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S1. MEAN-FIELD SOLUTIONS OF α AND β

We recall that the system Hamiltonian in the forward pump reads,

H =(∆+∆F )a
†a+

∆q

2
σz + ga(aσ+ + a†σ−) +G(a†2 + a2)

+ (∆−∆F )b
†b+ gb(bσ+ + b†σ−) + J(a†b+ b†a), (S1)

where a and b are the annihilation operators for the counterclockwise and clockwise cavity modes, respectively. Also,
σ± = (σx + iσy)/2, and σx,y,z are Pauli matrices of the two-level atom. Here, ∆F is the Sagnac shift caused by the
rotation of the cavity. The counterclockwise and clockwise cavity modes are coupled to the atom with the strengths
ga and gb, respectively. By employing the master equation (2) shown in the main text, we can derive the Heisenberg
equations of motion for operators,

da

dt
= −i(∆ +∆F )a− κa− 2iGa† − iJb− i

2
gaσx − 1

2
gaσy, (S2)

db

dt
= −i(∆−∆F )b− κb− iJa− i

2
gbσx − 1

2
gbσy, (S3)

dσx

dt
= −∆qσy + iga(a− a†)σz + igb(b− b†)σz, (S4)

dσy

dt
= ∆qσx − ga(a+ a†)σz − gb(b+ b†)σz, (S5)

dσz

dt
= iga(a

† − a)σx + igb(b
† − b)σx + ga(a+ a†)σy + gb(b+ b†)σy. (S6)

In these equations, we assumed that the decay rates of cavity modes a and b are equal, namely, κa = κb = κ.
Additionally, we neglected the atomic loss in the system. Similar to the standard Rabi model, in the steady-state
limit, we set the following expectation values: ⟨σx⟩ = X, ⟨σy⟩ = Y , ⟨σz⟩ = Z, ⟨a⟩ = α

√
η+, ⟨b⟩ = β

√
η−, where

η+ =
∆q

∆+∆F
, η− =

∆q

∆−∆F
. (S7)

The mean-field approximation holds in the infinite detuning limit, where η± → ∞. The validity of the mean-field
approximation is discussed in Sec. S6. Under the spin-conservation law, X2+Y 2+Z2 = 1, the following relations are
obtained:

C = Γ1α
2
re + Γ2αreαim + Γ3α

2
im, (S8)

C = K(α2
re + α2

im), (S9)

where C = 1− Z2,

Γ1,3 =
[16(∆ +∆F ± 2G)2 + κ2]

(∆ +∆F )2λ2
a

, Γ2 =
128Gκ

(∆ +∆F )2λ2
a

, K =
16[(∆−∆F )

2 + κ2]λ2
aZ

2

16κ2 + (∆−∆F )2(4 + λ2
bZ)2

. (S10)

In these equations, we have separated the real and imaginary parts of α and β as α = αre + iαim and β = βre + iβim.
The constraint parameter Z satisfies

Z± = 4
−∆+h1 −∆−h2 ±

√[
h1(2G− κ)− κh2

][
h1(2G+ κ) + κh2

]
∆+h1λ2

a + 2∆+∆−(∆+∆− + κ2)λ2
aλ

2
b +∆−h2λ2

b

, (S11)
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where we have denoted ∆± = ∆ ± ∆F , h1 = ∆+(∆
2
− + κ2)λ2

a and h2 = ∆−(∆
2
+ − 4G2 + κ2)λ2

b for simplification
purposes.

The mean-field solutions of α and β in the steady state can be obtained by solving Eqs. (S8) and (S9). The solutions
are given by

αre = ±
√
C

√
Γ2
2 − 2(Γ1 − Γ3)(Γ3 −K) + Γ2

√
Γ2
2 + 4(Γ1 −K)(K − Γ3)

2(Γ2
2 + (Γ1 − Γ3)2)K

, (S12)

αim =
Γ2 −

√
Γ2
2 + 4(Γ1 −K)(K − Γ3)

2(K − Γ3)
αre, (S13)

βre = −4
(∆ +∆F + 2G)αre + καim

(∆ +∆F )λaλbZ
− λa

λb
αre, (S14)

βim = −4
(∆ +∆F − 2G)αim − καre

(∆ +∆F )λaλbZ
− λa

λb
αim. (S15)

where we have defined the rescaled atom-field coupling strengths as λa = 2ga/
√
(∆ +∆F )∆q and λb =

2gb/
√

(∆−∆F )∆q.

S2. EFFECTIVE HAMILTONIAN IN THE INFINITE-DETUNING LIMIT (∆q/(∆±∆F ) → ∞)

In Sec. S1, we used the mean-field approximation to obtain the steady-state solutions of α and β, which neglected
quantum fluctuations. In this section, we provide a full quantum description of the Hamiltonian.

A. Low-energy Hamiltonian in the normal phase

In the large detuning limit, where the atomic energy scale is much larger than the field part, we can decouple the
atomic subspaces and focus on the lowest atomic subspace. This allows us to eliminate the atomic part and obtain
the effective low-energy Hamiltonian. To achieve this, we rewrite Hamiltonian (S1) as

H = Hc + gaVa + gbVb, (S16)

with

Hc = (∆+∆F )a
†a+

∆q

2
σz +G(a†2 + a2) + (∆−∆F )b

†b+ J(a†b+ b†a),

and

Va = (aσ++a†σ−), Vb = (bσ++b†σ−).

The Hamiltonian Hc has two decoupled spin subspaces H↓ and H↑, where |↑⟩ and |↓⟩ are the eigenstates of σz.
However, the Hamiltonian gaVa + gbVb introduces the interactions between these two subspaces. To eliminate the
interaction terms, we apply the Schrieffer-Woff transformation with the unitary operator Snp = ga/∆q(a

†σ−−aσ+)+
gb/∆q(b

†σ−−bσ+) to the master equation given in Eq. (2) of the main text. We keep terms up to g2a,b/∆q and neglect

higher-order terms in the large detuning limit, i.e., ∆q/(∆±∆F ) → ∞ and ∆q/G → ∞. Under the projection of the
H↓ space, we obtain the effective master equation in the normal phase,

ρ̇np = −i[Hnp, ρnp] + κ(2aρnpa
† − a†aρnp − ρnpa

†a) + κ(2bρnpb
† − b†bρnp − ρnpb

†b), (S17)

where ρnp = ⟨↓ |e−SnpρeSnp | ↓⟩, and the effective low-energy Hamiltonian in the normal phase becomes,

Hnp ≡ ⟨↓ |e−SnpHeSnp | ↓⟩

= ∆aa
†a+∆bb

†b+G(a†2 + a2) + Js(ab
† + a†b)− ∆q

2
, (S18)
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where ∆a = (∆+∆F )(1−λ2
a/4),∆b = (∆−∆F )(1−λ2

b/4), Js = J−λaλb

√
(∆ +∆F )(∆−∆F )/4 and the renormalized

atom-field couplings λa = 2ga/
√

(∆ +∆F )∆q and λb = 2gb/
√
(∆−∆F )∆q.

