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We investigate the meson excitations (particle-antiparticle bound states) in quantum many-body scars of
a 1D Z2 lattice gauge theory coupled to a dynamical spin-1

2
chain as a matter field. By introducing a string

representation of the physical Hilbert space, we express a scar state jΨn;li as a superposition of all string
bases with an identical string number n and a total length l. For the small-l scar state jΨn;li, the gauge-
invariant spin exchange correlation function of the matter field hosts an exponential decay as the distance
increases, indicating the existence of stable mesons. However, for large l, the correlation function exhibits a
power-law decay, signaling the emergence of nonmesonic excitations. Furthermore, we show that this
mesonic-nonmesonic crossover can be detected by the quench dynamics, starting from two low-entangled
initial states, respectively, which are experimentally feasible in quantum simulators. Our results expand the
physics of quantum many-body scars in lattice gauge theories and reveal that the nonmesonic state can also
manifest ergodicity breaking.
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Introduction.—Because of the development of quantum
simulations [1–8], out-of-equilibrium quantum many-body
physics has been attracting growing interests [9]. The
eigenstate thermalization hypothesis (ETH) postulates that
generic isolated nonintegrable quantum many-body sys-
tems exhibit ergodicity [10–14], and thus, the unitary
quantum evolution of the systems can result in an equi-
librium state described by statistical mechanics. Though
ETH was thought to be general, there are several counter-
examples, e.g., quantum integrable systems [15,16] and
many-body localizations [17–23]. These two examples
are called strong ergodicity breaking, since most of the
eigenstates violate the ETH. Recent experimental and
theoretical works demonstrate that there exists a new type
of ETH-violating eigenstates in some specific nonintegr-
able quantum many-body systems, dubbed quantum many-
body scar (QMBS) states [24–44]. Generally, the number
of QMBS states is exponentially smaller than the Hilbert
space dimension, so they can be considered as weak
ergodicity breaking. One typical class of QMBS states is
constructed by spectrum-generated algebras [37,38,43,45],
whose eigenenergies are equally spaced, dubbed towers of
QMBSs [43]. Thus, if the initial state is a superposition of
these scar states, there will exist a perfect revival dynamics
indicating the ETH violation.
Empirically, kinetically constrained systems are thought

more likely to host QMBSs. Thus, as a typical instance,
lattice gauge theories (LGTs) [46–62] have attracted con-
siderable interest to study QMBSs [63–70]. Meanwhile,
quasiparticles are significant for understanding the towers

of QMBSs [71]. In LGTs, particles can be pairwise
confined into mesons, which are one of the most important
quasiparticles, closely related to the towers of QMBS
[63–66,72,73]. For instance, the scar dynamics in the
PXP model [65] can be understood as the string inversion
of a Uð1Þ LGT, where a particle and an antiparticle form a
bound state, a stable meson. Therefore, one natural ques-
tion is whether stable mesons are necessary conditions for
the towers of QMBSs in LGTs. A recent work [36] reports a
special type of QMBSs in a spin chain with conserved
domain wall (equivalent to a Z2 LGT), which is generated
by nonlocal operators. Based on these QMBSs, we address
the above questions, and further reveal more nontrivial
physics when investigating QMBSs in LGTs.
In this Letter, we study this type of QMBSs in a Z2 LGT

and demonstrate that it can manifest both mesonic and
nonmesonic features. First, we introduce a string repre-
sentation to describe the physical Hilbert space in a specific
gauge sector. In this representation, the exact wave function
of the QMBS state jΨn;li is written as an equal super-
position of all string bases with an identical string number n
and a total string length l. We identify the meson properties
in jΨn;li by calculating the gauge-invariant spin exchange
correlation function of the matter field. Our results show
that there exist stable mesons for small l, while the
quasiparticles are nonmesonic for large l. Moreover, we
propose a feasible approach to demonstrate the mesonic-
nonmesonic crossover with quantum simulators, by observ-
ing the quench dynamics of the system initially at two
different low-entangled states, respectively.
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Model.—Here, we consider a 1D Z2 LGT minimally
coupled to a dynamical spin-1

2
chain as a matter field. The

Hamiltonian has a form Ĥ ¼ ĤK þHE þ Ĥμ, with

ĤK ¼ −J
XL
j¼1

�
σ̂þj τ̂

z
jþ1

2

σ̂−jþ1; þ H:c:
�
;

