωp is applied to the KNR.
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Thus, working in a frame rotating at half the parametric
drive frequency, the Hamiltonian under the rotating-wave
approximation becomes

H ¼ H0 þHKNR þHint;

H0 ¼ Δa†aþ δb†b;

HKNR ¼ −Kb†2b2 þ Pb†2 þ P�b2;

Hint ¼ λab† þ λ�a†b: ð1Þ

Here, Δ ¼ ω − ωp=2 and δ ¼ ωKNR − ωp=2 are detunings,
K is the strength of the self-Kerr nonlinearity. A possible
implementation of this Hamiltonian involves superconduct-
ing circuits (see the Supplemental Material [39] for details),
which have experimentally realized Kerr-cat qubits [35,38]
and showed a strong suppression of frequency fluctuations
due to 1=f noise for the pumped cat [35,42,43].
When the parameters Δ, δ, and λ are far smaller than

K and P, we can project the whole system onto the
subspace spanned by the eigenstates of HKNR [33,36,37].
Coincidentally, the ground eigenstate of the Hamiltonian
HKNR are a set of degenerate eigenstates

jCβ�i ¼
1ffiffiffiffiffiffiffiffi
N�

p ðjβi � j − βiÞ; ð2Þ

which are separated from the other eigenstates with an
energy gap Egap ≃ 4Kjβj2 [33], where β ¼ ffiffiffiffiffiffiffiffiffiffi

P=K
p

is the
complex amplitude of the coherent state jβi and N � are
normalized coefficients.
In the limit of fΔ; δ; λg ≪ Egap, if the KNR is initially in

the cat-state subspace C ¼ fjCβ�ig, its dynamics will be
confined to this subspace. The KNR can be seen as a two-
level system, i.e., a cat-state qubit as shown in Fig. 1(b).
We define the Pauli matrices σþ ¼ jCβ−ihCβþj, σ− ¼ ðσþÞ†,
and σz ¼ jCβ−ihCβ−j − jCβþihCβþj. Working in the cat-state
subspace, the effective Hamiltonian reduces to

HR ¼ Δa†aþ δ̃

2
σz þ

�
λβ

�
σþ
A

þ Aσ−

�
aþ H:c:

�
; ð3Þ

which describes a tunable anisotropic QRM. Here,
A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tanh jβj2

p
and δ̃ ¼ 2δjβj2cschð2jβj2Þ. The unitary

term 1β ¼ jCβ−ihCβ−j þ jCβþihCβþj is omitted in Eq. (3). For
large β, HR takes the standard form of the QRM with an
enhanced coupling strength g ≃ λβ because of A ≃ A−1 ≃ 1.
As shown in Fig. 2(a), the effective dynamics governed by
the Hamiltonian H coincides very well with that governed
by the effective Hamiltonian HR.
Parameter errors.—In our protocol, there are mainly two

errors: (i) driving frequency mismatch described by δωb†b;
and (ii) driving amplitude imperfections, i.e., deviations in
P (or equivalently K). Therefore, the error Hamiltonian is

Herr ¼ δωb†bþ δPb†2 þ δ�Pb
2: ð4Þ

Projecting onto C, Herr becomes

Herr ≈ δωjβj2
�
A−2 0

0 A2

�
þ δPðβ2 þ β�2Þ1β; ð5Þ

which is approximatively a unit matrix for large β. As long
as δω; δP ≪ Egap, Herr only causes a change in the global
phase. We demonstrate this in Fig. 2(b) by illustrating the
dynamics governed by the total HamiltonianH¼HþHerr.
When the deviations reach δP ¼ δω ¼ �0.1Δ, the
deviation in the final state population is less than 0.5%.
The effective Hamiltonian in Eq. (3) can be applied to

study various physical phenomena. Also, it is easy to
achieve some generalizations of the QRM [4,5] by adding
additional control fields. The simplest application of our
approach is to enhance the coupling in a weak coupling
(g ≪ Δ) to the USC (g≳ 0.1Δ). The USC regime has a
typical dynamical feature, which is called “collapses and
revivals” [44]. It describes the appearance of photon-
number wave packets that bounce back and forth along

(b)(a)

