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In this supplemental material, we first present some details about spin-wave quantization and
skyrmion quantization in Sec. I and Sec. II, respectively. Sec. III offers a detailed derivation of the
coupling strength of the magnon and the magnetic skyrmion qubit. In Sec. IV, the coupling between
skyrmion qubits is evaluated. In addition, we extend the derivation of the magnon Kerr effect and
introduce a two-magnon drive. Section V calculates the magnon-mediated non-reciprocal dissipative
coupling between skyrmion qubits. In Sec. VI and Sec. VII, a detailed analysis of the skyrmion-
magnon-NV and skyrmion-magnon-SQ hybrid quantum systems is presented. The micromagnetic
simulation of the hybrid system proposed here is elaborated in Sec. VIII. In Sec. IX, the coupling
model based on magnetic multilayer structures is discussed in detail.
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I. THE SPIN WAVE

In this section, we solve for the spin waves in spherical magnets and the quantization of the magnon. First, we
start from the nonlinear Landau-Lifschitz (LL) equation and obtain the linear LL magnetostatic dipolar spin wave
equations by some reasonable physical approximations. Then we calculate the eigenmode of the spin-wave equation.
Finally, we quantize the spin wave and evaluate the relevant parameters for the Kittel mode. In the subsequent
calculation, we establish the local coordinate xyz with the YIG spherical center as the coordinate origin.

A. The spin-wave equation

Here we focus on the spin waves supported by a micromagnetic sphere. They can be described by the continuous
magnetization field M (r,t) with related electromagnetic fields E(r,t) and H (r,t), which follow the Maxwell equations
and the phenomenological nonlinear LL equation [1, 2]

8,5M(7",t) = _|76‘MOM(r7t) X Heff(Marvt)a (1)

where Hog = H(r,t) + AH(M,7r,t) is the effective field. The external field AH includes the exchange field, the
magnetocrystalline anisotropy field, and the demagnetizing field due to the dipole-dipole interaction, which can be
written as [2]

AH(M,r,t) = Ho (M,r,t) + Hypn (M, 7, t) + Hq (M, 7, t). (2)

In general, the contribution of the external field AH is related to the magnetization M, which leads to the non-
linearity of the LL equation and makes the quantization of spin waves very difficult. In the following, we use three
approximations to linearize the nonlinear LL equation to obtain the spin-wave equation. (i) Spin-wave approximation.
Applying a sufficiently large magnetic field By in the z direction to the magnetic sphere, which ensures saturation
magnetization of the magnetic sphere, we can then write the physical field as the saturation term plus its corresponding
fluctuation

H(r,t) = Hpe, + h(r,t),

M(r,t) = Mse. +m(r,t), (3)

where the fluctuation terms satisfy h <« Hy and m < M,. Then the LL equation (1) can be reduced to

oym(r,t) — e, x [m](\zt) B h(l;;t)] N {eﬁ mgs,t)] L AH(M.rt) _m(r.t) hr1)

1
‘7&|NOM5H0

= . 4
H, M, H, )
Retaining only the first order terms of the small quantities m(r,t) /M, and h(r,t)/Hy, the LL equation can be written
as

1
|7€‘N0MSHU

It is worth noting that for the first-order term m(r,t)/M;, we can obtain m(r,t) - e, = 0. (ii) External field
AH(M,r t). When the size of the magnetic sphere is much larger than the length of the domain wall, the spin
wave is dominated by the dipole-dipole interaction, at which case the exchange interaction can be neglected, i.e.,
H_, ~ 0 [1, 2]. For cubic materials, the magnetocrystalline anisotropy is given by H,, = —(2K.,/M2)M.e., i.c., the
contribution of H,, to the LL equation is a second-order small quantity (m/M,)? [1, 2], indicating that the effect
of magnetocrystalline anisotropy can be neglected. The demagnetizing field of a uniformly magnetized ellipsoid can
be written as Hqyy = —(N,MZ, N,MY, N, M?) where N, , . represents the static magnetic factor and it satisfies
Ny + Ny + N, = 1. For different geometries, the static magnetic factor takes different values: for a thin film in the zz
plane, N, = N, = 0, N, = 1, for a cylindrical line along the z direction, N, = Ny, = 1/2, N, =0, and for a spherical
magnet, N, = N, = N, = 1/3. Here we can write the demagnetizing field as a simple form Ha, = —Me./3 [1, 3].
With these external field approximations, the LL equations (5) for the different components are expressed as [2]

m(r, ) h(r,w] . [m(r,ﬂ  AHM.rt) _ (5)

om(r,t) — e, X [ M H A iR

Oymy (r,t) = —womy (7, t) + warhy(r, t),

(6)

6tmy(7', t) = wOmw(ra t) - WMhz(ra t)a

where two relevant system frequencies and the internal field are defined as wy = |ve|poHr, Wy = |Ve|lpoMs, and
Hy = Hy — 1/3Mg, respectively. (iii) Magnetostatic approximation V x h(r,t) = 0. With this approximation, the



electric field component and the magnetic field component h of the spin wave are decoupled, which results in the
electric field component being negligible. In addition, we can also introduce a static magnetic potential ¥ (7, t), defined
as h(r,t) = —Vi(r,t). According to the zero-divergence condition V - b(r,t) = 0 and b(r,t) = pol[h(r,t) + m(r,t)],
we can obtain the equation of the static magnetic potential

V2 (r,t) = Opmy(r,t) + Oymy (1, 1). (7)

The equations (6) and (7) allow for the analysis of the interior of the magnetic sphere. For the exterior of the magnetic
sphere, the scalar field ¢ (r,t) satisfies

V2(r,t) = 0. (8)

B. Solving the spin-wave equation: Walker modes

The Walker modes of the micromagnetic sphere will be calculated hereafter. The eigenmodes of the magnetization
intensity and magnetic field are mg(r) and hg(r) = —Vg(r). Then, similar to the electromagnetic field quantization,
the corresponding field can be expressed as [4, 5]

m(r,t) = Z [samg (r) e ™" +c.c]
B

h(r,t) = Z [sghs (r) e ™" + c.c],
B

9)

where sg is the complex amplitude, the mode index is 3, and the eigenfrequency is wg. Substituting Eq. (9) into LL
equation (6) results in

twmg (1) = warOy Y (r) + womy (), (10)
iwmy (r) = —wp 0z (1) — wemy(r).

Replacing the linear LL equation (10) into the scalar field equation (7) we can obtain the equation that contains only
the static magnetic potential. In summary, we can obtain the equations for the scalar field inside and outside the
magnetic sphere, given by

(1+xp) (02 + 02) i (r) + O2hin(r) = 0, (11a)

V24ous (1) = 0. (11b)

Pin and Yoy are the static magnetic potential inside and outside the magnetic sphere, respectively. The diagonal
element of the Polder susceptibility tensor is defined as x,(w) = wpwo/(wg —w?) [2]. Hereafter we solve the equations
of static magnetic potential ¢)(r) outside and inside the magnetic sphere. Outside the magnetic sphere, the static
magnetic potential follows Eq. (11b), using the spherical harmonic functions Y;™ (6, ¢) in spherical coordinates r =
(r,0,¢), whose general solution can be written as

Alm
Yout (7') = Z |:rll_;_1 + Bl,mrl:| }/lm(a’ d)) (12)

lm

The expansion coefficients A; ,,, and By ,, can be determined by boundary conditions. According to the boundary
condition: the static magnetic potential is regular, i.e., it is convergent at infinity [t)ous(r — oc0) — 0], then the
coefficient B;,, = 0 can be obtained. Inside the magnetic sphere, the static magnetic potential satisfies Eq. (11a).

For convenience, a set of orthogonal coordinates {£,7, ¢} is introduced, defined as = = ,/xp,R/£% — 1sinncos @,

y = /XpR\VE — 1lsinnsing, and z = /xp/(1+ xp)REcosn. It is worth noting that the orthogonal coordinates

{&.1n, ¢} on the surface of the sphere can be simplified to & = §o = /(1 + xp)/Xp, 7 — 6, and ¢ — ¢. In orthogonal
coordinates {£,n, ¢}, the general solution of the static magnetic potential inside the sphere can be expressed by
associated Legendre polynomials and spherical harmonic functions [4, 5]

Gin(r) =D CLm P (€)Y (1, ) (13)

l,m



with expansion coefficient Cj ,,,. We subsequently use the continuity condition at the surface of the sphere to determine
the coefficients. (i) The continuity condition for the tangential component of h, i.e., the potential crosses the surface
continuously Yout|r—r = ¥inle—¢,- Then we can get A, = Cp P/ ()R (ii) The continuity condition for the
normal component of the b field [4]

K
87'wout|7':R - %8£win|7':R - praqﬁwin“:R (14)
with non-diagonal elements of Polder susceptibility tensor r,(w) = wyw/(wg — w?) [2]. Then we can obtain the

eigenfrequency equation of Walker modes [4, 5]

B 6o(w)]
le [€o(w)]

It is of interest that the equation does not depend on the radius Ry of the micromagnetic sphere, i.e., the eigenfre-
quency is not associated with the radius of the magnetic sphere. Besides, there exist non-physical solutions of this
equation, e.g. [ = 0. Given {l,m}, the eigenfrequency equation has a set of discrete solutions. And then we use
n to denote the nth mode, and n = 0 to denote the fundamental mode. Here we focus on the Kittel mode, which
corresponds to a mode index {110}.