ĤE ¼ −h
XL
j¼1

τ̂x
jþ1

2

; Ĥμ ¼ μ
XL
j¼1

σ̂þj σ̂
−
j ; ð1Þ

where σ̂αj and τ̂α
jþ1

2

are both Pauli matrices describing the

matter and gauge fields, respectively, and L is the system
size. The matter field lives on the site, while the gauge field
is on the link. The kinetic term ĤK describes the minimal
gauge-matter coupling with strength J, the second term ĤE
describes an electric field with strength h, and the last
term Ĥμ denotes the potential of the matter field. We
consider periodic boundary conditions, i.e., σ̂α1 ¼ σ̂αLþ1 and
τ̂α
1þ1

2

¼ τ̂α
Lþ1þ1

2

. The Hamiltonian Ĥ is Z2 gauge-invariant

with a generator Ĝj ¼ τ̂x
j−1

2

σ̂zjτ̂
x
jþ1

2

. In addition to the gauge

structure, there also exists the spin Uð1Þ symmetry in Ĥ,
where the total spin charge

P
L
j¼1 σ̂

þ
j σ̂

−
j is conserved. Note

that this Z2 LGT can be experimentally addressed in
various quantum simulators [74–81].
Without loss of generality, we fix the system to the gauge

sector Ĝj ¼ 1, with an even number of total spin charges for
each physical basis. With a dual transformation, the original
Hamiltonian Ĥ can be mapped to a local spin chain [82]

ĤK ¼ −
J
2

X
j

�
Ẑjþ1

2
− X̂j−1

2
Ẑjþ1

2
X̂jþ3

2

�
;

ĤE ¼ −h
X
j

X̂jþ1
2
; Ĥμ ¼

μ

2

X
j

�
1 − X̂j−1

2
X̂jþ1

2

�
; ð2Þ

where X̂jþ1
2
¼ τ̂x

jþ1
2

and Ẑjþ1
2
¼ σ̂xj τ̂

z
jþ1

2

σ̂xjþ1 are also Pauli

matrices.
Figure 1(a) plots the half-chain von Neumann entropies,

S ¼ Trρ̂L=2 ln ρ̂L=2, of the whole eigenstates in the half-
filling case (

P
L
j¼1 σ̂

þ
j σ̂

−
j ¼ L=2), where ρ̂L=2 is the half-

chain density matrix. The entanglement entropies of states
near the middle of the spectrum approach the value for a
random state Sran ¼ ðL ln 2 − 1Þ=2 [83], which demon-
strates that most of the eigenstates obey ETH.
As shown in Ref. [36], a pyramidlike structure of scar

states exists for the dual Hamiltonian (2); see Figs. 1(a)
and 1(b). These scar states cannot be generated by
local operators and are very distinct from the conventional
towers of QMBSs. However, they have not been fully
investigated. Specifically, it is still unclear whether stable
meson excitations dominate the scar dynamics, like most
of conventional QMBSs in LGTs. In addition, an

experimental proposal to detect these QMBSs from the
nontrivial quench dynamics in quantum simulators is also
a relevant issue. Hereafter, we investigate the QMBSs
of Ĥ from the viewpoint of LGTs, and uncover whether
these can be described by mesonic physics. Note that
while analytical discussions are based on the original
Hamiltonian Eq. (1), the numerical results are obtained
from the Hamiltonian (2) by exact diagonalization.
String representation.—We introduce string bases in the

Ĝj ¼ 1 sector, which are convenient for discussing meson
excitations. Because of gauge invariance, the physical
Hilbert space in the fixed gauge sector can be represented
by open strings. The vacuum state of string excitations can
be defined as jΩi ≔ j↓↓…↓↓i ⊗ jþ þ � � � þ þi, where
j↓↓…↓↓i is a ferromagnetic state of matter fields, and
jτi ¼ jþ þ � � � þ þi is the state of gauge fields with all
links being polarized at τ̂x ¼ 1. A state with one string
excitation can be written as

jSk;li ≔ Ŝ†
k;ljΩi ¼ σ̂þk

 Y
k≤j<kþl

τ̂M
jþ1

2

!
σ̂þkþljΩi; ð3Þ

(a)

(b) (c)

FIG. 1. Half-chain von Neumann entropy S. (a) The distribution
of S for all eigenstates of Hamiltonian (1) in the half-filling sector
(i.e., string number n ¼ L=4) with L ¼ 16, J ¼ 1, h ¼ 0.5. The
color codes the density of states (warmer colors imply higher
density). The blue dashed line represents the entanglement
entropy of the random state Sran ¼ ðL ln 2 − 1Þ=2 ≈ 5.05. The
data points in red circles correspond to the eigenstates in Eq. (5).
(b) Pyramidlike structure of jΨn;li for L ¼ 20. Different colors
represent different numbers of strings n. (c) The size scaling of
the entanglement entropy for the QMBS state jΨL=4;L=2i. The
dashed line shows linear fitting: S ∼ lnL.
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where τ̂M
jþ1