FIG. 1. (a) Schematic of the setup: a parametrically driven
Kerr-nonlinear resonator (KNR) is weakly coupled to a cavity
with strength λ. (b) Bloch sphere of the cat-state qubit for
large β. The red circle denotes the only possible rotation
direction for the qubit.
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FIG. 2. (a) Time evolutions of the initial state j0; Cβþi governed
by the effective Hamiltonian HR (red-solid curve) and the
Hamiltonian H (green-dashed curve). (b) Deviations in the
population of the initial state j0; Cβþi by adding the error
Hamiltonian Herr after a finite-time evolution with t ¼ 4π=λ.
We choose β ¼ 2, K ¼ 10Δ, λ ¼ Δ, and δ ¼ 0.1Δ to reach the
USC regime.
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a defined parity chain, yielding collapses and revivals of the
initial population [44]. The parity chain is defined by
the parity operator Π ¼ −ð−1Þa†aσz with Πjpi ¼ pjpi and
p ¼ �1. For the initial state jψð0Þi ¼ j0; Cβþi (correspond-
ing to p ¼ þ1), in the coupling regime with g=Δ ≥ 1 and
δ̃ ¼ 0, the coherent evolution of the system results in

jψðtÞi ¼ exp

�
i
Δ
g2t

�
exp

�
−

i
Δ2

sinðΔtÞ
�
jγðtÞ; Cβþi; ð6Þ

where γðtÞ ¼ ðg=ΔÞ½exp ð−iΔtÞ − 1� is the coherent state
amplitude. The revival probability of the initial state is
Pþ0ðtÞ ¼ jhψð0ÞjψðtÞij2 ¼ exp ½−jγðtÞj2�, which exhibits
periodic collapses and full revivals as shown in Fig. 3.
This demonstrates that we can effectively achieve the USC
using the cat-state qubit.
Hidden symmetry and tunneling dynamics in the

asymmetric QRM.—Assuming jβj ≥ ffiffiffi
2

p
and λ are real

for simplicity, the asymmetric QRM can be obtained by
applying a linear driving Ha¼Ωðbþb†Þ, with Ω≪Egap,
onto the KNR, resulting in

HAR ≃ Δa†aþ δ̃

2
σz þ

ϵ

2
σx þ gða† þ aÞσx; ð7Þ

where ϵσx=2 is the additional asymmetric qubit bias term
with ϵ ¼ 4βΩ and σx ¼ σþ þ σ−. This additional σx term
breaks the Z2 symmetry in the standard QRM. Level
crossings appear in the spectrum of the asymmetric
QRM only if ϵ ¼ nΔ (n ¼ 1; 2; 3;…) [45–47]. These level
crossings are expected to be associated with some hidden
symmetry of the model [45,46]. The origin of this hidden
symmetry is established by finding the operators which
commute with the asymmetric QRM Hamiltonian at these
special values. Such a symmetry is obviously sensitive
to deviations in the qubit bias σx term. In our protocol,
the dominant error Hamiltonian in Eq. (5) does not contain

off-diagonal elements (i.e., the σx term) because the cat-
state qubit preserves the noise bias.
The existence of level crossings is independent of the

value of δ̃ when δ̃ ≠ 0. The term Ht ¼ δ̃σz=2, leading to
transitions between the eigenstates j � xi of σx, can be
regarded as a tunneling term. Removing the tunneling term
Ht from HAR, the rest of the Hamiltonian can be analyti-
cally solved with eigenstates

jn�;�xi ≃Dð�αÞjni ⊗ 1ffiffiffi
2

p ðjCβþi � jCβ−iÞ; ð8Þ

where Dð�αÞ ¼ exp ½�αða − a†Þ� are displaced operators
with amplitude α ¼ g=Δ ≃ λβ=Δ, and jni are the Fock states.
The corresponding eigenvalues areE�

n ¼ nΔ − g2=Δ� ϵ=2.
Equation (8) shows the eigenstates of two displaced

harmonic oscillators with displacing directions determined
by the two eigenvalues of σx. The asymmetric qubit bias
term ϵσx=2 lifts the degeneracy and leads to asymmetry
in the oscillator potentials [48] as shown in Fig. 4(a). Thus,
the levels jmþ;þxi and jðmþ nÞ−;−xi become degenerate
when ϵ ¼ nΔ. The tunneling process can be reduced to
an analytically solvable two-level resonant transition prob-
lem [49]. The transition efficiency is determined by the
tunneling matrix elements hmþjðmþ nÞ−iδ̃=2. However,
when ϵ is a non-integer multiple of Δ, e.g., ϵ=Δ∈ ½0.05;
0.95�, the transition become off-resonance. Therefore,
when ϵ=Δ∈ ½0.05; 0.95�, the system mostly remains in
its initial state for a long time [see Fig. 4(b)], indicating the
tunneling probability decreases. For m ¼ 0, a complete
population transfer from j0þ;þxi to jn−;−xi occurs when
ϵ ¼ nΔ, indicating that the tunneling oscillation takes place
(see Fig. 5).
Pair-cat code.—Using the bias term ϵσx=2 for control,