&o(w) +mkp(w)+1+1=0. (15)

C. Quantization of the spin-wave modes

Here we discuss the quantization of the spin-wave mode. The micromagnetic energy functional of the Walker modes
can be written phenomenologically as

E,, ({m},{h}) = % /de(r,t) . [A}Zm(r,t) —h(r,t)] . (16)

And it can be demonstrated that by this energy functional, the LL equation can be reproduced. According to Eq. (6),
we can obtain

1
hay(r,t) = ———0wmy(r,t) + ﬂ771;,[;(731?). (17a)
War W
1
hy(rt) = —Bma(r,t) + —Limy (1), (17b)
W Wh

Substituting equations (17a) and (17b) into the energy functional (16) yields

E., ({m}) = m/d\/{mw(r,t)atmy(r,t) — my (7, t)0my(r,t)}. (18)

Employing the eigenmode mg of the magnetization intensity, we can derive

mg(r,t) = Z [55m57z(r)67i“"*t +c.c], (19a)
B
my(r,t) = Z [sgmg,y(r)e 8" +c.c], (19b)
B
Oima(r,t) =Y [—iwgssmpa(r)e " + c.c], (19¢)
B
Oymy(r,t) = Z [—iwgsgma,y(r)e” ™o +cc]. (19d)

B



Then equation (18) can be simplified as

By () = g > s sy + o) (20)

where Ag = [ dV2Im[mg ,(r)m} ()] [6, 7]. As a result, a spin wave mode is formally identical to a one-dimensional
harmonic oscillator, so it is possible to quantize the spin wave mode following the quantization method of the one-
dimensional harmonic oscillator. First we quantize the amplitude as a magnon operator: sg — $5 and sj — H) 5 Then
we choose the appropriate eigenfunction

) o v 350 2

to eliminate the constant factor, where the zero-point magnetization M,pr = \/|ve|AMs/Ag. Finally, using the com-
mutation relations of bose operators [§g, §2] = 1, we can obtain the field operators and Hamiltonian after quantization

=" Myt (5(r)35 + c.c.), (22a)

r) =3 My (ﬁﬁ(r)gﬂ n c.c.) , (22b)

H=> hug (sﬁsﬁ+ 2) (22¢)

B

D. The Kittel mode

For the Kittel mode, the mode function is
my = e, +ie, (23)

at which case the constant factor and the zero-point magnetization are given by Ag = 2V and M,pr = /V.hM;/(2V),
respectively. M indicates saturation magnetization. The free Hamiltonian of the Kittel mode is

FIK :wKéJ}(éK (24)

with wg = v.Bk. Bk is the bias magnetic field.

II. THE SKYRMION
A. The classical skyrmion

Skyrmions are a non-collinear spin texture with a centrosymmetric spiral structure, as shown in FIG. S1(a). The
in-plane component s, (s,) and the out-of-plane s, are shown in FIGs. S1(a)[(b)] and (c), respectively. In contrast to
skyrmions in chiral materials, the skyrmion in inversion-symmetric (frustrated) magnets has a collective coordinate
helicity ¢ that can be quantized as qubits to implement quantum calculations. According to Ginzburg-Landau
theory, its Hamiltonian can be expressed as

| T \7261 H K
H = /dr {—2(V;s) (V2 )2 — GTSZ + ﬁsi , (25)

where 7 = (p,¢) stands for the position vector, a denotes lattice spacing, and [y, is the strength of the com-
peting interactions. H and K represent the z-direction magnetic field and easy-axis anisotropy, respectively. For
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FIG. S1. (a) 3D structure of a skyrmion. (b, ¢) The in-plane component s, and s, of s. (d) The out-of-plane component s of
s.
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FIG. S2. Approximated solution of the skyrmion.

a classical skyrmion, s = [sin ©(p) cos @, sin O(p) sin @, cos O(p)], with ® = ¢ + ¢y. The stationary skyrmion so-
lution, denoted as Oy and P, is obtained by minimizing the energy Eq. (25). The radius of the skyrmion is

given by R = 1/Re(Y) with Y = V-1+Y/v2, Y = J/1—4(h+r,), h = H/J, and k, = K/J,. Here,

Oo(p) = 7/\/p? + lexp(—=Vrep) coS(Vimp) with Yre = Re(Y)/2 and Vi = Im(Y)/2 is assumed to be the ap-
proximate solution of skyrmions. The approximate solution ©¢(p) is plotted as a function of p for K = 0, as depicted

in FIG. S2.

B. The skyrmion qubit
1. &, qubit

The collective coordinate quantization (in the next section it is shown in detail) is used to derive the Hamiltonian
of &, qubits. The real-time action of the skyrmion can be expressed as [8]

S . _
S = ol /dtdr(l)(l —1I) — /dt’HGZ, (26)
where @ denotes the first-order derivative with regard to time and II = cos ©. The Hamiltonian is
. | H K .
He, = S/dr {—232 + —255 — EPgaé, - P} . (27)
a a
Here, we introduce an external electric field that is applied in the z-direction in order to modulate the skyrmion. The

electric polarization is represented by P = €, x (s x 0z8) + €, X (s x 95s), and Pg is assumed to be 0.2 C/m?. F

is the electric field gradient. With the dimensionless parameters Jy = J1, £ = \/J2/J1, ¥ = rla, and t = t/Jx, the
action Eq. (26) can be represented as

S= S/dtdrcb(l — 1) — /dtHGZ, (28)
where

Hes, = /dr (—ﬁzsz + sti —Z.e, -13) (29)



with h, = HS/Jx, k. = KS/J, &, = a?EPgS/Jx, and P = é, x (5 X 0,8) +é, x (s x 0ys). Utilizing the collective
coordinate quantization method presented, we can obtain

fi(r. 1) = S2 LI OO 0 4y 4 ),

(I)(T’t) = [Ta 900(75)] + f(’l“,t),

(30)

where Il =1 —IT and A = [ dr(1 —cos©p). n and £ represent the quantum fluctuations of the skyrmion’s classical
solution. The Hamiltonian of the skyrmion qubit can be expressed in terms of the collective coordinate ¢y and its
conjugate momentum &,

Hes, = k.G — ZZGZ — &, COS g (31)
The coefficients in Eq. (31) are defined as
_ B (1 —cos @0)2
Ry = Ky T 29
Jdr (1 —cos®g)
h.=h., (32)
_ in(20
&, zéz/dr {8p@0+ Sm(O)] .
2p
Introducing the collective coordinate operator ¢y and its conjugate momentum operator S, = —i0,,, we can obtain

the relation shown below

6.|s) = s|s), Polwo) = wolpo),

. . 33
eHe0ls) = |s 1), [ @0, &.] = 33)

According to the preceding analysis, we can obtain the Hamiltonian of &, qubits
7:162 = Ezéi — ?Lzéz — €, o8 ¢y (34)

The eigenenergy and eigenstate of the &, qubit can be calculated by solving the Schrédinger equation as follows
7'262 Us(po) = €sWs(p0) (35)

with the state U;(pg) = (pols) and ¥s(pg) = Ps(pg + 2m). Calculating Eq. (35), we can obtain the damped Mathieu
equation [9, 10]

e QE Ez
92, — ihdy, + R— = cos gy U, (o) =0 (36)

z

with b = izzz//?z Using the Liouville transformation W(go) = ths(g0) exp(iheo/2) [10], the damping term can be
eliminated to obtain the standard Mathieu equation

02,1 (00) + [ + gz cos o] Ys(po) = 0, (37)

where a, = E2/4 + &, /k, and ¢, = £, /R,. Then the eigenvalues and eigenfunctions of Eq. (37) can be written as

_ MA(O, —2¢,)
Qp = ————
! (38)
Yalpo) = D Gy (4o, —24a, £0/2)
j=C/8

where Mg and Me represent the odd and even solutions, respectively. 1 is the characteristic index. As illustrated
in manuscript, the energy level of the &, qubit is inhomogeneous, so we truncate the Hilbert space to the subspace
{]0), 1)}, in which case the &, qubit Hamiltonian can be written as

2 "40 ~sub BO ~sub
=5 — —6

Hgyy = 5 0 5 0z > (39)
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FIG. S3. (a) The energy levels of the &, qubit as a function of the applied magnetic field. Given the same conditions as (a),
(b) shows the variation of cos(26) and sin(20) and demonstrates that sin(20) ~ 1 and cos(26) ~ 0 can be obtained near the
degeneracy point.

where Ag = &, — h,, By = £, and the Pauli operators are defined as 6P = |1)(1| — [0)(0| and 65" = [1)(0] + |0)(1].
Diagonalizing Hgy, obtains the basis vectors |1, ) = cosf]1) — sin|0) and [¢)_) = sin#|1) + cos 0]0), as well as their
corresponding eigenenergies £ = £1/2,/A2 + B2, where tan(260) = By/Ay. The energy levels of the skyrmion qubits
as a function of the applied magnetic field are depicted in FIG. S3(a). The dashed line depicts the case where the
applied electric field gradient £ = 0, and it can be observed that the energy levels of the &, qubit are degenerate.
The &, qubit’s energy levels are nondegenerate when an external electric field gradient is introduced (blue solid line).

The energy level gap is modulated by the applied electric field around the degeneracy point.

2. Collective coordinate quantization

This part will show the primary process of the collective coordinate quantization method. The partition function
of the skyrmion model investigated here can be represented as

Z = /Ds exp [iS (s, $8)], (40)
where the action is given by S = [ dtL. The system’s Lagrangian is
E:S/ﬁﬂm@yS—ﬂ, (41)

where 21(s) = {[1—€s-(eq X 8)]/(€3-8) }es is the gauge potential with €4 = (cos ®,sin ®,0) and eg = (— sin @, cos D, 0).
F represents the energy density functional, defined as
Ji Joa?
F= = (Ves)® +
It is worth noting that 2((s) - s = (1 — cos @)@ As the global symmetry of the model F is unbroken, we can obtain
s = M(po)s with

H K
(V%S)Z — ﬁsz + 983 (42)

cos g —singy 0
M(po) = [ singy cospg 0] . (43)
0 0 1

For convenience, we introduce n = /1 — cos Os/sin©. The gauge potential is thus determined to be A(n) = dpn.
To eliminate the zero mode, we introduce the § constraint according to standard collective coordinate quantization,
and the ¢ constraint is defined as [8]

/DQOODGZJ%J@zé(Fl)(;(FQ) = 1, (44)

where

Fi = [ drtng) - - o).