B. Low-energy Hamiltonian in the superradiant phase

To address the superradiant phase where the cavity fields are macroscopically occupied, we apply displacement
transformations to cavity modes. Specifically, we have

D†[α
√
η+]aD[α

√
η+] = c+ α

√
η+, D†[β

√
η−]bD[β

√
η−] = d+ β

√
η− (S19)

with D[α
√
η+] = exp[

√
η+(αa

† − α∗a)] and D[β
√
η−] = exp[

√
η−(βb

† − β∗b)] . Notably, the displacements α and β
correspond to the mean-field solutions discussed in Sec. S1. Here, we use c and d to denote the fluctuation operators
of the cavity modes. By applying the displacement transformation, the master equation becomes

˙̃ρ = −i[H(α, β), ρ̃] + κ(2cρ̃c† − c†cρ̃− ρ̃c†c) + κ(2dρ̃d† − d†dρ̃− ρ̃d†d), (S20)

where ρ̃ = D†[α
√
η+]D

†[β
√
η−]ρD[α

√
η+]D[β

√
η−] and H(α, β) reads,

H(α, β) =∆+c
†c+

∆q

2
σz +∆−d

†d+
1

2
λa

√
∆q∆+(cσ+ + c†σ−) +

1

2
λb

√
∆q∆−(d

†σ− + dσ+)

+G(c†2 + c2) + J(c†d+ d†c) +
∆qλa

2
(ασ+ + α∗σ−) +

∆qλb

2
(βσ+ + β∗σ−), (S21)

where ∆± = ∆±∆F , α = αre + iαim, β = βre + iβim and we have omitted the linear terms and constant terms in the
Hamiltonian.

Next, we focus on the atomic part of Hamiltonian, which includes terms such as ∆qσz/2+∆qλa(ασ+ +α∗σ−)/2+

∆qλb(βσ+ + β∗σ−)/2. The eigenvalues of this atomic part are ±∆̃q/2, with

∆̃q = ∆q

√
1 + λ2

a(α
2
re + α2

im) + 2λaλb(αimβim + αreβre) + λ2
b(β

2
im + β2

re), (S22)

and the corresponding eigenstates are given by

|↓̃⟩ = cos θeiγ |↑⟩+ sin θeiϕ|↓⟩, (S23)

|↑̃⟩ = − sin θe−iϕ|↑⟩+ cos θe−iγ |↓⟩, (S24)

where

eiϕ =
λa(αim + iαre) + λb(βim + iβre)√

λ2
a(α

2
re + α2

im) + 2λaλb(αimβim + αreβre) + λ2
b(β

2
re + β2

im)
, (S25)

and eiγ = −i. The angle θ satisfies

tan 2θ = −
√
λ2
a(α

2
re + α2

im) + 2λaλb(αimβim + αreβre) + λ2
b(β

2
re + β2

im). (S26)

Now, we define the Pauli matrices in the {|↓̃⟩, |↑̃⟩} basis as τx = |↑̃⟩⟨↓̃| + |↓̃⟩⟨↑̃|, τy = −i(|↑̃⟩⟨↓̃| − |↓̃⟩⟨↑̃|) and τz =

|↑̃⟩⟨↑̃| − |↓̃⟩⟨↓̃|. Then, σ±,z in terms of τ±,z can be expressed as

σ+ = − sin θ cos θei(ϕ−γ)τz + cos2 θe−2iγτ− − sin2 θe2iϕτ+, (S27)

σz = − cos 2θτz − sin 2θei(ϕ+γ)τ+ − sin 2θe−i(ϕ+γ)τ−. (S28)

By substituting the expression for σ± and σz from Eqs. (S27) and (S28) into the Hamiltonian equation (S21),we obtain
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the transformed Hamiltonian as follows:

H(α, β) = ∆+c
†c+∆−d

†d+
∆̃q

2
τz +G(c†2 + c2) + J(c†d+ d†c)

− 1

2
λa

√
∆q∆+ sin2 θ(cτ+e

2iϕ + c†τ−e
−2iϕ)− 1

2
λa

√
∆q∆+ cos2 θ(cτ− + c†τ+)

− 1

2
λb

√
∆q∆− sin2 θ(dτ+e

2iϕ + d†τ−e
−2iϕ)− 1

2
λb

√
∆q∆− cos2 θ(dτ− + d†τ+). (S29)

Next, we apply the unitary transformation H ′
sp = e−SspH(α, β)eSsp with the operator Ssp given by:

Ssp =
λa

√
∆q(∆ +∆F )

2∆̄q

[
sin2 θ(cτ+e

2iϕ − c†τ−e
−2iϕ) + cos2(c†τ+ − cτ−)

]
+

λb

√
∆q(∆−∆F )

2∆̄q

[
sin2 θ(dτ+e

2iϕ − d†τ−e
−2iϕ) + cos2 θ(d†τ+ − dτ−)

]
. (S30)

Projecting H ′
sp onto |↓̃⟩ basis, we obtain the effective Hamiltonian in the superradiant phase

Hsp = Λ1c
†c+ Λ2d

†d+G(c2+c†2)+Λ3(cd
†+c†d) + Λ4(e

2iϕc2+e−2iϕc†2)

+Λ5(e
2iϕd2+e−2iϕd†2) + Λ6(e

2iϕcd+e−2iϕc†d†), (S31)

where

Λ1 = (∆+∆F )

(
1− λ2

a∆q(sin
4 θ + cos4 θ)

4∆̃q

)
, Λ2 = (∆−∆F )

(
1− λ2

b∆q(sin
4 θ + cos4 θ)

4∆̃q

)
,

Λ3 = J −
√
(∆ +∆F )(∆−∆F )λaλb∆q(sin

4 θ + cos4 θ)

4∆̃q

, Λ4 = − (∆ +∆F )λ
2
a∆q sin

2 θ cos2 θ

4∆̃q

,

Λ5 = − (∆−∆F )λ
2
b∆q sin

2 θ cos2 θ

4∆̃q

, Λ6 = −
√
(∆ +∆F )(∆−∆F )λaλb∆q sin

2 θ cos2 θ

2∆̃q

. (S32)

S3. PHASE TRANSITION BOUNDARIES

A. First-order phase transition boundary

In this section, we derive the first-order phase transition boundary for the superradiant phase transition. Starting
from Eq. (S11), we impose a constraint that the square root term must be greater than or equal to zero, resulting in
the condition:

h2
1(4G

2 − κ2)− h2
2κ

2 ≥ 2h1h2, (S33)

where h1 = ∆+(∆
2
− + κ2)λ2

a and h2 = ∆−(∆
2
+ − 4G2 + κ2)λ2

b . We can set this condition with an equal sign to obtain
the critical ratio between the atom-field couplings λac and λbc as follows:

χc =
λbc

λac
=

√
2G− κ

√
(∆ +∆F )((∆−∆F )2 + κ2)√

(∆−∆F )κ((∆ +∆F )2 − 4G2 + κ2)
. (S34)

This ratio χc defines the first-order superradiant phase transition boundary in the λa–λb phase space. To ensure that
χc is a real number, the pump strength G must satisfy the condition:

κ

2
< G <

√
(∆ +∆F )2 + κ2

2
. (S35)
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From the condition in Eq. (S33), we can derive the critical pump strength for the first-order phase transition, denoted
as G1st

c ,

G1st
c =

1

4∆−κλ2
b

{
−∆+(∆

2
− + κ2)λ2

a +

√[
∆+(∆2

− + κ2)λ2
a + 2∆−κ2λ2

b

]2
+ 4∆2

+∆
2
−κ

2λ4
b

}
. (S36)

In the special case where λa = λb = λ, the above equation simplifies to

G1st
c =

1

4∆−κ

{
−∆+(∆

2
− + κ2) +

√[
∆+(∆2

− + κ2) + 2∆−κ2
]2

+ 4∆2
+∆

2
−κ

2

}
, (S37)

which is Eq. (3) in the main text.