2

¼ j−ihþj, and k denotes the string position, and
l denotes the string length. Note that, if the operator Ŝ†

k;l is
local [i.e., l ∼Oð1Þ], the corresponding string excitation
can be regarded as a meson.
An arbitrary gauge-invariant basis can be written as

jfSkj;ljglni ¼ Ŝ†
k1;l1

Ŝ†
k2;l2

…Ŝ†
kn−1;ln−1

Ŝ†
kn;ln

jΩi; ð4Þ

where kj > ki þ li, for j > i, n is the number of strings and
equals half of total spin charges, l ≔

P
n
j¼1 lj is the total

string length, and the parity is defined as PfSkj;lj
gln ¼

exp ð−iπPn
j¼1 kjÞ. While l determines the energy of the

electric-field term ĤEjfSkj;lj
glni ¼ hð2l − LÞjfSkj;ljglni,

n determines the energy of the potential term
ĤμjfSkj;ljglni ¼ 2μnjfSkj;ljglni.
Exact quantum many-body scars.—We introduce the

pyramidlike QMBS states in thisZ2 LGT [36], whose wave
functions in the string representation are written as

jΨn;li ¼ N n;l

X
fkj;ljg

PfSkj;lj
gln jfSkj;ljglni; ð5Þ

where N n;l is a normalization factor. That is, jΨn;li is an
equal superposition of all string bases with both the same
string number n and total length l, and the phase is
determined by the parity of each basis. Since 0<lj <L,
the quantum numbers n and l satisfy n ≤ l ≤ L − n. Thus,
there are ðL − 2nþ 1Þ of eigenstates in the sector withP

L
j¼1 σ̂

þ
j σ̂

−
j ¼ 2n total spin charge. It can be proved that

ĤKjΨn;li ¼ 0 [see more details in Supplemental Material
(SM) [84] ], and the eigenenergy of jΨn;li is εn;l ¼
2hlþ 2μn − hL, which can be away from edges of the
spectrum corresponding to a high-energy eigenstate; see
Fig. 1(a). In addition, the scar states jΨn;li host the sub-
volume-law entanglement entropy, i.e., S ∼ lnL, demon-
strating the ETH violation; see Fig. 1(c).
The scar state jΨn;li can also be expressed in terms

of generating operators. First, we consider a simple case
jΨn;ni, which only contains n length-1 string excitation.
We can construct a ladder operator [66] Ŝ† ≔

P
j PSj;1

Ŝ†
j;1,

and the eigenstate jΨn;ni can be obtained as

jΨn;ni ¼ AnðŜ†ÞnjΩi; ð6Þ

where An is a normalization factor. Then, we introduce
another operator [36] L̂†

m ¼Pjð
P

k≤m
Q

l≤k P̂
−
jþ1

2
−lÞσ̂−j

τ̂M
jþ1

2

σ̂þjþ1, where P̂− ≔ j−ih−j. The action of L̂†
m is to

enlarge the total string length by 1 without changing the
parity. Using L̂†

m, we obtain the eigenstate jΨn;nþmi
as [36,84]

jΨn;nþmi ¼ Dn;mL̂
†
mjΨn;nþm−1i; ð7Þ

where Dn;m is a normalization factor. Equations (6) and (7)
indicate that the scar state jΨn;ni, like the conventional
tower of QMBSs, is generated by local operators,
while jΨn;nþmi is generated by nonlocal operators. Thus,
intuitively, as the total string length l increases, the meson
properties for the scar state jΨn;li are expected to be
significantly changed.
Mesonic-nonmesonic crossover.—Mesons, as a type of

particle-antiparticle bound states, play an important role
in the dynamics of LGTs. If the system is in a confined
phase, the low-energy excitation is described by mesons. In
addition, in a high-energy regime, meson dynamics also
closely relate to the ETH. Previous works have shown that
almost all of the towers of QMBSs in LGTs originate from
meson excitations [63–66,72,73]. For the Hamiltonian (1),
the σ spin is confined in the ground state with an arbitrary
finite h [82], where the low-energy excitation is a meson.
However, it is still unclear whether mesons can describe the
high-energy dynamics, especially the scar dynamics.
According to Eq. (4), the σ-spin charges appear pairwise

forming string excitations. For small l, e.g., jΨn;ni, two
σ-spin charges are always bonded together on two nearest-
neighbor sites, i.e., there only exist local string excitations
(mesons). This suggests that these scar states should be
described by stable mesons. However, as l increases, the
distance between two σ-spin charges of a string excitation
becomes large, and nonlocal string excitations can emerge.
Hence, intuitively, isolated σ-spin charges are expected to
exist in this case, i.e., nonmesonic quasiparticles emerge. In
Fig. 2(a), we present the expectation value of the electric
field, defined as M̂x ≔