&Z%/mmmy@mpmmﬁ, (45)
5P,

0F3
SRR S
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The Jacobians of the transformation are J,, and Jgs_. Here, we assume that the skyrmion consists of its classical

part and quantum fluctuation components, i.e. m = 729 + 5 and 2A(n) = A(ng) + ¢. The presence of parameter ¢
ensures that the aforementioned transformation is canonical, meaning that the transformed Wess-Zumino (WZ) term
maintains its original form. The momentum conservation constraint P — &, = F5 allows us to derive

S, — [drl-dgn

c= = . 46
[ dr2(ng) - Oyn (46)

Thus [dtdrA(n) -n = [dtS.oo + [dtdr¢ -4 can be deduced, showing that the WZ term maintains the canonical
form under the transformation mentioned above.

In the following, the transformation of the energy functional F is analyzed. For convenience, we introduce the
transformation

_ S. - drn(j;, D02 1) 4 (1),

(I)(T‘,t) =9 [T; QDO(t)] + f(’f‘,t).

(47)

The transformation preserves the canonical form of the WZ term, which is [ drlld = S.¢0+ [ drné. The Hamiltonian
of skyrmion qubits can therefore be simplified as

263 - i:LZGz — £, CO8 ¥y (48)

=Nl

Hes, =

z

IIT. COHERENT COUPLING BETWEEN THE YIG SPHERE AND THE SKYRMION
A. The magnetic field of the YIG sphere

Here the cylindrical coordinate system is established with the center of the skyrmion as the coordinate origin,
and the skyrmion lies in the zy plane. Then the coordinates of any point on the skyrmion can be expressed as
(pcos ¢, psin g, 0). The center of the YIG sphere lies on the z axis, directly above the skyrmion, and its coordinates
are (0,0, hg). The position vector from the center of the YIG sphere to any location on the skyrmion plane is then
r = (pcos ¢, psin g, —hg). In classical electrodynamics, the magnetic field generated by a magnetic sphere at position
7 can be described by the magnetic dipole model, which is given by

po [3r(p-7) p
_ Mo M 49

4 { rd T3:| ’ (49)
where p is the magnetic moment. The YIG sphere’s magnetic moment can be written as p = M4rR3. /3, and
Eq. (49) can therefore be simplified as

B

- sult M) M), (50)

3 R
where M is the YIG sphere’s magnetization. The magnetization M can be quantized as M=M K[Midx + m}‘%TK]
based on the analysis in Sec. I. Here, the Kittel mode, whose mode function is mg = é, + ié,, is the primary focus
of our discussion. Then the quantized magnetic field can be represented as

B, — @ {;MK [ﬁcos i (gK — g}() — hg (gK + sk)} (5 cos ¢, Fsin , hK)} : (51a)
B — @ {—TlgMK [z (@K . 3;) 0, (gK n s}()} } , (51b)
B =B, +B,s. (51c)

By writing the magnetic field components, one obtains

B, = “OSR% {3]7‘? [iﬁcosd) (gK _ g}() ~hk (gK n s}()} Feosd — iﬁK (éK - s}()} : (52a)
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B, = Mofi} {S%K [iﬁcosgﬁ (éK - §TK> — hk (§K + §}<)] psin (f)} ; (52b)

B, = ﬂ()f%( {Sj\/fghl( [iﬁcosgb <§K — §TK> —hk <§K + §TK)] - % (§K + §}<)} : (52c)

B. The interaction Hamiltonian

The interaction between the magnetic field B generated by the YIG sphere and the spin s; at the position r; of
the skyrmion can be described by the Hamiltonian

HKS = 79#3523 © 8. (53)

Utilizing the continuity condition, the summation in the Hamiltonian Eq. (53) can be reduced to an integral, i.e., the
interaction Hamiltonian can be written as

N S .
Hys = - 282 /drB s, (54)
a
where a is the lattice spacing. Writing the interaction Hamiltonian in the component form yields

9#35
a2

fxs = — /d%d'g] (Bo-sutByosy+ Baos.). (55)

The coupling of the z-direction magnetic field and the skyrmion can be described by

2 gpBS
HI%S = - a2
: (56)
__poR3 [3Mpg . - M
X /dacdyMOTK {TsK [ipcosqﬁ (§K — é%) —hg (éK + §}(>] pcos o — ! 7"3K (éK — §}(>} - sin © cos P,
where ® = ¢ + po. Making the integral in Eq. (56) dimensionless, we can obtain
e guBS
HKS = a3
R (3M M
X /NOTK { ety {ipCOS(b <§K . g}) ~hx (éK v s;)} peosg — e (sK _ s}()} (57)
- sin Og cos Pdzdy,
Transforming the above integral Eq. (57) to polar coordinates
25 gMBg
HKS = a3
R3, (3Mp 1. . . . . iMyg (. R 58
X / :“03 K { T5K {zpcosq& (sK — s}) — hg (SK + S}():| pcos ¢ — r3K (SK — STK)} (58)

- 8in Og cos (¢ + ¢o) pdpdd,

we can find that the integral over p and ¢ are completely independent of one another. Considering first the integration
over ¢ and dropping the term whose integration is zero, Eq. (58) can be simplified to

. S R3 (3M . R .
Hig = —glig /pdpd(éuog K { T5K {—hK (sK + s%)] } psin O cos? ¢ cos o, (59)

For the second term of Eq. (55), the Hamiltonian of the interaction between the y-direction magnetic field and the
skyrmion can be obtained by the same calculation

A q 3 M
Hjq = —gMBS /pdpdgbuofK {?)rsK [—hK <§K + §}(>] } psin O sin? ¢ cos . (60)

a3
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We define transverse coupling
Hi = His + His. (61)

Substituting Eq. (59) and Eq. (60) into Eq. (61) results in

. 2 SuoR3 M h i sin ©
fry — 2T9ms M:;) Mk (§K+§;{) cosgoo/pd Lm;z (62)
¢ (p* +h%)
Define the transverse coupling strength
z 2mgup SRy My ph i sin ©g
AKs = 3 K /PdPW- (63)
a (p* + i)
Then Eq. (62) can be reduced to
I = A% (51 + 5 ) cos o, (64)
Here the operator ¢ has been used. In the following we calculate the third term in Eq. (55)
Hig = _g%s / dzdj (Bz : s) . (65)
Substituting Eq. (52c) into Eq. (65), one can get
- S uoR3 L . 3h3 1
Hig = —IEBZROK (sK +s}) /dxdy K - 3 (€056, (66)
a® 3 (2 + 72 + ) (2 + 72 + k)

where the term with zero integration over ¢ has been ignored, as in the calculation of the transverse coupling flﬁé
Dimensionlessizing the integral Eq. (66), one can get

2 guBS poR% . At 3h3 1
Hig=— Mg |5k + 8 dzdy - I1, (67)
T ) (@ +y? +15)" @ 4y +h3)Y

where IT = cos ©. With IT = 1 — II and Eq. (30), Eq. (67) can be reduced to

o 9uBS poRY st éz/ 3hic _ 1 _
s =TTy e (SKHK) A (@ + 2+ 037 (@242 + b)Y 1 meosB0- (09

Here we discount the term containing 7, which describes the associated magnon fluctuations. Expressing the Eq. (68)
using polar coordinates yields

3 guBS poR% .ot S 3h3, 1
HIZ(S = E Mg {5k + SK pdpd® - (1 — cos @0) . (69)
a3 3 ( ) A (p2 +h§()5/2 (02 + h%{>3/2

Defining the longitudinal coupling strength

_ mgupSpo  [3hye M s/0
AKS = 3 5A or Lk TP (70)
and the dimensionless integral
2h2.p — p3
Flp) = / dp—PKL =P (1~ cosBy) (71)
(p* +h%)

with hx = Rk + dk, the Hamiltonian of the longitudinal coupling is

A2y = Axs (§K ¥ §}<) .. (72)
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FIG. S4. (a) Comparison of transverse flﬁg and longitudinal I;Iﬁs coupling. (b) Variation of transverse coupling strength

Ay with radius Rx and distance dx. (c) Dynamical evolution of systems with and without transverse coupling I—T[f?é Black
and blue represent the skyrmion and magnon, respectively. The scattered dots and curves represent the dynamical evolution
in the presence and absence of transverse coupling ﬁf?é, respectively. The parameters are ysxy = vk = 0, 5\;(% = 4Xks, and
wy = wr = 1000)ks.

The total Hamiltonian for the interaction of the YIG sphere and skyrmion is

The parameters involved in the coupling strength Eq. (63) and Eq. (70) are zero-point magnetization My =

hveMs/(2Vk), gyromagnetic ratio 7., saturation magnetization M, volume of the YIG sphere Vi, and A =
Jdr(1 — cos©g). As shown in Fig. S4(a), it can be found that when the radius of the YIG sphere is small, the
transverse coupling is larger than the longitudinal coupling, but as the radius of the YIG sphere increases, the two
gradually tend to be the same. The variation of the transverse coupling strength and the longitudinal coupling
strength with dx and Rk are shown in Fig. S4(b) and in Fig. 2(a) of the main text, respectively. Taking the
parameters dg = 10 nm and Rx = 100 nm, we can get Aks/2m = 12.7 MHz and A% /2m = 50.1 MHz.