B. Second-order phase transition boundary

In order to explore the second-order phase transition boundary of the system, we start with Eq. (S17) and derive
the dynamic equation for the first-order bosonic moments

L̇np = ΣnpLnp, (S38)

where Lnp = [⟨a⟩, ⟨a†⟩, ⟨b⟩, ⟨b†⟩]T and

Σnp =

−i∆a−κ −2iG −iJs 0
2iG i∆a−κ 0 iJs
−iJs 0 −i∆b − κ 0
0 iJs 0 i∆b − κ

 , (S39)

where ∆a,∆b and Js have been defined in Eq. (S18). Diagonalizing the matrix Σnp and setting the real part of the
eigenvalues to zero, we obtain that for a certain G, the two critical atom-field couplings λac and λbc satisfy:

λbc =

{
4q1∆− −∆+(∆+∆−+κ2)λ2

ac−2
[
4κ2q1(∆F∆+λ

2
ac − q1)+∆2

+

(
∆2

−G
2 + (G2 −∆2

F )κ
2
)
λ4
ac

]1/2 }1/2

q1∆−
, (S40)

where q1 = ∆2
+ − 4G2 + κ2. Equation (S40) gives the second-order phase transition boundary in the λa–λb phase

space.
In Fig. S1 we plot the order parameters αre, αim, βre, βim for the forward [panels (a)-(d)] and backward [panels

(e)-(h)] pump cases. For each fixed pump direction, the order parameters exhibit similar features and share the same
boundary. The system undergoes phase transitions from the normal phase (NP) to the superradiant phase (SP)
through two distinct paths: one is through the first-order phase transition boundary (indicated by the gray dashed
line) where the order parameters undergo an abrupt and discontinuous change from zero to a finite value (as given
by Eq. (S34)); the other path is through the second-order phase transition boundary (magenta dash-dotted curve),
where the order parameters vary continuously from zero to a finite value as λa or λb increases [as given by Eq. (S40)].
The first- and second-order phase transition boundaries meet at the tricritical point (see below). It is worth noting
that the phase diagram of the order parameters exhibits different boundaries for different pump directions at a fixed
pump strength. This nonreciprocal nature of the phase transition highlights the dependence of the system’s behavior
on the pump direction.

In the case of tuned atom-field couplings where λa = λb = λ, the eigenvalues of Σnp are given by

E
(1)
np,± = −κ±

{
16G2+4∆2

F p−∆2(p2+4)−
[
(∆4λ4−32∆∆FG2−8∆2∆2

F p)(p−2)2−16G2λ4∆+∆−+256G4

]1/2}1/2

2
√
2

, (S41)

E
(2)
np,± = −κ±

{
16G2+4∆2

F p−∆2(p2+4)+

[
(∆4λ4−32∆∆FG2−8∆2∆2

F p)(p−2)2−16G2λ4∆+∆−+256G4

]1/2}1/2

2
√
2

, (S42)

with p = λ2 − 2. Setting the real part of the eigenvalues equal to zero, i.e., Re[Enp] = 0, we obtain the critical pump
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(a) (b) (c) (d)

(e) (f) (g) (h)

1st
-or
der

NP

SP

2nd-order

<latexit sha1_base64="vGAKYqsUfxpe7Q4NFD/oXENG2RQ="></latexit>↵im

<latexit sha1_base64="yhJimChI85jt4HcOubabb7olN/c="></latexit>

�im
<latexit sha1_base64="9pBLf2LbbqEHWHGUnYZgAN5Z94c="></latexit>

�re
<latexit sha1_base64="PxgZUoHfkvhXkWFm3cGao5e/5ZM="></latexit>↵re

FIG. S1: Order parameters αre, αim, βre, βim as functions of the atom-field couplings λa and λb for the forward (a-d) and
backward (e-h) pumps. The gray dotted line and magenta dash-dotted curves denote the first-order [see Eq. (S34)] and second-
order [see Eq. (S40)] phase transition boundaries, respectively. We consider G/κ = 1.5 for both cases, and ∆F /∆ = 0.5 for the
forward pump, and ∆F /∆ = −0.5 for the backward pump, respectively. All other parameters are the same as in Fig. 1 of the
main text.

strength for the second-order phase transition

G2nd
c =

{
∆4(λ2 − 2)2 +

(
2κ2 −∆2

F (λ
2 − 2)

)2
+∆2

[
κ2((λ2 − 2)2 + 4)− 2∆2

F (λ
2 − 2)2

]}1/2

[
16κ2 + (∆−∆F )2(λ2 − 4)2

]1/2 , (S43)

which is Eq. (4) of the main text. In Fig. S2(a), we illustrate G1st
c and G2nd

c as a function of the Sagnac shift ∆F . The
interplay of cavity rotation and directional pumping induces opposite Sagnac shifts, consequently causing the critical
points moving towards larger (or smaller) values for the forward (or backward) pump.

The tricritical point is the intersection point where the first- and second-order boundaries meet. By setting G1st
c =

G2nd
c , we can determine the atom-field coupling of the tricritical point,

λtric=
( ∆2

−+κ2

∆3
−(∆+∆−+κ2)

)1/2[
3∆2

−∆+−(∆F −3∆)κ2−
(
∆4

−∆
2
++2∆2

−∆+(5∆+∆F )κ
2+(∆F −3∆)2κ4

)1/2]1/2
.(S44)

If the fixed coupling λ > λtric (or λ < λtric), surpassing the critical pump G1st
c (or G2nd

c ) can trigger a first- (or
second-) order phase transition. In our considered parameter regime, where κ/∆ ∼ 0.01 and −∆ < ∆F < ∆, the
equation for the atom-field coupling at the tricritical point can be simplified as:

λtric ≈

√
2(∆ +∆F )[(∆−∆F )2 + κ2]

(∆−∆F )[(∆ +∆F )(∆−∆F ) + κ2]
≈

√
2. (S45)

In Fig. S2, we plot the difference between λtric and
√
2. It can be seen that this difference is on the order of 10−3 in

our considered parameter regime, which is consistent with the analytical result given in Eq. (S45). In other words, in
our model, the atom-field coupling at the tricritical point is insensitive to the Sagnac shift.
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(a) (b)

Sagnac shift Sagnac shift
<latexit sha1_base64="HacYT0w1wXuj1g0yGrD8i1EJbXc="></latexit>

�F /�
<latexit sha1_base64="HacYT0w1wXuj1g0yGrD8i1EJbXc="></latexit>

�F /�

FIG. S2: (a) The first-order and second-order critical pumps G1st
c and G2nd

c versus the Sagnac shift ∆F . (b) The atom-field
coupling strength λtric of the tricritical point minus

√
2 as a function of the Sagnac shift ∆F . The parameters used ∆F /∆ = ±0.5

are labeled with the dotted curves.