and assuming δ̃ ¼ 0, the lowest two eigenstates in Eq. (8)
become degenerate. Their orthogonal basis

jμ�i ¼
1ffiffiffi
2

p ðjα;þxi � j − α;−xiÞ; ð9Þ
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FIG. 3. Instantaneous photon number distribution of the cavity
mode a in a finite-time evolution governed by H with the initial
state j0; Cβþi, exploring the round trip of a photon number wave
packet and collapse revivals. We choose parameters β ¼ 2,
λ ¼ Δ, K ¼ 10Δ, and δ ¼ 0.
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FIG. 4. (a) Schematic effective potentials of the asymmetric
QRM for nonzero ϵ, corresponding to a broken Z2 symmetry.
(b) Time evolution governed by H of the initial state j0þ;þxi for
ϵ∈ ½0.5; 0.95�. We choose β ¼ ffiffiffi

2
p

and K ¼ 300Δ for the cat-
state qubit. Other parameters are λ ¼ 0.5Δ and δ̃ ¼ 0.1Δ.
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are two-mode cat (or, pair-cat) states, which can form a new
computational subspace with a code projection

Pμ ¼ jμþihμþj þ jμ−ihμ−j: ð10Þ

Similar to the single-cat qubits [31,33,37], our pair-cat
qubit can also, even more effectively, preserve the noise
bias. Focusing on error operators b and b†b, the bias-
preserving parameters

hμþjb†bjμþi − hμ−jb†bjμ−i ¼ jβj2e−2jαj2ðA−2 − A2Þ;
hμþjbjμ−i − hμ−jbjμþi ¼ βe−2jαj2ðA − A−1Þ; ð11Þ

are exponentially smaller than those of the cat-state qubit:

hCβþjb†bjCβþi − hCβ−jb†bjCβ−i ¼ jβj2ðA−2 − A2Þ;
hCβþjbjCβ−i − hCβ−jbjCβþi ¼ βðA − A−1Þ: ð12Þ

For operators a and a†a, we have hμþjajμ−i ¼ hμ−jajμþi
and hμþja†ajμþi ¼ hμ−ja†ajμ−i. These indicate that the
pair-cat code can satisfy the Knill-Laflamme condition
[50,51] better than the single-cat code regarding single-
photon-loss error. Moreover, Eq. (11) demonstrates that a
projection of the error Hamiltonian Herr onto the pair-cat
subspace using Pμ also results in a unit matrix for large α
and β. Therefore, the simulated QRM can be a great
candidate for realizing fault-tolerant codes tailored to
biased-noise qubits.
Paul-X gate.—Noting that a and b are both uncorrect-

able errors, we can apply the control term ϵσx=2 to the
system to create an X gate. In the limit ϵ ≪ Egap, this
additional drive lifts the degeneracy between the states
jα;þxi and j − α;−xi and leads to oscillations with an
effective Rabi frequency ϵ ¼ 4βΩ between the states jμ�i.
Choosing an evolution time tgate ¼ π=ϵ, the evolution
operator of the system becomes

UX ¼ jμþihμ−j þ jμ−ihμþj; ð13Þ

i.e., the Paul-X gate. The average fidelity of the Paul-X gate
over all possible initial states can be defined by [52]

FX ¼ TrðMM†Þ þ jTrðMÞj2
d2 þ d

; ð14Þ

where M ¼ PcU
†
XUðtgateÞPc, with Pc (d) being the pro-

jector (dimension) of the computational subspace
Cμ ¼ fjμ�ig. Here, UðtgateÞ is the actual evolution operator
calculated for the Hamiltonian H. The gate fidelities
calculated for different α and β are shown in Fig. 6(a).
As α and β increase, the gate fidelity increases when
choosing a fixed Δ. Noting that a larger α corresponds to a
larger λ for fixed β, this can lead to infidelity because the
condition λ ≪ Egap cannot be well satisfied. This can cause
population leakage out of the computational subspace and
reduce the gate fidelity.
The projection of Herr onto the pair-cat subspace also

results in a nearly unit matrix for large β, indicating the
robustness of the pair-cat Paul-X gate against parameter
imperfections in P and δ. As shown in Fig. 6(b), the error
HamiltonianHerr only causes≲0.2% infidelity to the Paul-X
gate, even when the deviations δP and δω reach �0.5Δ.
Moreover, because the bias-preserving parameters in
Eq. (11) are exponentially smaller than those in Eq. (12),
the influence of Herr is also exponentially suppressed in the
pair-cat protocol. A comparison [see Fig. 7(a)] between our
pair-cat protocol and the single-cat one [35] indicates that
our protocol can more efficiently suppress parameter devia-
tions in the parametric drive. Specifically, choosing α ¼ β,
the gate fidelity mostly remains in FX ≥ 99.95% [black-
hollow curve in Fig. 7(a)].
Decoherence.—In the presence of single-photon losses