C. Approximate analysis of the coupling strength A\kgs

In Eq. (70), the inclusion of the integral F(p) prohibits us from displaying the coupling strength’s dependency on
Ry and dg. In this section, we will provide an approximation for the coupling strength Akg that is consistent with
the analytical results. For analytical purposes, we define

2h3ep —p°

)5/2 (1 —cosOy). (74)

(p* + hic

Directly solving for the original function of f(p) is extremely challenging. Furthermore, the presence of the trigono-
metric function cos ©¢ prohibits us from approximating its solution using a series expansion. However, by evaluating
the series expansion of the function f(p) near 0, we find that applying a constant correction factor yields a fairly good
approximation to the precise solution. Expanding the function at 0 to order 1 results in

FD () ~ ,j‘z (75)

Figure S5(a) shows that the approximation function f™)(p) can only estimate f(p) up to the maximum, beyond which
it is not adequately approximated due to the existence of trigonometric functions. However, we find that in the range
of parameters we are interested in, the area of integration of f(1)(p) equals 1/Y = 37.5 times the area of integration of
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FIG. S5. (a) The functions f®*)(p) and f(p). (b) The variation of the correction factor 1/Y with the parameter hx that we
are interested in. (c, d) The longitudinal coupling strength as a function of Rx and dx. The curves and scatters correspond
to the results of the precise and approximate forms of coupling strength, Axs and )\ﬁgp, respectively.

f(p), and that T is nearly constant when the values are altered [Fig. S5(b)]. With the introduction of the correction
factor Y, the integral F(p) can be approximated as

4p 2R?
K K
The coupling strength can then be reduced as follows:
2R2 RS/’
AP _ e K 7
KS 0 (dx + Rk )3 0

with constant

WQMBS’/,LO 3h75Ms
=7 .
Fo 3030V 2x (78)

Figures S5(c) and (d) depict the variation of coupling strength with Ry and dg using the precise solution (70) and
the approximate solution (77), respectively. The results of the computations with Egs. (70) and (77) are in good

agreement. According to the approximate solution )\ﬁgp, the coupling strength decreases polynomially rather than
exponentially with Rx and dg.

D. The Hamiltonian of the hybrid system

Firstly, in the subspace {|0), 1)}, the interaction Hamiltonian can be expanded as

N MY A
Exploiting the cigenstates [, ) = cosf|1) — sin#|0) and |¢p_) = sin@|1) + cos #|0) obtained by diagonalizing Hgy, in
the main text, the interaction Hamiltonian can be reduced to

A~ [Ey
Hys = %(S:K + 88 ) [~ sin(20)6. + cos(20)6.] + %(éK + 88 [cos(20)5., + sin(26)5,] (80)

with the Pauli operators 6, = |4 ) (| — |[Yv_Y(_]|, 64 = [ )|, 6- = [¢-) (4|, and &, = 64 + 6_. As shown
in Fig. S3(b), when the &, qubit works near the degeneracy point, we can get cos(26) ~ 0 and sin(26) ~ 1. In this
case, Eq. (80) is denoted as

Hys = =M% (3K + 85)6- + Aks(8x + 85)62, (81)
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FIG. S6. With the parameters wy = wx = 1000Aks and yx = Ysky = 0.1)ks, (a, b) show the dynamical evolution of the
hybrid quantum system in ideal conditions (a) and (b) in the presence of dissipation, respectively.

where A\ = A% sin(26)/2 and Aks = Aks sin(26)/2. Then the hybrid quantum system’s Hamiltonian is given by

~ w R R R — R N R — R N N
Hrgs = ?qoz + wKs}(sK + Aks (SK + s}() 0z — M5 (8K + STK)UZ. (82)
It is worth noting that the coupling A\i§ does not cause a transition between energy levels, but only a shift in the

qubit energy level. We can further write it as [wy/2 — A\ (55 + 8% )], and we can find that the magnitude of the
energy level shift is only on the order of megahertz (A% ~ 50.1 MHz), which is much smaller than the hybrid system’s
gigahertz resonance frequency (w, = wx ~ 9.8 GHz), so its effect can be neglected. The dynamical evolution with

and without the coupling PAIIO?’S is shown in Fig. S4(c). It demonstrates that it is reasonable to ignore the coupling
HyY. By transforming equation (82) into the interaction picture, we can obtain

Frrys = Aks (éKér+ + g}a_) + ks (gKar_e*mqt + g}@eﬂwﬂ) — X (et 4 gheiwatys, (83)

ere the resonance condition is w, ~ wx ~ 9. z, and then we have 2wy, wq > Aks, A According to the large
Here th dition is w, 9.8 GH d th have 2wq,wq > Aks, . According to the 1
detuning condition, the terms Aks (éKﬁ_e_iQ“’qt + §J}(&+ei2“’qt) and A (8xe~™at + 31 ¢i¥at)g, are high-frequency

oscillation terms and can be ignored, i.e., the hybrid quantum system can be described by the JC model

I;[TKS = S\KS <§K6+ + §;((AT,> . (84)
Figure S4(c) demonstrates that it is reasonable to discard the coupling S\fg’é Figures S6(a, b) depict the dynamical
evolution of the hybrid system without and with dissipations, respectively. Rabi oscillations between the two sub-

systems can be observed in the dynamical evolution of the hybrid quantum system, where the initial states of the
magnon and the skyrmion are in the ground and excited states, respectively.

IV. THE SKYRMION-SKYRMION INTERACTION

A. The direct skyrmion-skyrmion interaction

In this section we estimate the direct interaction strength between two skyrmion qubits, as shown in FIG. S7(a).
The strength of the interaction between two spins in vacuum can be calculated by the dipole model

Jdir _ Hol%
o h2r)(2day)®

(85)

where dgip, is the distance between two spins. The direct coupling between two skyrmion qubits is achieved through
dipole-dipole interactions between the layers, described by

Hdir = —JdirS'Q/d’r’Sl - 89. (86)
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the radius of YIG spheres.

The coupling of the skyrmion qubits between the two layers can be described by the
Hy, = —Jdirgz/dr [sg)sf) + 8781)8;2) + +s§1>39>} ) (87)

Then we can get

Jair S?
A2

Haiy = —Jq3, 52 / dr sin? O cos (cp(()l) — 4,052)) — /dr (1 —cos 90)2 621)622). (88)

After quantization, the Hamiltonian of the direct coupling of skyrmion qubits is given by
Ijldir = _ADC COS ((ﬁ(()l) - (,50(2)) — A%Cégl)ég) (89)

with coupling strength Apc = 27.J4irS? [ pdpsin® Oy, Ajo = 2mJairS? /A2 [ pdp(1 — cos ©g)? and daip = hdir- hdir
represents the distance between two skyrmion qubits. Here, we can easily verify that Af- < Apc via numerical
calculations, then in the later analysis, we mainly focus on the coupling strength Apc.

B. The indirect skyrmion-skyrmion interactions: magnon mediated

When two skyrmion qubits are coupled to the same YIG magnetic sphere [FIG. S7(b)], we can get effective skyrmion-
skyrmion interaction by adiabatically eliminating the magnon modes. The skyrmion-magnon-skyrmion hybrid system
is described by

A~ w N N “ N — ~ ~ N ~
Hsks = ?q(o; +62) + widh 8k + Aks(8x + 85) (6L +62). (90)

Transforming to a rotating frame with frequency wq, we can derive
2 _ Aatoa 3 A (Al | A2 ot (Al a2
Hsks = Adp 5K + Aks {SK(aJr—i—aJr)—&-sK(o,—&-a,)} , (91)

where A = wg — wy. In the following we derive the effective Hamiltonian after adiabatic elimination of the magnon

modes. With equation A = z[ﬁ , /1] and Eq. (91), the quantum Langevin equations for the system can be written as

i = — (18 + 29 sk — idws (61 +62), (92a)
&l = JS%&E + iAksSK 0L, (92b)
52 =~ 52 iR asa?, (92¢)
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where ysky and g represent the dissipation of skyrmion qubits and magnons, respectively. The formal integral of
the equations (92a), (92b), and (92¢) can be expressed as

Sk (t) = 8k (0) exp {— (iA + r%{) t} + exp [— (iA + %{) t} /t dr [—ij\KS (&i(ﬂ + &3(7))] exp KZA + K) 7'} ;

0 2

(93a)
¢

ol (t) =61 (0)exp (—/yzﬂt) + exp (—%t) / dr [iAks8K6L(T)] exp (VSQAT) , (93b)
0
¢

62 (t) = 6% (0) exp (—’Yzﬂt) + exp (—%%t) / dr [iAks8K62(T)] exp (PYSQAT) . (93¢)
0

Here we consider the case A, vx > ks, Ysky, that is, the magnon mode and the skyrmion qubit are far from resonance,
and the dissipation of the magnon mode is large, indicating that the dynamics of the skyrmion qubits are little affected
by the magnon mode, then we can derive

&L (1) ~ 61 (0) exp (— WSQ‘W t) : (94a)
62 (t) ~ 62 (0) exp (f%t) . (94b)

Substituting equations (94a) and (94b) into the integral equation of the magnon mode (93a) yields

—iAksGL (1)  —idgso2 (1)
iIAN+ Yk /2 AR /2]

Sk (t) ~ (95)

Inserting Eq. (95) into Eq. (92b) and Eq. (92c), we obtain the quantum Langevin equations after eliminating the
magnon mode

. 2 —
&L= [w?A - W} &L +iBikso2 6L, (96a)
. 2 —
o2 = [w?A - W} 62 4 iBAksdl 62, (96b)

with 8 = Aks/\/A2 + 7% /4. Here the case A > vk is considered, at which case 8 ~ Aks/A < 1. Then we can get

. 2
&= —VS—;y&l_ +iKS 5251, (972)
. 2

&2 = —7%&% +iK351 62, (97b)

After that the effective Hamiltonian containing only skyrmion qubits is
HSE = A1c (6362 + hee.), (98)

where the indirect coupling strength is given by Ajc = 5\%@ JA.