S4. DYNAMIC EVOLUTION OF TWO-OPERATOR CORRELATORS

A. Equations of motion in the normal phase

To be consistent with the operator representation used in the main text, we perform a displacement on the cavity
fields, i.e., a → c + α

√
η+, b → d + β

√
η−, where c and d are cavity fluctuation operators. In the normal phase,

α = β = 0. Using the equation ∂⟨o⟩/∂t = tr{o∂ρ/∂t} for the expectation value ⟨o⟩ = tr{oρ} of any observable o of
interest, and utilizing Eq. (S17), we can obtain a set of closed equations of the motion for the two-operator fluctuation
correlators. These equations take the following form:

dvnp

dt
= Wnpvnp +Rnp, (S46)

where vnp = [⟨c†c⟩, ⟨c†2⟩, ⟨c2⟩, ⟨cd⟩, ⟨c†d†⟩, ⟨cd†⟩, ⟨c†d⟩, ⟨d†d⟩, ⟨d2⟩, ⟨d†2⟩]T, Rnp = [0, 2iG,−2iG, 0, 0, 0, 0, 0, 0, 0]T , and

Wnp =

(
W

(1,1)
np W

(1,2)
np

W
(2,1)
np W

(2,2)
np

)
(S47)

with

W (1,1)
np =


−2κ −2iG 2iG 0 0
4iG 2i∆a−2κ 0 0 2iJs
−4iG 0 −2i∆a−2κ −2iJs 0
0 0 −iJs −i(∆a+∆b)−2κ 0
0 iJs 0 0 i(∆a+∆b)−2κ

 ,

W (1,2)
np =


iJs −iJs 0 0 0
0 0 0 0 0
0 0 0 0 0
0 −2iG 0 −iJs 0

2iG 0 0 0 iJs

 ,W (2,1)
np =


iJs 0 0 0 −2iG
−iJs 0 0 2iG 0
0 0 0 0 0
0 0 0 −2iJs 0
0 0 0 0 2iJs

 ,
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W (2,2)
np =


−i(∆a−∆b)−2κ 0 −iJs 0 0

0 i(∆a−∆b)−2κ iJs 0 0
−iJs iJs −2κ 0 0
0 0 0 −2i∆b−2κ 0
0 0 0 0 2i∆b−2κ

 ,

In the steady state, we can solve Equation (S46) by setting the left-hand side to zero, yielding the following expression
for the ten two-operator correlators in the steady state:

vnp = −W−1
np Rnp.

The analytical expressions of these correlators are complex and not presented here, but their numerical results are
shown in Figs. 3(a)-3(c) in the main text.

B. Equations of motion in the superradiant phase

To derive the dynamic equation for the two-operator fluctuation correlators in the superradiant phase, we start
with the equation of motion for the reduced density matrix in the superradiant phase, given by

ρ̇sp = −i[Hsp, ρsp] + κ(2cρspc
† − c†cρsp − ρspc

†c) + κ(2dρspd
† − d†dρsp − ρspd

†d). (S48)

Here, ρsp = ⟨↓̃|ρ̃|↓̃⟩ represents the reduced density matrix in the superradiant phase. Using the equation ∂⟨o⟩/∂t =
tr{o∂ρ/∂t} for the expectation value ⟨o⟩ = tr{oρ}, we can express the time derivative of the two-operator fluctuation
correlators as follows:

d⟨c†c⟩
dt

=2i(G+ Λ4e
2iϕ)⟨c2⟩ − 2i(G+ Λ4e

−2iϕ)⟨c†2⟩+ iΛ3(⟨cd†⟩ − ⟨c†d⟩) + iΛ6(e
2iϕ⟨cb⟩ − e−2iϕ⟨c†d†⟩)− 2κ⟨c†c⟩, (S49)

d⟨c†2⟩
dt

=2i(Λ1 + iκ)⟨c†2⟩+ 2i(G+ Λ4e
2iϕ)(2⟨c†c⟩+ 1) + 2iΛ3⟨c†d†⟩+ 2iΛ6e

2iϕ⟨c†d⟩, (S50)

d⟨c2⟩
dt

=− 2i(Λ1 − iκ)⟨c2⟩ − 2i(G+ Λ4e
−2iϕ)(2⟨c†c⟩+ 1)− 2iΛ3⟨cd⟩ − 2iΛ6e

−2iϕ⟨cd†⟩, (S51)

d⟨cd⟩
dt

=− i(Λ1+Λ2−2iκ)⟨cd⟩−2i(G+Λ4e
−2iϕ)⟨c†d⟩−iΛ3(⟨c2⟩+⟨d2⟩)⟩−2iΛ5e

−2iϕ⟨cd†−iΛ6e
−2iϕ⟨d†d⟩−iΛ6e

−2iϕ(⟨c†c⟩+1),

(S52)

d⟨c†d†⟩
dt

= i(Λ1+Λ2+2iκ)⟨c†d†⟩+2i(G+Λ4e
2iϕ)⟨cd†⟩+iΛ3(⟨c†2⟩+⟨d†2⟩)⟩+2iΛ5e

2iϕ⟨c†d+iΛ6e
2iϕ(⟨d†d⟩+1)+iΛ6e

2iϕ⟨c†c⟩, (S53)

d⟨cd†⟩
dt

=−i(Λ1−Λ2−2iκ)⟨cd†⟩−2i(G+Λ4e
−2iϕ)⟨c†d†⟩+iΛ3(⟨c†c⟩−⟨d†d⟩)+2iΛ5e

2iϕ⟨cd⟩−iΛ6(e
−2iϕ⟨d†2⟩−e2iϕ⟨c2⟩), (S54)

d⟨c†d⟩
dt

= i(Λ1−Λ2+2iκ)⟨c†d⟩+2i(G+Λ4e
2iϕ)⟨cd⟩−iΛ3(⟨c†c⟩−⟨d†d⟩)− 2iΛ5e

−2iϕ⟨c†d†⟩+ iΛ6(e
2iϕ⟨d2⟩ − e−2iϕ⟨c†2⟩), (S55)

d⟨d†d⟩
dt

=− iΛ3(⟨cd†⟩ − ⟨c†d⟩) + iΛ6(e
2iϕ⟨cd⟩ − e−2iϕ⟨c†d†⟩) + 2iΛ5(e

2iϕ⟨d2⟩ − e−2iϕ⟨d†2⟩)− 2κ⟨d†d⟩, (S56)

d⟨d2⟩
dt

=− 2i(Λ2 + iκ)⟨d2⟩ − 2iΛ3⟨cd⟩ − 2iΛ6e
−2iϕ⟨c†d⟩ − 2iΛ5e

−2iϕ(2⟨d†d+ 1), (S57)

d⟨d†2⟩
dt

=2i(Λ2 + iκ)⟨d†2⟩+ 2iΛ3⟨c†d†⟩+ 2iΛ6e
2iϕ⟨cd†⟩+ 2iΛ5e

2iϕ(2⟨d†d⟩+ 1). (S58)

We solve these ten coupled equations to obtain the cavity fluctuation ⟨c†c⟩ or ⟨d†d⟩ in the steady state, as shown in
Figs. 3(a)-3(c) in the main text.