and dephasing, the system dynamics is described by the
Lindblad master equation

ρ̇ ¼ −i½H; ρ� þ
X

j¼a;b

κjD½j�ρþ κϕjD½j†j�ρ; ð15Þ

where D½o�ρ ¼ oρo† − ðo†oρþ ρo†oÞ=2 is the standard
Lindblad superoperator and κj (κ

ϕ
j ) is the single-photon loss
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FIG. 5. Populations of (a) the initial state j0þ;þxi and (b) the
target states jn−;−xi. For ϵ ¼ nΔ, the tunneling process is
reduced to a two level transition problem, resulting in a Rabi
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those in Fig. 4(b).
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(dephasing) rate of the cavity mode j with j ¼ a, b.
Assuming κj; κ

ϕ
j ≪ Egap, the dynamics of the cat-state

qubit is well confined to the subspace C because a
stochastic jump does not cause leakage to the excited
eigenstates for large β [33,34,36].
After a projection of the system onto the cat-state

subspace C, the effective master equation becomes (see
details in the Supplemental Material [39])

ρ̇ ≈ −i½HR; ρ� þ κD½a�ρþ κϕaD½a†a�ρ

þ κbjβj2D
�
Aþ A−1

2
σx þ

A − A−1

2
σy

�
ρ

þ κϕb jβj4D
�
A2 þ A−2

2
1β −

A2 − A−2

2
σz

�
ρ: ð16Þ

For large β, the σy and σz terms are exponentially sup-
pressed, leaving only the bit-flipping error σx. As shown in
Fig. 7(b), when considering only single-photon losses, the
probability to go out of the cat-state subspace is negligible
(see the blue-dashed and red-solid curves). However,
because b†bj � βi ¼ β2j � βi � βDð�βÞj1i, the leakage
probability becomes proportional to ðκϕbβ=EgapÞ2 for pure
dephasing (the green-hollow curve) [33,39]. To suppress
such a leakage, the dephasing rate should be as small as
possible for the simulation protocol.
For the pair-cat code, according to Eqs. (11) and (12),

one can calculate that single-photon losses cannot induce
leakage out of the computational subspace Cμ when

α ¼ β ≥
ffiffiffi
2

p
. This is demonstrated with the brown-

dashed-dotted curve in Fig. 6(b). Single-photon losses
only induce bit-flip error. Similar to the case of a single-
cat qubit, the pair-cat qubit is also robust against phase-flip
error, as demonstrated in Eqs. (11) and (12). Though, the
dephasing rates should be small to suppress the leakage
probability. For instance, the leakage probability is about
0.5% when κϕa ¼ κϕb ¼ 0.005Δ. Enlarging the amplitudes α

and β can suppress the leakage probability because
a†aj � αi ¼ α2j � αi � αDð�αÞj1i and b†bj � βi ¼
β2j � βi � βDð�βÞj1i (see details in the Supplemental
Material [39]). However, this increases the experimental
difficulty in realizing the protocol.
Conclusions.—We have investigated how to amplify the

coupling between a parametrically driven KNR (corre-
sponding to a cat-state qubit) and cavity to effectively reach
the USC. The bias-preserving character of the cat-state
qubit makes the simulation protocol robust against the
frequency mismatch and the amplitude mismatch of the
parametric drive. Thus, a precise effective Hamiltonian
can be obtained for exploring USC-induced quantum
phenomena and applications, such as collapse and revivals
of quantum states, pair-cat-code computation, as well as
hidden symmetry and tunneling dynamics. Our numerical
simulations show that this protocol can simulate the USC
dynamics with high fidelity in the presence of parameter
imperfections. We have applied the model for implement-
ing a pair-cat code, which is a promising error-correction
code because it meets the Knill-Laflamme condition better
and preserves the noise bias stronger than a single-cat
code. This allows us to reach the same level of protection
of single-cat codes with a lower average photon number
per mode. We can predict that further increasing the
number of modes can further reduce the average
photon number per mode to reach the same level of
protection [53]. However, this may make the system too
complicated to realize. In summery, our results open a
path toward error-tolerant simulations of ultrastrong light
matter couplings, as well as promising applications of
error-correction qubits [30].
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