C. The magnon-Kerr effect

Since the magnon-mediated skyrmion-skyrmion coupling strength is relatively small, we consider the anisotropy of
the YIG sphere resulting in the magnon-Kerr effect. The Kerr term is analyzed in detail in the following. Taking into
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account the Zeeman energy, demagnetization energy, and magnetocrystalline anisotropy energy, the Hamiltonian of
the YIG sphere with volume Vi is

HK:_/ dTM'BK_@/ drM - (Hqe + Han) - (99)
Vi 2 Jvi

By, Hye = —M /3, and H,, = (2K.,/M2?)M_é, represent bias magnetic field, demagnetization energy, and
anisotropy energy, respectively. Only the first-order anisotropy constant K, is considered here.

The nanomagnetic sphere can be treated as a macroscopic spin, and the relationship between the magnetization
of the YIG sphere and the macroscopic spin can be expressed as S, = M,Vk /7.. With the constants ignored, the
Hamiltonian can be simplified to

K'}l’l

Ho%e Nan
Hy Ye B — 1
K-~ i 52, (100)

Macroscopic spin operators can be bosonized by the Holstein-Primakoff transformation [11]
Sy =1\/25k — 8k 8réx,
SL —SK\/QSK—S}SK, (101)

Sy = Sk — kb
Then the Hamiltonian of the magnon can be denoted as

Hy = wicdldre — K8 3x8ldx, (102)
where wx ~ 7. By and Kerr coefficient is given by K = 11072 Kan/(M2Vk). As seen in FIG. S7 (b), the Kerr coefficient
K is inversely proportional to the YIG sphere volume V. The Kerr coefficient is K /27 = 0.89 Hz when the radius
of the YIG sphere is taken to be Rx = 100 nm.

D. The two-magnon drive

Based on the previous study, we conclude that the Kerr effect caused by the anisotropy of YIG spheres alone is
extremely weak, thus we apply microwave drive to enhance the Kerr effect of YIG spheres. The linearization of the
Kerr term to generate the two-magnon drive is analyzed in detail in this section. The Hamiltonian of two skyrmions
interacting with the same YIG sphere is

A w " R . R ~
Hysks = 2q (O’ -|-(7 ) —I-UJKSTKSK +>\KS(5K+3K)(J +0 ) KS}(SKS}(SK-FHCh (103)
where fld = Qd(ﬂ{e_i“’dt + 3 Kei“’dt) with €, representing the drive strength describes the microwave drive. Trans-

forming to a rotating frame with drive frequency wy, the Hamiltonian Eq. (103) can be simplified to

- A
Hysks = 7(1 (U +0 ) + AKSKSK + )\KS (SKO+ + SKU+ + h. C) — K§}(§K§JE{§K + Qyq <§K + §J}<) s (104)
where Ay = wy —wg and Ag = wg — K — wq. Next, utilizing equation A= z[f[, /1], the dynamical equation for the
magnon can be represented by

b = —iAgéKx —idgs (61 +62) + 20Kl sk — Q. (105)

By the strong microwave driving Hd, we can represent the operator as its expected value plus its associated fluctuation
A (A) + A. Omitting the higher-order fluctuation terms in the strong driving condition, the dynamical equation
of the magnon can then be simplified to

b = —iAgér —idgs (01 +62) + 4K (3x) 285 + 20K (3c) 28k, (106)
Then the linearized Hamiltonian can be denoted by

R K
Hysks = 2q(0 + 03 )+AKSKSK+)\K3(SKO'++SKU++hC) Zd(é];?—i-é%(), (107)

where detuning A, = wy — wq and AK = Ag — 4K (3x)? with Ag = wx — K — wg, and enhanced Kerr coefficient is
determined by K4 = 2K (3x)2.
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E. Direct coupling vs. indirect coupling

Based on the preceding analysis, we compare the direct and indirect coupling of qubits in this section. The
interaction between two skyrmion qubits can be mediated via the exchange of virtual magnons (long range) with the
strength Ajc = )\KS /Ak. The direct couphng between skyrmion qubits is described by Hair = —JgirS f drsy - 8o,
where Jyi, /27 = pop 35’2 / [ﬁ47r (2dd1p) ] is the strength of the interaction between two dipoles in vacuum. Here, dgip
denotes the vertical distance of two &, qubits separated by a non-magnetized layer. After quantizing Hgi,, the direct
coupling strength is given by Apc = 27J4irS? [ pdpsin® ©g. As illustrated in Fig. S8(a), the long range coupling
strength between skyrmion qubits is three orders of magnitude greater than the direct one.

To further enhance this magnon-mediated interaction, we take into account the YIG sphere’s anisotropic energy,
which results in the magnon-Kerr effect. A microwave drive is used to enhance the Kerr effect of the YIG sphere,
which is described by Hy = Qd(ﬂ(e—i“’dt + 8xeiwdt) with drive strength Q4. Under the strong microwave driving
condition, the hybrid system can be described by the Hamiltonian

-FAINSKS* q/2(0' +0 )-I-AKSKSK+>\Ks(SK0'++SKJ++HC) Kd/Z( +3K) (108)

where A, = wg —wy, KK = Ag —4K (3x)?, with A = wg — K —wg, and the enhanced Kerr coefficient is determined
by Kq = 2K (3x)?. Utilizing the Bogoliubov transformation 1 = 35 coshr — 8 sinhr, with tanh(2r) = K4/Af, the
Hamiltonian Hnsks can be expressed as

A¥es = 8g/2(61 +62) + ATt + Al (o + mt) (61 + 62), (109)

where At = AK/ cosh(2r) and Ak = Ak exp(r)/2. The coupling strength of the YIG sphere and the skyrmion qubit
is enhanced exponentially. For simplicity, we assume A, = 0. Applying the Schrieffer-Wolff transformation U = e“?

to ﬁE%KS, with € = —i and Z = INSL /ASE (T — 1) (61 + 62), the magnon modes can be adiabatically eliminated to
obtain the effective skyrmion-skyrmion interaction, i.e.

Hiflxs = A5 (65 +62)° (110)

Figure S8(b) illustrates that the magnon-mediated effective skyrmion-skyrmion coupling strength AKS = eff ? / Aeﬁ

is exponentially enhanced. And it can reach the strong-coupling regime as shown in the shaded area. Performlng the
dynamical evolution with the Hamiltonian HNSKS [Fig. S8(c)], without magnon squeezing (r = 0), the interaction
between the two skyrmions is weak and there is no direct state conversion between the two skyrmions. However,
when the parametric drive is added (r = 2), the skyrmion-skyrmion interaction is exponentially enhanced and the
direct state conversion appears. Since the large detuning condition AEH > )\ g for the magnon must be satisfied
for the Schrieffer-Wolff transformation, the magnon mode is then in Vlrtual exc1tat10ns and their occupations always
approximate zero [Fig. S8(c)]. As shovvn in Fig. S8(d), the state conversion between two qubits is robust against
magnon dissipation.

F. Feasibility analysis of parametric amplification

This section discusses the feasibility of parametric amplification. The relationship between the driving field By and
drive power is By = 1/Ri+/2Puo/(wc), where P is the driving power, pg the vacuum permeability and ¢ the speed
of light. In the following, we calculate the conditions satisfied by the drive power P, and the equation of motion for
the magnon annihilation operator is

éK =—1 (AK — ’L’YTK) Sk + 2K§}(§K§K — Z'S\Ksé'_ —iQq + My, (111)

where A = wxg — wy is the detuning of the magnon and the microwave drive, v is the decay of the magnon, and
M;, is the vacuum fluctuation noise satisfying (Mj,) = 0. The equation of motion for the expectation ($x) is then

O(8x) = —i (AK - %f) (35c) + i (8 35 5c) — idks(G_). (112)
Under strong driving conditions, the mean-field approximation results in <§}(§ x3K) = [(3K)|? (k). In the long-time
limit, 0;(8x) = 0, one obtains

i (AK—%{) (35) + 0B (8585 8x) — iAks(6_) = 0. (113)
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FIG. S8. (a) Comparison of the coupling strength between the direct coupling (dipole-dipole interaction) and indirect coupling
(magnon-mediated interaction). (b) The effective skyrmion-skyrmion coupling strength A%HS versus the squeezing parameter r.
Logarithmic coordinates are utilized in figures (a, b). (¢) Dynamical evolution of the system without (r = 0) and with (r = 2)
magnon squeezing, with yx = 0.1Aks. The Si, Sa, and M correspond to the occupation of the first skyrmion, second skyrmion,
and magnon mode, respectively. The robustness of the evolution to the magnon dissipation is presented in (d) with r = 4. The
solid and dashed curves denote the first skyrmion and second skyrmion, respectively. The other parameters are sy = 0.1\ks
and ASF = 102¢5.

Then we can get

—Qq
5k) = ‘ — 5 114
) =) - KT o
where we have omitted Axg(6_) due to the small Axg. The average magnon number can then be defined as
. 0Z
Nk = |(3x)” = d (115)

(Ax = K|(3x)1)* +7%/4

We can assume that (§x) is a real number by adjusting the phase of the microwave driving field. Consequently,

Qg = \/NK [(Ax — KNg)? 4+ 7% /4] (116)

is obtained. According to Eq. (116), By = 1/Rx/2Puo/(mc), Q4 = v/5/47.v/' N By, and the definition of the squeezing
parameter r = 1/4In[(Ax + K4)/(Ax — K4)], we can obtain the relationship between the squeezing parameter  and
the drive power P, where ﬁK = Ag — 4K Nk, K4 = 2K Nk, and N is the number of spins in the YIG sphere.
When the detuning Ak is given, as illustrated in Fig. S9(a), the correspondence between the driving power P and
the squeezing parameter r is given.