S5. STABILITY ANALYSIS

In this section, we discuss the stability of the system. Starting with the Heisenberg equations (S2-S6), we perform
a semiclassical analysis. Specifically, we set ⟨σx⟩ = X, ⟨σy⟩ = Y , ⟨σz⟩ = Z, ⟨a⟩ = α

√
η+, ⟨b⟩ = β

√
η−. Furthermore,

we expand the order parameters as α → α + δα, β → β + δβ and X → X + δX, Y → Y + δY, Z → Z + δZ,
where α, β,X, Y, Z are the mean-field steady-state solutions shown in Sec. S1, and δα, δβ, δX, δY, δZ are quantum
fluctuations. These expansions are valid in the limits of ∆q/(∆±∆F ) and ∆q/G → ∞. The equations of motion for
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the quantum fluctuations satisfy

u̇ = Mu,

with u = [δαre, δαim, δβre, δβim, δX, δY ]T and the stability matrix M is given by

NP

forward forward

backward backward

(a) (b) (c)

(d) (e) (f)

forward

backward

NP+SPSP(     branch)
<latexit sha1_base64="vkF+oAyh0gGb8s6FpnOruwVXbXI="></latexit>

Z+

FIG. S3: Stability of the system for the forward and backward pumps in the normal phase (NP) and Z+ branch of the
superradiant phase (SP). The upper panels show the stability of the forward pump case, while the lower panels show the
stability of the backward pump case. Panels (c,f) show the stability of the combination of the NP and SP. In the blank regions,
the system is unstable. The parameter ∆F /∆ = 0.5 for the forward pump and ∆F /∆ = −0.5 for the backward pump. The
values of ∆q is 104, and the other parameters are the same as in Fig. 3 of the main text.

M =



−κ ∆+−2G 0 J
√

∆+

∆−
0 − 1

4λa∆+

−(∆++2G) −κ −J
√

∆+

∆−
0 − 1

4λa∆+ 0

0 J
√

∆−
∆+

−κ ∆− 0 − 1
4λb∆−

−J
√

∆−
∆+

0 −∆− −κ − 1
4λb∆− 0

0 −λa∆qZ 0 −λb∆qZ
X
Z ∆q(λaαim+λbβim) ∆q[−1+ Y

Z (λaαim+λbβim)]
−λa∆qZ 0 −λb∆qZ 0 ∆q[1+

X
Z (λaαre+λbβre)] ∆q

Y
Z (λaαre+λbβre)


,

(S59)

where ∆± = ∆±∆F . During the stability analysis, we separated the mean-field solutions and quantum fluctuations
into real and imaginary parts, namely, α = αre + iαim, β = βre + iβim and δα = δαre + iδαim, δβ = δβre + iδβim. The
stability of the system is determined by the eigenvalues of the matrix M. If all eigenvalues have negative real parts,
the system is stable and evolves into its steady state for t → ∞.
Figure S3 shows the stable regions in the normal and superradiant phases for both forward and backward pump

cases at ∆q = 104. We find that for the forward pump, there is an unstable region located in the vicinity of λ = 2
[see Fig. S3(c)]. However, for the backward pump case, this unstable region disappears, and both the normal and
Z+ branch of the superradiant phases are stable, as illustrated in Fig. S3(f). It is worth noting that the Z− branch
solution in the superradiant phase is unstable (not shown here).
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S6. THE VALIDITY OF THE SEMICLASSICAL APPROACH

A. Overview

In Sec. S1, we derive the mean-field solutions of cavity occupations by applying a semiclassical approach. Here, we
offer a comprehensive review of the semiclassical approach, focusing on scenarios where the field interacts with a single
atom. The semiclassical approach has proven to be effective in investigating various phase-transition-like behaviors
within the Rabi model. These include the ground-state quantum phase transition (QPT) [S1–S4], the excited-state
QPT (ESQPT) indicated by the divergence of the semiclassical density of states [S5], dissipative QPT [S6], and the
breakdown of the photon blockade [S7]. It is worth noting that, although the semiclassical approach may not precisely
capture the diverging quantum fluctuation of the cavity field in the limit of infinite detuning (Ω/ω0 → ∞) in the
Rabi model, it remains a reliable method for describing mean-field quantities such as the photon population and the
atomic population of the ground state.

B. Analytical derivations

Here, we present an alternative yet intuitive derivation to illustrate that applying the semiclassical approximation
solely to the cavity field leads to the semiclassical equations, aligning with the results presented in Sec. S1. We initiate
the derivation with the master equation (2) in the main text and utilize the equation ∂⟨O⟩/∂t = Tr{O∂ρ/∂t}, where
the expectation value is denoted as ⟨O⟩ = Tr{Oρ}. Subsequently, we obtain the equations of motion as follows:

˙⟨a⟩ = −i(∆ +∆F )⟨a⟩ − κ⟨a⟩ − 2iG⟨a†⟩ − iJ⟨b⟩ − i

2
ga⟨σx⟩ −

1

2
ga⟨σy⟩, (S60)

˙⟨b⟩ = −i(∆−∆F )⟨b⟩ − κ⟨b⟩ − iJ⟨a⟩ − i

2
gb⟨σx⟩ −

1

2
gb⟨σy⟩, (S61)

˙⟨σx⟩ = −∆q⟨σy⟩+ iga(⟨aσz⟩ − ⟨a†σz⟩) + igb(⟨bσz⟩ − ⟨b†σz⟩), (S62)

˙⟨σy⟩ = ∆q⟨σx⟩ − ga(⟨aσz⟩+ ⟨a†σz⟩)− gb(⟨bσz⟩+ ⟨b†σz⟩), (S63)

˙⟨σz⟩ = iga(⟨a†σx⟩ − ⟨aσx⟩) + igb(⟨b†σx⟩ − ⟨bσx⟩) + ga(⟨aσy⟩+ ⟨a†σy⟩)
+ gb(⟨bσy⟩+ ⟨b†σy⟩). (S64)

The semiclassical (or mean-field) equations can be derived from the Eqs. (S60-S64) by assuming the vanishing of
second cumulants. For instance, this assumption implies ⟨aσz⟩ = ⟨a⟩⟨σz⟩. Specifically, we express the cavity field
operators as a = ⟨a⟩+δa and b = ⟨b⟩+δb, where the fluctuation δa (or δb) is much smaller than the mean values ⟨a⟩ (or
⟨b⟩). When inserting the operator a into terms involving the second cumulants, for example, ⟨aσz⟩ = ⟨(⟨a⟩+ δa)σz⟩ =
⟨a⟩⟨σz⟩ + ⟨δaσz⟩, neglecting the quantum fluctuation ⟨δaσz⟩, then we obtain ⟨aσz⟩ = ⟨a⟩⟨σz⟩. That is, regarding
the atomic part, we retain the terms ⟨σx,y,z⟩ because they are finite constants and follow the spin-conservation law
⟨σx⟩2 + ⟨σy⟩2 + ⟨σz⟩2 = 1. This approach allows us to derive the same semiclassical equations as discussed in Sec. S1.
This approach can be validated through the low-energy Hamiltonian. As discussed in Sec. S2.B, in the large detuning

limit where the atomic energy scale significantly exceeds the field part, we can decouple the atomic subspaces and
concentrate on the lowest atomic subspace. Based on Eq. (S23), we can calculate the mean value of the operator σz

in the lowest-energy state (or ground state) as follows:

⟨↓̃|σz|↓̃⟩ = − 1√
1 + (α2

im + α2
re)λ

2
a + 2(αimβim + αreβre)λaλb + (β2

im + β2
re)λ

2
b

, (S65)

where α and β represent the mean-field solutions of the cavity occupations, and λa,b = 2ga,b/
√
∆q(∆±∆F ) are

dimensionless atom-field couplings of the Hamiltonian. When calculating ⟨↓̃|σz|↓̃⟩, the atomic part does not involve
semiclassical approximation; only the cavity field is subjected to such an approximation.