P
L
j¼1 τ̂

x
jþ1

2

. It shows that hM̂xi of

small-l scar states are located at the edge of the spectrum,
which is similar to the confinement-induced nonthermal
states in Refs. [63,64]. This suggests that these scar states
can be described by stable mesons. However, for large-l
scar states, hM̂xi is located in the main spectrum, implying
nonmesonic features. Note that we only need to consider
the total string length l ≤ L=2, and the large total string
length means that l is ≈L=2 [85].
To further verify the above picture, we perform numeri-

cal simulations by calculating the gauge-invariant spin
exchange correlation function versus the distance r [82],

CσðrÞ ≔ hΨn;lj
"
σ̂þj

 Y
j≤k<jþr

τ̂z
kþ1

2

!
σ̂−jþr þ H:c:

#
jΨn;li; ð8Þ

which identifies elementary excitations. Here, if CσðrÞ
exhibits an exponential decay for increasing r, the
isolated σ-spin charges cannot be detected. Thus, the
quasiparticles should be composite particles of matter
fields, i.e., mesons [82]. However, if CσðrÞ exhibits a
power-law decay or converges to a nonzero value with
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increasing r, an isolated σ-spin charge can be observed,
and the quasiparticles are not mesons. Figure 2(b) shows
that CσðrÞ approximately exhibits an exponential decay
for jΨL=4;L=4i, indicating that the small-l scar states are
described by stable mesons. However, CσðrÞ can exhibit a
power-law decay for the state jΨL=4;L=2i, showing the
existence of nonmesonic excitations for large l; see Fig. 2(c).
Figure 2(d) plots the numerical results of the ratio

α ≔ − lnCσðL=2Þ= lnL: ð9Þ

We find that, as l=L increases, the curves of α for different
system sizes gradually collapse to a single curve, showing
that CσðrÞ gradually exhibits a power-law decay. Therefore,
there exists a mesonic-nonmesonic crossover for these
QMBSs. Figure 2 also reveals that the stable meson
excitation is not a necessary condition for the towers of
QMBSs in LGTs. Note that the nonmesonic excitation is a
collective effect, which only emerges in many-particle
systems, i.e., the filling factor n=L is finite.
Quench dynamics.—Another problem is whether the

QMBS states jΨn;li can lead to nontrivial quench dynam-
ics, which can be experimentally observed in quantum
simulators. Here, we introduce two initial states

jψ1i ¼ B
Y
j

½1þ ð−1Þjσ̂þj τ̂Mjþ1
2

σ̂þjþ1�jΩi; ð10aÞ

jψ2i ¼
1

2L=2

X
n;l

X
fkj;ljg

PfSkj;lj
gln jfSkj;ljglni; ð10bÞ

where B is a normalization factor. Here, jψ1i is a super-
position of scar states jΨn;ni, i.e., jψ1i ¼

P
n αnjΨn;ni, and

jψ2i is a superposition of all scar states jΨn;li, i.e.,
jψ2i ¼

P
n;l βn;ljΨn;li. It is obvious that both initial states

host low entanglement entropies. Specifically, with the dual
transformation in Eq. (2), jψ1i is related to the ground state
of the PXP model [66], and jψ2i ¼⊗j jV2jþ1

2
;2jþ3

2
i,

with jV2jþ1
2
;2jþ3

2
i¼ðjþþi− jþ−iþj−þiþj−−iÞ=2.