Next,, we examine the limits of drive power. It must satisfy the requirement A x > K, according to the definition
of the squeezing parameter r = 1/4In[(Ax + K4)/(Ax — K4)]. Then,

02 A 2 2
52 d K 2 502 Tx | —
= < —=060;K < A A — K | = f(A 117
(o) (Ak — K[(3x)[2)* + 9% /4~ 6K ¢ " [< " E)F)"+ 4 } foK) (17
can be obtained. It is only necessary to fulfill
Ag~; AV
QK < fuin(Ax) = —E = Q4 < 54/ = 11
625K < fuin(Axk) 1 1< 5\ 6k (118)

to meet the preceding conditions. With Q4 = 7.v/10NPpg/(4R\/7c), we can determine an upper bound for the
driving power. NgZ®* is the average number of magnon excitations Nk that correspond to the top drive power limit.
In addition to this upper limit, the number of magnon excitations must meet the requirements of N < 2Ns = Ny,
i.e., be low-excitation. Figure S9(b) depicts the variation of Np2** with detuning Ag. The magnon’s average excitation
number should fall inside the low excitation area shown in Fig. S9(b).
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FIG. S9. (a) Relationship between driving power P and squeezing parameter r. (b) Ng** as a function of detuning Ag. The
parameters used are Rx = 100 nm, the spin density p, = 4.22 x 102" m~2, the spin number of the ground-state Fe3>" ion in
YIG s =5/2, N = ps Vi, Nk = |{(3x)|> = 107, and the total spin Nios = 2Ns = 8.8 x 107.

V. NONRECIPROCAL INTERACTIONS BETWEEN SKYRMION QUBITS
A. Microwave drive to skyrmion qubits

The microwave-driven Hamiltonian is computed in the same method as the interaction Hamiltonian as illustrated
in Sec. III. With the microwave drive By, = By cos (wmwt) €, polarized in the z direction, the Hamiltonian of the
microwave drive can be expressed as

Hw = Qmw €08 (Winwt) c}zub (119)
where By is the amplitude of the microwave drive and wp,y is the frequency of the microwave drive. The strength
of the microwave drive is defined as Qyw = gupBoS/2. It should be noted that Eq. (119) is expanded under the
subspace {]0),|1)}. Transforming to the diagonal basis {|14), [#)_)} of the skyrmion qubits, the microwave-driven
Hamiltonian can be reduced to

Hpw = Qumw €08 (Winwt) Gz (120)

where cos(26) ~ 0 and sin(26) ~ 1 have been used.

B. The effective Rabi coupling

In the previous part, we discussed coherent coupling between qubits mediated by magnons, which was exponentially
enhanced with a two-magnon drive. In this part, we employ magnon dissipation to mediate an non-reciprocal dissi-
pative coupling between skyrmion qubits, and the prior section’s strategy of two-magnon drive to increase coupling
strength also works here. The hybrid system’s Hamiltonian is given by

A~ w R R R R — R R " R — R R " " A~
Hsksp = 761(0; +62) + wKSJ}(SK + ks (SKCT}r + 8%01_) + ks (SKU_Q;,_ + 8}(03> + Hg, (121)
where two qubits are coupled to the same YIG sphere, one of which is driven by microwaves with flqd = -y (ertol +

e‘iwlt&}r) — Qp(e2t5! + e‘mt&i), where € /5 and wy /, are the driving strength and frequency, respectively. Trans-
forming to the rotating frame of drive €2y yields

1 Aq,l ~2
z 2 UZ

+
— ((3_17 + &}k) — Qs [ei(wg—wl)téi + e—i(wz—w1)ta_}r:| ,

+ AK,1§}(§K + Aks <§K&}r + §}(61,> + Aks <§K6i + §J}(62,> ) (122)
122

where Ay 1 = wg—wi and Ag 1 = wg —wi. After the transformation described above, we convert the first drive into a
time-independent term and assume that it is the most significant term, defined as Hy = —§2; (61 +&i). Employing the
transformation Hsksyr = exp(iHot)(Hsksp — Ho) exp(—iHot) and the rotational spin basis |+) = (Jv_) + |[¢1))/V/2,
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one obtains

P

. » Ay, ¢
Hsgsan = == (¢ P00 (=] 4 he) + 2262 + Agadfcdn

>
[\

258 [ = =)+ 2 (=] — €20 () S + e

_f
2

+ As (3502 + 562 )

(123)
()G = )] = €72ty (=] €200 =) () =0t 1 e

By adjusting the drive frequency to satisfy wi; — ws = 2Q; and assuming that drive € is sufficiently strong, the
Hamiltonian (123) can be reduced to

Q2.0 Dgi . R N N 2t W S ST
?20; + Tq’laz2 + A 8tdi + % (SK + sk) 62 + Aks (sKoi + sko’%) . (124)

In other words, in a single system, we possess both JC coupling and effective Rabi coupling.

Hgsisp =

C. The nonreciprocal interaction

When the magnon dissipation is large, we can achieve dissipative coupling between skyrmion qubits by adiabatically
eliminating the magnon modes. The system’s Lindblad master equation is given by

p=—i [ﬁSKSDaﬁ} +vx D[5k]p, (125)

where D[O]p = OpOt — {010, p}/2 is the Lindblad operator and vx is the magnon dissipation. The equation of
motion for the annihilation operator §x is given by

: . R (1, 1, . R
Sk = —iAg 18K — ig <2c7_1Ir + 501_ + 03) — V?KSK. (126)

In the bad-cavity limit vx > Aks, the magnon mode can be eliminated adiabatically, i.e., Sk =0, yielding

—idks (565 + 561 +062)  +  idks (301 + 56} +67)

o D+ 7K /2 B —iAg1 + K /2 (127)
After calculating, we can get
1 —idks (30161 + 3616 +6%61) . idks (30161 + 36161 +6167%)
T Afer R/ A Afer 73/ |
. —idgs (3616l +16kel +6261) | . idgs (366l + 1616l +6167)
S Afer 1%/ R Afer + R/ ’
o —idks (36167 + 16162 +626%) , ¢ idks (36761 + 16261 +6267)
s Ny + /A K Mt
i Ag (i&&ﬁ; 55{2&5 +36162) N Aks (iai&i; i&igl +16162)
Afey + /4 Afeq + /4
| ks (36261 + 36261 +6262)
A% % /4
Substituting Eq. (128) into the master equation (125) yields the master equations
p=—i[Heon, p + TD[S_]p (129)

and

1 1
Heon = §W1&; + 5%&3 —G&la?, (130)
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where Eq. (130) represents the magnon-mediated coherent coupling between the qubits and D[i |/ represents the

magnon-mediated dissipative coupling between the qubits with $_ =1 /26% 4+1/261 +62. The parameters in master
equation (129) and Hamiltonian (130) are defined as

_ L Aridks  p_ ks (131)
2A%{,1 +’Y%</4 A%(,l +’Y%</4

Ak 1Mks G—

Wi=Q, Wao=A41— 55,
! A%(,l +’Y%{/4

The quantum Langevin equations (QLEs) of the system can be represented as

3£=(—in—£)&1_+£a+ [(g_> 2 <Zg+F>

o[-t -t

using Eq. (129).The nonlocal damping in Eq. (129) couples the raising and lowering operators of the two qubits; in
other words, the nonlocal damping induced by the engineered reservoir mediates a nonlocal damping force on each
qubit. Furthermore, the dissipative coupling is asymmetric, allowing for nonreciprocal population conversion. With
the value Wy = Wy = G = 0, the simplified QELSs in the main text are obtained.

S

i} 5,
(132)

VI. THE SKYRMION-MAGNON-NV HYBRID SYSTEM
A. The magnon-NV interaction

This section illustrates the analysis of the magnon-NV interaction. For the convenience of calculation, we establish
a local coordinate system x’y’z’ with the center of the YIG sphere as the origin and the magnetization direction as
the positive direction of 2z’ axis. The NV center is placed directly above the magnetic sphere, at a distance hyy
from the center of the sphere [FIG. S10(a)]. Then the position vector of the magnetic sphere to the NV center is
rkN = (hnv,0,0). In the local coordinate, the quantized magnetization operator is given by M = [mKsK + m}ék]
with the Kittel mode function myg = €,/ + ié,,. Then we can derive the quantized magnetic field

B, = , (133a)
4 h3NV
- st
R V, ’LMK (SK — SK)
B, = K - (133b)
47 hRv
The interaction between the magnetic sphere and the NV center is described by
Hin = —7eB - 8 = —7.By S, — 7By S,. (134)
Exploiting S, = (S +5_)/2 and S, = (S, — S_)/(2i), the interaction Hamiltonian is given by
I:IKN = — KN <§KS+ + §TK5'7) s (135)

where the coupling strength is given by Axn = ’yeMOMKR /(2h3) [FIG S10(b)]. Here we have used the rotating

wave approximation to neglect the anti-rotation terms 3 KS+ and §xS_. In the subsequent calculation, we take the
radius of the magnetic sphere and the distance from the magnetic sphere to the NV center as Rx = 100 nm and
dnxv = 10 nm, respectively, which results in the magnon-NV coupling strength is Axn /27 = 0.48 MHz.