In Fig. S4, we present the mean value of ⟨σz⟩ obtained from the mean-field approach (depicted by red circles) and

⟨↓̃|σz|↓̃⟩ derived from the full quantum description (illustrated by the black curve). Clearly, the mean values obtained
from these two different methods are consistent, confirming the validity of applying semiclassical approximation solely
to the cavity fields.

Based on the semiclassical equations (S60-S64), we can derive the steady-state mean amplitudes of the cavity
fields ⟨a⟩, ⟨b⟩ and the atomic expectation values ⟨σx⟩, ⟨σy⟩ and ⟨σz⟩, see Sec. S1. Interestingly, we find that all of
these steady-state quantities exhibit a bifurcation when the system parameter, specifically the pump strength (or
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FIG. S4: The atomic expectation values as a function of the pump strength G. The red circles represent the atomic expectation
value in the steady state ⟨σz⟩, and the black curve illustrates the atomic expectation value in the lowest-energy state ⟨↓̃|σz|↓̃⟩.
The parameters considered here are ∆ = 2,∆F /∆ = 0.5, λa = λb = 1.7, κ/∆ = 0.05.

atom-field coupling strength), is increased. We refer to the point where bifurcation occurs as the critical point for
the second-order superradiant phase transition, denoted as G2nd

c . It is worth noting that the critical point obtained
through the semiclassical calculation aligns well with those derived from the full quantum description of the low-energy
Hamiltonian in the infinite-detuning limit ∆q/(∆±∆F ) → ∞, as discussed in Sections S2 and S3.B.

(a) (b) (c)
<latexit sha1_base64="8SCGt6yfHxP1rlJZSuCbA2WDwrg="></latexit>
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+
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FIG. S5: Numerical calculation of the position-squeezing quantifier sx + 1 as a function of G/G2nd
c for ∆q = 50 (a), 100 (b),

500 (c). Here, the analytical value of critical pump strength provided by the semiclassical approach, i.e., G2nd
c , is denoted by

the black dash–dotted line. Other parameters are same as Fig. 2(a,b) in the main text.

C. Squeezing parameter

To further illustrate the alignment of critical points obtained from the semiclassical approach and the full quantum
approach, we begin with the master equation (2) in the main text and proceed to numerically calculate the position-
squeezing parameter [S1, S2],

sx = 2⟨(X − ⟨X⟩)2⟩ − 1,

where the quadrature variable is defined as X = (a+ a†)/
√
2. In Figure S5, we plot the squeezing quantifier sx +1 as

a function of the pump strength G (measured in comparison to the second-order critical pump strength G2nd
c , which

is the theoretical value obtained from the mean-field approach). As we increase the atomic detuning ∆q (i.e., getting
closer to the infinite detuning limit η → ∞), the point where the squeezing quantifier reaches its minimum gradually
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approaches the theoretical critical pump G2nd
c . These numerical results indicate that by increasing the atomic detuning

∆q, the critical pump converges towards the theoretical value provided by the mean-field approach [S1, S2].

S7. DISCUSSIONS ON THE DUAL-COUPLING JC MODEL

A. Comparison between the dual-coupling JC model and the Rabi model

Generally, the occurrence of the superradiant phase transition in the standard Rabi model, typically hinges on
two critical conditions: (i) attaining an exceedingly large atomic frequency, such that ωq/ω → ∞, and (ii) achieving
ultra-strong coupling between the atom and the field. Our model successfully overcomes the two critical challenging
conditions present in the standard Rabi model. Specifically, for condition (i), in our model, the large atomic frequency
was transformed into a large atomic detuning (i.e., ∆q/∆ → ∞, where ∆q = ωq−ωp/2 and ∆ = ω0−ωp/2). By tuning
the frequency of the pump field, one can readily achieve this large atomic detuning, which serves the same purpose
as ωq/ω → ∞ in the standard Rabi model. Thus, condition (i) can be easily met in our model. Simultaneously,
the critical atom-field coupling strength required for the onset of superradiant phase transitions is determined by the
detunings ∆q and ∆, rather than the atomic frequency ωq and resonator frequency ω0. Consequently, our proposed
scheme can alleviate constraint (ii) from ultra-strong coupling to strong coupling.

B. Comparison between all-optical controls and its magnetic or electronic counterpart

In our model, the control over superradiant phase transitions and multicriticality is achieved through all-optical
manipulation using external fields. This all-optical control presents several advantages in comparison to its magnetic
and electronic counterparts. Firstly, in terms of integration, traditional methods for achieving optical nonreciprocity
often rely on the magneto-optical Faraday effect [S8, S9]. These devices tend to be bulky and necessitate large magnetic
fields, making them inconvenient for integration. Issues such as crosstalk induced by the magnetic field and lattice
mismatches between magneto-optic materials and silicon further complicate integration [S10]. In contrast, our all-
optical method for breaking system reciprocity demonstrates high compatibility and ease of integration into photonic
systems. This characteristic not only enhances the potential for diverse applications in quantum communication but
also provides essential building blocks for a quantum network [S11]. Secondly, all-optical systems are more compact
than their magnetic and electronic counterparts. In our model, the microcavity is at the millimeter scale, and there
have been reports of micrometer-scale optical cavities [S12]. This characteristic facilitates the development of on-chip
nonreciprocal devices. Thirdly, all-optical system can be easily reconfigured without need of the complex electronic
components. This characteristic makes opportunity to easily adjust the external pump strength for manipulating
superradiant phase transitions and multicriticality. Fourthly, compared to the electronic counterparts, all-optical
system, in general, can operate with lower power consumption [S13].

On the other hand, these advantages may stimulate further theoretical and experimental explorations, potentially
advancing on-chip nonreciprocal device development. Our research reveals nonreciprocal superradiant phase transi-
tions and a rich phase diagram featured by controllable multicritical points. These findings not only hold fundamental
research significance but also provide quantum resources for quantum metrology [S14]. Therefore, our work may in-
spire the development of integrated high-precision quantum sensing. Moreover, extending our model to N - particle
case may inspire many applications in optical field. Recently, steady-state superradiance has been demonstrated in a
bad cavity regime, yielding lasing with a linewidth in the millihertz range [S15]. From this perspective, the combina-
tion of superradiance with our all-optical system may open up new avenues for designing on-chip unidirectional laser.
Additionally, our system presents opportunities to explore and manipulate a broader range of physical phenomena,
including superradiant cooling [S16] and atomic synchronization [S17]. This broadened scope enhances the versatil-
ity of our platform, offering unique opportunities for advancing our understanding and practical utilization of these
intriguing phenomena.