Figure 3 presents the fidelityF ðtÞ ≔ jhψ1;2je−iĤtjψ1;2ij2.
It shows that F ðtÞ exhibits perfect revival dynamics
for both initial states in Eq. (10). For the initial state
jψ1i, the oscillation period is T ¼ π=ðhþ μÞ; see Fig. 3(a).
For the initial state jψ2i, if h=μ ¼ p=q, with p and q being
relatively prime, the time for a perfect revival is
T ¼ pπ=h ¼ qπ=μ; see Fig. 3(b). The oscillation period
is consistent with the eigenenergies of jΨn;li. Moreover,
the revival dynamics signals the ETH violation for
QMBSs jΨn;li.
We also probe the quasiparticles during the quench

dynamics. Since jψ1i is a superposition of small-l scar
states, we expect a mesonic quench dynamics, i.e., mesons
are always stable during the dynamics, like the scar
dynamics in the PXP model [65]. For the initial state
jψ2i, although it is a superposition of all scar states,
the large-l scar states should be dominant [84], e.g.,
jβL=4;L=2j ≫ jβL=4;L=4j. Thus, it leads to nonmesonic
dynamics. We calculate the gauge-invariant correlation
function CσðrÞ in Eq. (8) to identify meson properties
during the quench dynamics. For jψ1i, we find that CσðrÞ
exhibits an exponential decay during the quench dynamics;
see Figs. 4(a) and 4(b). This indicates that mesons are
very stable and cannot be decomposed into isolated spin
charges. However, the situation becomes different for jψ2i,
where CσðrÞ ∼ const for r → ∞ at the specific time;
see Figs. 4(c) and 4(d). Thus, the isolated spin charges
dominate the dynamics, without stable mesons. Therefore,
the initial states in Eq. (10) can be used to detect the
mesonic-nonmesonic crossover for QMBSs jΨn;li during
their quench dynamics.
Experimental proposal.—The preparation of the initial

states in Eq. (10) in dual systems is convenient in quantum

FIG. 3. Time evolution of the fidelity F ðtÞ after a quantum
quench for the initial states (a) jψ1i and (b) jψ2i in Eq. (10). Here,
we choose J ¼ 1, h ¼ 0.5, and L ¼ 16.

(a)

(c) (d)

(b)

FIG. 2. Properties of mesons. (a) Expectation values of the
electric field for all eigenstates at half filling with L ¼ 16 and
h ¼ 0.5. The red dots correspond to scar states. (b),(c) Gauge-
invariant spin exchange correlation function of the matter field
CσðrÞ defined in Eq. (8) for l ¼ L=4 and l ¼ L=2, respectively.
The total string number is n ¼ L=4. The black dashed line is for
the fit: jCσðrÞj ∼ r−Δ, with Δ ≈ 0.35. (d) Ratio α in Eq. (9) versus
l=L for the scar state jΨn;li with n ¼ L=4.
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simulators. In addition, the dual Hamiltonian (2), with
three-body interactions, has also been realized with
quantum gates, e.g., in superconducting circuits [79,86].
Therefore, the mesonic-nonmesonic crossover for QMBSs
in this Z2 LGT can be experimentally detected with digital
quantum simulations.
Summary.—We have investigated the mesons in QMBSs

of a Z2 LGT. By introducing the string representation, we
express the wave function of each QMBS as an equal
superposition of all string bases with an identical string
number and total string length. We demonstrate that scar
states with a small total string length are described by stable
mesons, like conventional towers of QMBSs in LGTs,
while we find the nonmesonic excitations in the scar states
with large total string length. Furthermore, this mesonic-
nonmesonic crossover in QMBSs can be observed from
the quench dynamics with two experimentally accessible
initial states. Our results bring new insights into QMBSs in
LGTs and reveal that the nonmesonic states can also host
ergodicity breaking in LGTs, which can be experimentally
verified with quantum simulators.
Here, the mesonic-nonmesonic crossover is reminiscent

of the asymptotic freedom of quarks [87,88]. The eigene-
nergy of the scar state jΨn;li becomes large when increasing
the total string length l. Thus, the nonmesonic excitation in
large-l QMBSs is in analogy with the asymptotic freedom
of quarks in the high-energy regime of quantum chromo-
dynamics. The conventional QMBSs are generated by local
operators, which correspond to nonfractionalized excita-
tions [71], e.g., magnons in PXP [89] and spin-1 XY
models [33], and η pairs in Hubbard-like models [37,38].
However, the nonmesonic excitations have some analogies
with spinons [51], which are fractionalized excitations and

different from conventional QMBSs. Therefore, our results
also reveal that nonlocal generating operators may lead to
fractionalized excitations in QMBSs, providing an inspira-
tion for studying the nontrivial excitation in QMBSs.
Here, nonlocal generating operators are necessary for the
nonmesonic QMBSs, since they can separate two matter
particles of a meson. However, it is still unclear which types
of generating operators can induce these nontrivial physics.
Another interesting issue is whether the above physics can
be generalized to other gauge groups or high-dimensional
LGTs [56,90]. These open questions deserve further study.
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