B. The skyrmion-magnon-NV hybrid system

In this section, we will derive the Hamiltonian for the skyrmion-magnon-NV hybrid quantum system in detail.
The NV center is situated close to the YIG magnetic sphere, as shown in FIG. S10(a). For a single NV center, the
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FIG. S10. (a) The skyrmion-magnon-NV hybrid quantum system. Here we take Rx = 100 nm and dxyv = 10 nm. (b) The
coupling strength Axn between the NV center and the YIG sphere is plotted as a function of the magnetic sphere’s radius Rx
and the distance dnxv from the magnetic sphere’s surface to the NV center. (c¢) The relationship between the energy level of
the spin qubit and the bias magnetic field By is illustrated. (d) The magnon-mediated skyrmion-NV interaction strength and
cooperativity are displayed as a function of the squeezing parameter r. We apply logarithmic coordinates to the cooperativity.
The parameters are Aks/27 = 6.35 MHz, Axn/27m = 0.48 MHz, Wi = 10A{s, ysiy /27 = 1 MHz, and ynv /27 = 1 kHz.

ground-state energy level structure is the ground triplet state |0,+1), and the zero-field splitting between |0) and
degenerate sublevels | £ 1) is D /27 = 2.87 GHz. When a homogeneous static magnetic field along the z’ direction is
introduced, the degenerate states |+ 1) can be removed because of the Zeeman effect. Then the NV center is described
by

Hyxy = DS? + 685, (136)

where 6 = v.Bnv. FIG. S10(c) shows the tuning of the spln qubit resonance frequency by an applied magnetic field

Bxv. In the subspace {|0),|£1)}, Hxy can be reduced to Hyy = (D +68)|+ 1)(+1| + (D — )| — 1)(—1|. Here |0) and
| + 1) are considered as spin qubits. Then the interaction between the YIG sphere and the NV center is described by

Hyn = —Akx (3561 + hec.) (137)

with the coupling strength Axn = Yepo Mg R3:/(2h3n,). FIG. S10(b) shows the dependence of the spin-magnon
coupling strength on the YIG sphere radius Rx and the distance dyy between the YIG sphere surface and the NV
center.

The skyrmion-magnon-NV hybrid quantum system can be described by the Hamiltonian

. A, Anv .
Hsgn = —26, + ——a6V

K
9 +AK$KSK+>\K3(SKU++}LC) /\KN(éK(s’_lEVﬁLh.C.) - Td(g;?‘i’g%() (138)

with Axv = wnv —wq and wyy = B4 — Ey. The Pauli operators for the NV center are defined as 6YV = |+ 1)(+1| —
10)(0] and 63V = |+ 1)(0]. Utilizing the Bogoliubov transformation and the rotating-wave approximation (RWA), we
can obtain

gSa _ Bag | ANV NV | neff ot 0oV

Hgpn = - 0t —5 0 + At + A (mé, + h.c) — XK (1 + h.c.), (139)
where AST = Ag/cosh(2r), X% = Agse™/2, Mk = Akne™/2, and tanh(2r) = K4/Ag. The coupling strength
)\‘f{HN = Aknexp(r)/2 is enhanced exponentially. With the large detuning condition, the magnon modes can be
adiabatically eliminated to yield the effective skyrmion-NV interaction

HSE = Ag/26. + Anv /26 + Asn (646N + Hee). (140)

Asn = MENL /Wi is the effective coupling strength with W = AST — A, As shown in Fig. S10(d), the effective
coupling strength and cooperativity Csn = 4A§N /("/Nv7sky) are drawn versus the squeezing parameter r. The effective
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FIG. S11. In the interaction picture, the Hamiltonian Eq. (139) is used to show the dynamical evolution of the skyrmion-magnon-
NV hybrid quantum system with different squeezing parameters r. The parameters are Axs = Axn, and ysky = YK = 2AkN.
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FIG. S12. The dynamical evolution of Fock state conversion without (r = 0) and with (r = 4) parametric amplification is
shown in (a) and (b), respectively, with initial state |sky)|t)mag)|tnv) = [1)]0)]0). (c) and (d) show the state conversion
of the superposition state without (r = 0) and with (r = 4) parametric drive, respectively. The parameters of (a) and (c)
are AL (1) = 13(\kne”/2)sin(mt/160), Ak (t) = (Axne”/2) cos(nt/80), and r = 0, and that in (b) and (d) are Ag%(t) =
13(Akne” /2) sin(nt/3), Aiin (t) = (Akne” /2) cos(nt), and 7 = 4. The other parameters are Ysiy = Y5 = 2AKN.

coupling strength can reach 2.16 MHz when the squeezing parameter r is set to 4.5, where the cooperativity Csn =
7300 > 1. That is, strong coupling between the skyrmion and the NV center can be mediated by the magnon.

As shown in FIG. S11, the dynamics simulation employing Eq. (139) shows that, in the absence of a parametric
drive, there is no energy exchange between the three subsystems due to the weak coupling between the NV center
and the YIG sphere. As the parametric drive is introduced and increased, the energy exchange between the three
subsystems appears and accelerates.

Through the foregoing analysis, the interaction between the NV center and skyrmion has been mediated. And then,
we implement coherent quantum state conversion via the dark state, which is less impacted by the magnon dissipation
than direct state conversion [12-16]. We take the resonance condition A, ~ Axy ~ A% and introduce two polariton
operators Z]br = sinad_ + cos NV and Z)dk = —cosad_ + sinasNV with tana = f/\%ﬂs/)\‘f(ﬂN. Defining the hybrid
modes Uy = (Ubr + 1) /+/2, the hybrid system’s Hamiltonian can be diagonalized ﬁg?ﬁ = wdkl;l;kl;ldk + wﬂf[il;br +

w WU with we = wae + AL + 482 and wae = ASE, implying three mutually independent excitations. We
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FIG. S13. (a) The model of the skyrmion-magnon-SQ hybrid quantum system. (b) Energy levels of transmon qubit. The
variations of JxT, gom, and wry with parameter ®,/®§ for a given oy are shown in (c), (e), and (g), respectively. JxT, gom,
and wry are depicted as functions of ®,/®5 and a in (d), (f), and (h), respectively.

are interested in the polaronAZ:ldk because it misses the magnon mode, which indicates that the magnon mode is in
a dark state. We find that Ugx = —6_ when o = 0, and Uy, = 6NV when a = /2. As we evolve a adiabatically
from 0 to 7/2, we can enable the quantum state conversion from the skyrmion qubit to the NV center. As illustrated
in FIG. S12, We employ the Hamiltonian I:ISSI%N for the dynamical evolution in the interaction picture. Without a
parametric drive [FIG. S12(a)], even employing the dark state conversion technique, the quantum state conversion
between the two subsystems is impossible because the coupling strength of the NV center and YIG sphere is weak.
When the parametric drive is introduced [FIG. S12(b)], the system’s coupling strength is enhanced exponentially,
enabling the realization of quantum state conversion and dramatically accelerating the speed of state conversion.
Except for the transfer of Fock states, the skyrmion-magnon-NV hybrid quantum system can also realize the state
transfer of superposition states, as shown in FIG. S12(c) and (d). The initial states of the skyrmion, magnon, and NV
center are, respectively, |[{siy) = (|0) + [1))/v/2, |tmag) = |0), and |1hxv) = |0). When there is no parametric drive
[FIG. S12(c)], the quantum state conversion between the two subsystems is impossible. Once the parametric drive is

introduced [FIG. S12(d)], the system’s coupling strength increases exponentially, allowing quantum state conversion
between the two subsystems.

VII. THE SKYRMION-MAGNON-SQ HYBRID SYSTEM

A. The coupling between magnons and SQs

In this section, we will explore the construction of the skyrmion-magnon-SQ hybrid quantum system in detail. The
flux-tunable transmon qubit is positioned next to the YIG magnetic sphere, as seen in FIG. S13(a). The energy level
of the transmon qubit is depicted in FIG. S13(b). Magnetic stray fields are used to couple the YIG sphere and the
superconducting qubit. The interaction between the YIG sphere and the transmon qubit can be described by the
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Hamiltonian
I:IKT = JKT (6T§K + h.C.) + goméTé (§K + §}<) , (141)

where the coupling strength is defined as

fotapt g (2Ec Epax3)1/4

Jier = A5 din — [S(ow)P/t (142)
o = foptaps (1 — %) sin(2¢y)/8Ec B2~
M 16D5 din [S(n)° '

with ¢, = 7®,/®5, BT = E} — E2, and S(¢) = \/C082 ¢y + a%sin? ¢y, ay, Ej, Ec, ®, and ®§ stand for
imbalance between the Josephson energies or superconducting interference device (SQUID) asymmetry, Josephson
energies, charging energy, externally applied flux, and the flux quantum, respectively. The first term in Hamiltonian
Eq. (141) is the JC interaction, while the second term is analogous to the radiation pressure interaction in an opto-
mechanical system. We take typical parameters, which are Rx = 200nm for the YIG sphere radius, dmin = V2R,
®5 = h/(2e), Em*/h = 50 GHz, and Ec/h = 400 MHz. FIG. S13(c), (d), (e), and (f) show the coupling strengths
JxTt and gom as a function of &/ @bg . The figures show that parameter ®,/®; can be used to modulate the coupling
strengths Jxt and gom. In particular, when we choose the parameter ®,/®3 = 0.5, the coupling strength gon, will
vanish, meaning that the JC model accurately describes the coupling between the YIG sphere and the superconducting
qubit. In the following analysis, we set the value ®;,/®5 = 0.5, and the Hamiltonian Eq. (141) can be simplified to

HKT = JKT (6T§K + hC) . (143)
Next, we investigate the free Hamiltonian of superconducting qubits, which is denoted by

E
fo— 7%%&*&, (144)

IA{Tr = sté
where E¢ denotes the anharmonicity of the qubit energy level and wsq = /8E}**S(¢y)Ec — Ec indicates the
transmon excitation energy. According to FIG. S13(b), the second nonlinear term (the self-Kerr term) is what causes
the energy level of the superconducting qubit to be inhomogeneous. Hence, we can select a qubit made up of the
energy levels |g) and |e), whose resonance frequency is wr, = wsq. FIG. S13(g) and (h) display the resonant frequency
wry as a function of @/ <I>*09 . When «y is given, wr, takes the minimum value at @/ @5 = 0.5. In the subsequent
analysis, a;y is set to 0.65, at which case the resonant frequency of the qubit wt,/27 ~ 9.8 GHz and the coupling
strength of the JC interaction Jxr/2m &~ 2.62 MHz. The typical qubit relaxation and dephasing times is given by
Ty =T, = 20 us, that is, the coupling of superconducting qubits and magnons can reach the strong coupling region.