S8. DISCUSSION ON THE ASSUMPTION OF SYSTEM PARAMETERS

A. The case of nonzero cavity hopping rate J ̸= 0

In this section, we investigate how the cavity hopping rate J affects the superradiant transitions in the dual-
coupling JC model. While the solutions for J ̸= 0 have complicated mathematical expressions, we present here only
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FIG. S6: (a-c) Phase diagram of the order parameter αre for different cavity hopping rate J . (d-e) Cavity fluctuation ⟨c†c⟩ as
functions of λ and G. In all plots, we consider ∆F /∆ = 0.5.

the numerical results. In Figs. S6(a)- S6(c) we plot the phase diagram of αre for different J . We observe that the non-
zero value of J induces a continuous increase of αre in the bulk of the superradiant phase. Comparing with Fig. S1, we
find that J causes only a small correction to the boundaries of the first- and second-order phase transitions. Moreover,
from Figs. S6(d)- S6(f) we observe that the cone-shaped critical curve on the left shifts towards larger values of λ,
which causes the critical point of the second-order transition to shift toward a larger pump strength G. Overall, we
conclude that J ̸= 0 does not alter the main physics discussed in our model.

B. Numerical simulations on steady-state mean photon number

In Fig. S7, we conducted numerical simulations to analyze the steady-state mean photon number ⟨a†a⟩ as a function
of the pump strength G. These simulations are based on the full Hamiltonian (1) and the master equation (2), carried
through the Qutip. The chosen system parameters for the simulations are as follows: cavity detuning ∆ = 2,
cavity decay rate κ/∆ = 0.05, atomic decay rate γ = κ, cavity hopping rate J = κ, and thermal photon number
n̄ = 7.4× 10−3. It is observed in Fig. S7 that for larger values of ∆q, the growth in ⟨a†a⟩ occurs at a faster rate. As
∆q/∆ increases, the tendency of ⟨a†a⟩ gradually approaches the case of infinite detuning limit, i.e., ∆q/∆ → ∞. In
the infinite detuning limit, ⟨a†a⟩ diverges at the critical point. Note that due to the limited capabilities of computer,
here, we have simulated only the case where ∆q/∆ is maximally set to 50, with the cavity modes a and b truncated
to 18. Even though, within reasonable experimental parameters, as we increase the atomic detuning value ∆q/∆, our
numerical simulations, conducted without any assumptions and approximations, consistently converge towards the
analytical results obtained for ∆q/∆ → ∞. This observation implies that our assumptions for the sake of analytical
simplification are justified.

S9. POSSIBLE EXPERIMENTAL IMPLEMENTATIONS

To achieve nonreciprocal superradiant phase transitions and multicriticality, the possible experimental implemen-
tation relies on three techniques: first, reaching the strong-coupling regime in the interaction between the atom and
cavity fields; second, unidirectionally squeezing one of the cavity modes; third, the capability to rotate the resonator.
Recently, strong-coupling cavity QED has been realized using WGM microcavities, involving trapped atoms [S18–S24],
quantum dots [S25–S28] and nitrogen-vacancy (NV) centers [S29, S30]. Combining these achievements with recent ex-
periments on rotating resonator [S31] and optical squeezing [S32–S34], we discuss the feasibility of implementing our
model with two potential setups: (i) cold cesium atoms falling onto the surface of a WGM microdisk cavity [S18–S21]
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FIG. S7: Numerical simulation of the mean photon number ⟨a†a⟩ as a function of the pump strength G for finite detuning cases:
∆q/∆ = 25 (depicted by the blue dotted curve) and ∆q/∆ = 50 (illustrated by the red dash-dotted curve). The analytical
result obtained for the infinite detuning case, ∆q/∆ → ∞, is shown by the black-solid curve. Here, we considered cavity decay
κ = 0.1, atomic decay γ = 0.1, cavity hopping rate J = 0.1, and thermal photon number n̄ = 7.4×10−3. Due to computational
limitations, simulations were conducted only for the case where ∆q/∆ is maximally set to 50, with both cavity modes a and b
truncated to 18. Additional parameters include ∆ = 2, ∆F = 0, λa = λb = 1.4.

and (ii) a single trapped 85Rb atom interacting with a WGM microresonator [S22–S24]. Next, we provide detailed
analysis of these experimental realization.

A. Strong coupling between an atom and microresonator

(i) cold cesium atoms falling onto the surface of a WGM microdisk

A possible experimental implementation platform could involve single cesium atoms radiatively coupled to a high-
quality toroidal microresonator and in close proximity to the resonator’s dielectric surface [S18–S21]. Specifically, a
cloud of cold caesium atoms is located ∼ 800µm above the surface of the resonator. Several caesium atoms are
released from an optical dipole-force trap and fall within the evanescent field of cavity mode, establishing strong
coupling to the resonator’s field. Due to the aerodynamic process caused by the cavity rotation, the falling atom
hovers a short distance above the rapidly rotating resonator instead of crashing into its surface [see Sec. S7. B]. This
is distinct from the scenario involving a static resonator, as described by Refs. [S18, S21]. A real-time detection
scheme, relying on strong radiative interactions between individual atoms and the evanescent cavity field, can be
employed to select atomic trajectories passing within 300 nm from the resonator’s surface. At this scale, the radiative
atom-field interactions are characterized by strong coupling, evident in the observed vacuum-Rabi splitting. This
experimental configuration can be theoretically modeled using the dual-coupling Jaynes-Cummings (JC) Hamiltonian,
as demonstrated in Refs. [S18, S19, S21]. In these schemes, the average atom-photon coupling has been achieved at
approximately 40 MHz, surpassing the dissipative rates of both the atom and the cavity, thereby reaching the strong-
coupling regime.

(ii) a single trapped atom interacting with a WGM microresonator

Another possible experimental implementation platform could be trapping a single 85Rb atom at a small distance
from the surface of the WGM bottle microresonator [S22–S24]. The stable and controlled interaction between a single
atom and the resonator in the strong-coupling regime (∼ 10 MHz) is demonstrated in [S24]. Specifically, a single
85Rb atom is trapped at a distance of about 200 nm from the resonator surface. This is achieved through a deep
standing-wave optical dipole trap created by retroreflecting a focused trapping light field from the resonator surface.
Additionally, a second, detuned compensation light field is employed to counteract the position-dependent detuning
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of the atomic resonance from the resonator mode. Resonant detection light is sent through the coupling fiber to
detect the presence of a single atom in the resonator mode in real-time, and the transmitted power is monitored using
a single-photon counting module. The transmission signal is detected using a field-programmable gate array-based
system. Upon detecting an atom, the detection light is switched off, and the dipole trap is switched on, with the
overall delay between detection and trapping being approximately 250 ns. This duration is significantly shorter than
the average transit time of an atom through the evanescent field of the resonator mode, enabling us to capture a
detected atom if it is located inside the trapping volume.

B. Directionally squeezing of the cavity mode

With the advancement of nanofabrication techniques, a range of crystalline materials has been employed in the
fabrication of WGM microresonators [S32–S38]. A notable advantage of crystalline cavities is their ability to support
nonlinear optical processes, including optical parametric amplification (OPA). In a parametric amplifier, a pump beam
interacting with a χ(2) nonlinearity generates signal and idler beams. This OPA process is considered a crucial source
of squeezed states of the radiative field.

Inspired by recent experiments, here we consider a crystalline WGM microresonator with high second-order non-
linearity. To ensure phase matching for parametric down-conversion along the entire circumference of the resonator,
an uniaxial crystal with the optical axis along the symmetry axis of the cavity should be used. The microdisk can
be fabricated from a 5% MgO-doped z-cut lithium niobate wafer, as demonstrated in Ref. [S32], or periodically poled
lithium niobate, as demonstrated in Refs. [S33, S34]. The pump field interacts with the χ(2) nonlinearity through a
tapered fiber, generating a squeezed cavity mode. This is an optical parametric amplification process. The forward
external light unidirectionally interacts with the clockwise χ(2)-nonlinearity, thereby directionally squeezing the clock-
wise cavity mode [S39]. In other words, the forward propagating mode through the waveguide selectively squeezes
the copropagating mode in the resonator. Due to the rotation of the system, the light circulating in the resonator
experiences a Sagnac-Fizeau shift, denoted by ∆F .

C. Rotating resonator

The rotating scheme can be implemented by mounting the WGM resonator on a turbine, causing the resonator
to rotate with a certain angular velocity. This setup has been demonstrated in a recent experiment by Maayani
et al. [S31]. Positioning the rotating microresonator near a single-mode telecommunications fiber allows light to
be evanescently coupled into or out of the resonator through the tapered region. It is worth noting that in this
rotating scheme, the aerodynamic process plays a crucial role: a rapidly rotating resonator can drag air into the
region between the taper and the microdisk, forming a boundary layer of air. Due to the air pressure on the surface
of the taper facing the resonator, the taper hovers a short distance above the rapidly spinning resonator, avoiding
direct contact or adherence to the resonator. This distinguishes it from the situation with a stationary resonator. If
any disturbance causes the taper to ascend beyond its stable equilibrium height, it naturally returns to its original
position, a phenomenon referred to as ‘self-adjustment’.

D. Discussion on the effect of unexpected noises and perturbations

Based on the potential experimental implementations discussed above, we discuss how possible unexpected noises
or perturbations might affect the performance of our system. The unexpected noises and perturbations may be
attributed to the thermal noise of the cavity and the perturbations caused by the rotation scheme.

According to the experimentally feasible parameters, the cavity frequency is ω = 1.93×1014 Hz. At room tempera-
ture T = 300 K, the thermal cavity number is n̄ = 1/[exp(ℏω/kBT )− 1] ≈ 7.4× 10−3, which is significantly less than
1 and has been omitted in our analytical considerations. However, in plotting Fig. S7, we have considered non-zero
thermal cavity number (n̄ = 7.4× 10−3).
On the other hand, the rapidly rotating cavity drags a boundary layer of air around the resonator, which may induce

the vibrations of the atom. This could alter the overlap between the atom and the mode volume of the resonator,
modifying the atom-resonator coupling strength. However, as discussed in Sec. S9.A, the coupling strength between
the WGM resonator and an atom in current experiments is sufficient to achieve nonreciprocal phase transitions in
our model. Moreover, in our model, we achieve phase transitions by effectively enhancing the pump strength of the
external field, and the Sagnac shift remains robust against modifications in coupling. Therefore, it is safe to say that
this perturbation would not change the nonreciprocal behaviors of our model.
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S10. EXTENDING THE MODEL TO THE CASE OF N PARTICLES (N ≫ 1)

Our approach can be extended to scenarios involving an infinite number of atoms (N → ∞), particularly within
the context of the dual-coupling Tavis-Cummings (TC) model. Here, we give a brief discussion in this extension.

We consider N two-level atoms interacting with two counter-propagating modes of WGM resonator. The resonator
is made of materials with second-order nonlinearity. A classical field with frequency ωp input from the forward (or
backward) can directionally generate squeezing cavity modes a (or b) through an optical parametric amplification
process. The system Hamiltonian can be described by the dual-coupling TC model (in the forward pump):

H = ω0a
†a+ ω0b

†b+ ωqJz +
ga√
N

(aJ+ + a†J−) +
gb√
N

(bJ+ + b†J−) +G(a†2e−iωpt + a2eiωpt). (S66)

Here Jz = (1/2)
∑N

i=1 σz and J± =
∑N

i=1 σ± represent collective angular-momentum operators. There are N atoms
simultaneously coupled to cavity modes a and b with collective coupling strengths ga and gb, respectively. The cavity
field is unidirectionally pumped by an external field with the pump strength of G. Additionally, we consider the
microresonator rotates counterclockwise with an angular velocity Ω, causing the two cavity modes to experience
Sagnac-Fizeau shifts with respect to their static resonance frequency ω0, i.e., ω0 → ω0 ±∆F . In the frame rotating
at ωp/2, Hamiltonian (S66) is transformed into

H = (∆+∆F )a
†a+ (∆−∆F )b

†b+∆qJz +
ga√
N

(aJ+ + a†J−)

+
gb√
N

(bJ+ + b†J−) +G(a†2 + a2), (S67)

where the detunings are defined as ∆ = ω0 − ωp/2 and ∆q = ωq − ωp/2. The form of Hamiltonian (S67) closely
resembles Hamiltonian (1) presented in the main text. Utilizing Hamiltonian (S67), we can derive mean field equations
for ⟨a⟩, ⟨b⟩, ⟨Jx,y,z⟩ and subsequently calculate the critical points for both first-order and second-order superradiant
phase transitions. This process aligns with the method employed in the manuscript.

The dual-coupling TC model maintains the advantages of the dual-coupling JC model. Firstly, from Hamiltonian
(S67), we infer that the critical atom-field coupling strength necessary for the occurrence of superradiant phase
transitions corresponds to the detunings ∆q and ∆ rather than the atomic frequency ωq and resonator frequency ω0.
Thus, superradiant phase transitions in dual-coupling TC does not require ultra-strong atom-field coupling. Secondly,
the dual-TC model, the condition of an extremely large detuning is transformed into the limit of an extremely large
number of atoms, i.e., in the thermodynamic limit as N → ∞. Thirdly, the control of superradiant phase transitions
in the dual-TC model can also be achieved by adjusting the pump strength.
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[S23] Michael Scheucher, Adèle Hilico, Elisa Will, Jürgen Volz, and Arno Rauschenbeutel. Quantum optical circulator controlled
by a single chirally coupled atom. Science, 354(6319):1577–1580, 2016.

[S24] Elisa Will, Luke Masters, Arno Rauschenbeutel, Michael Scheucher, and Jürgen Volz. Coupling a single trapped atom to
a whispering-gallery-mode microresonator. Phys. Rev. Lett., 126:233602, Jun 2021.
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