B. Nonreciprocal excitation conversion between skyrmion qubits and SQs.

The non-reciprocal population conversion between skyrmion qubits and SQs is investigated in this section. Consider
a YIG sphere that is coupled to a skyrmion qubit and a SQ and is described by the Hamiltonian
- o Wq . wry < . o . o

Hskr = wKs}(sK + 7‘1@ + %Uf + Aks (5K0+ + s}(a_) + JKT (SKJJSr + s}af) , (145)

where the Pauli operators are defined as 65 = |e)(e| — |g)(g], 65 = |e)(g|, and 6% = |g)(e|. Because the radiation

pressure coupling term is non-resonant, it is ignored here. The magnon-SQ coupling strength can be made to satisfy
Ikt = T2 c08(wact + ¢c) by modulating the external flux ¢,, where

foftapt Cy(2Ec ERax3)1/4

0 _ 14
Jir 408 dppin h (146)

Wae, and ¢, are the modulation frequency and phase, respectively. When the system is transformed to the rotating
frame U = exp(iwa.t67 /2), its Hamiltonian is reduced to

At 3 . Ny 5 A8 =i NP
—ﬂaf + Aks <5K0+ + s}a,> + Tt (sKer e 4 s}afe ¢e) , (147)

A R " w "
Hskr = WKSE(SK + 7(102 + 5
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FIG. S14. The population conversion dynamics are presented in (a) and (b), respectively, for excitation of the skyrmion qubit
and SQ. The parameters used are n = 1, ¢ = 7/2, Gss = —nl'ss/2, and vk = 10Aks.

where A1y = wty — wae. Then, going into the interaction picture
Hsir = Aks(3x &4 + 5580, (148)

where £ = 6_ +ngSeide = )AZL and 1 = J%r/(2Mks). The system’s master equation is

p(t) = —i[Hskr, p] + vx D3k ]p. (149)
In the bad-cavity limit vx > Aks, Jr, adiabatically eliminating the magnon modes using the approach described in
Sec. V produces

p=—ilHss, p] + Tss D[E_]p, (150)

where Hgg = Gss(606° + 6,&?) is the coherent coupling between the skyrmion qubit and the SQ, which can be
implemented with an auxiliary cavity. The coherent and dissipative coupling strengths are denoted by Gss and
I'ss = 4\%g /7K, respectively. The system’s QLEs can be expressed as

: r Tss
o= ——;S 6+ (z'gss + —;S ne“z’c> 6%6.,
(151)

. r . . r —i A A
8 = 15205 + (iss 4 TE2ne ) 502,
It was discovered that by modifying the phase ¢, the competition between coherent and dissipative coupling can be
realized, and therefore the asymmetric response between qubits can be accomplished. Specifically, with ¢. = 7/2 and

Gss = —nl'ss/2, we get

6. =—Tgs/26_,
ss/ o . (152)
—Fss/277 (37 — irssn&,@Z s

q.
|

indicating that the SQ is influenced by the skyrmion qubit and, conversely, the skyrmion qubit is unaffected, implying
that complete isolation from SQs to the skyrmion qubits is accomplished. As demonstrated in Fig. S14, the population
conversion from SQs to skyrmion qubits is completely isolated.

VIII. ANALYSIS OF EXPERIMENTAL FEASIBILITY BASED ON MICROMAGNETIC SIMULATION
A. Model simplification

The feasibility of the model proposed here will be discussed through micromagnetic simulations. First, a classical
picture of the interaction between YIG spheres and skyrmions is described, which will be the basis for performing
micromagnetic simulations. Here, we solely take into account the Kittel mode in a YIG sphere, all spins in the
micromagnet precessing in phase and with the same amplitude. Moreover, the Kittel mode in YIG spheres can
also be described by a macrospin model, meaning that the excitation of magnons can correspond to the precession
of macrospins (or magnetic moments). This uniform precession mode leads to a time-dependent field around the
magnetic sphere.
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FIG. S15. Spatial envelope of the time-dependent gradient field caused by spin wave excitations.

In this work, &, qubits are considered, and a transition in the quantum state of such a qubit classically corresponds
to a change in the z-component of the magnetization, analogous to a change in the charge on the island in a super-
conducting charge qubit. In other words, in order to verify the coupling of Kittel modes in the YIG sphere and the
skyrmion qubit, one can equivalently demonstrate the classical phenomenon that the time-dependent gradient field
due to the excitation of the Kittel modes can drive a variation of the z-component magnetization of the skyrmion.

Next, the time-dependent gradient field due to the excitation of the Kittel mode is derived. In the manuscript,
we consider the magnetic sphere being magnetized along the y direction. The classical mode function describing the
Kittel mode is given as m(r,t) = m (e, +ie;) e ! + c.c., where m represents the amplitude of precession, which
satisfies the condition m < M. The time-dependent gradient field caused by the precession of the magnetic moment
can be calculated using the magnetic dipole model

B(r,t) = Z—i [T(‘:—F)’") - Tﬁs} (153)

with p(r,t) = m(r,t)Vk and r = \/2? + y2 + h3%. After algebraic calculation, each component of the time-dependent
gradient field can be written as

B, (r,t) = Byssinwt + By cos wt, (154a)
By(r,t) = Byssinwt + By, cos wt, (154b)
B, (r,t) = Byssinwt + By cos wt, (154c¢)
where
B = B (T ) e B o
By — ZmZEVK ?):J_sy’ By — _ZmZ;VK SIZ){y’ (155b)

2mu0VK 3.%'hK QmMQVK 3]7%( 1
st = _T 5 3 Bzc = T 7"_5 - 7'_3 . (155C)

Next we simplify the time-dependent gradient field (154). For a magnetic sphere with a radius Rx = 100 nm and
a precession amplitude m = 0.1M; for the Kittel mode, the spatial envelope of the time-dependent gradient field
experienced by the skyrmion is illustrated in Fig. S15. It can be easily noticed that { By, B,c} > {Bxc, Bys, Byc, Bus},
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FIG. S16. The approximate solutions Bxsapprox and Byc,approx and their errors are respectively depicted in (a) and (b), and
(c) and (d).

meaning Byg and B, provide the main contributions, and the contributions of other terms can be neglected. Therefore,
Eq. (154) can be simplified to
B, (r,t) = Byssinwt, By(r,t) =0, B.(r,t) = B, coswt. (156)

The spatial envelopes of Bys and B,., as observed in Figs. S15(a) and (f), are paraboloidal and can be simplified using
series expansion. Retaining terms up to the second order, By and B,. simplify to

2mpuo Vi < 1 9 3 2)
Bxs,a rox ~ ————— | =73~ + 5527 + o5 Y ) (1573‘)
PP 4 h3.  2h5 2h3,
2m/,l,0VK ( 2 6 2 6 2)
Bzc,a rox ~> T3 T 7F ¥ —3EY . (157b)
p o TR T

Figure S16 displays the field envelopes described by the approximate expressions Bysapprox and Bc approx, along
with their deviation from the exact solution, demonstrating that the approximate expressions derived from the series
expansion effectively characterize the spatial envelope of the field. The zeroth-order term in the approximate expression
represents a uniform field. The in-plane time-dependent uniform field does not affect the dynamics of skyrmion qubits
and can be ignored; however, the out-of-plane time-dependent uniform field does affect the dynamics of skyrmion qubits
and cannot be ignored. By redefining constants and using the width of the skyrmion wgxy, = 8.4 nm (Sec. VIIIB)
as the length scale, the final simplified model of the magnetic field induced by magnon excitation B = (B,,0, B,) is
obtained as

B, = B%(32% + y*)sinwt, B, = B*coswt — B%(2? 4 3?) coswt, (158)
where
3mroK muovK 0 3mu0VK hK
BY = 2MHOTK pu , BY = JMHOVK g . 159
r 4 hb # mh3 # whb Weky (159)

B. Micromagnetic simulation

To simulate the dynamics of the skyrmion qubit induced by a time-dependent gradient magnetic field resulting
from the excitation of the magnon mode in the YIG sphere, we consider a two-dimensional ferromagnetic film with
exchange frustration based on the Ji-Js-J5 classical Heisenberg model on a simple square lattice [17-20],

H:—J1 E mi'mj—Jg E mi-mj—Jg E mi-mj
<i,j> <L1,5> Ki,j>>

) (160)
~K Y (mi)* = Msy B-m;—;Ms) Bp-m,
7 [ [

where m; = M, /Mg represents the normalized spin at the site ¢ with Mg being the saturation magnetization,
ie., |m;| = 1. Ji, Jo, and J3 denote the ferromagnetic nearest-neighbor (NN), antiferromagnetic next-NN (NNN),
and antiferromagnetic next-NNN (NNNN) intralayer exchange interaction constants, respectively. (i,7), ((z, 7)), and
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FIG. S17. (a) The initial state of the skyrmion, with a helicity of w/2. (b), (c), and (d) respectively depict the temporal
evolution of the skyrmions total energy, the helicity, and the z-component magnetization. The shaded regions denote the
presence of a time-dependent gradient field, which persists for 400 ps.

({{(i,7))) run over all the NN, NNN, and NNNN sites in the ferromagnetic layer, respectively. K is the perpendicular
magnetic anisotropy (PMA) constant. B is the applied external magnetic field. Bp is the demagnetizing field
resulting from the dipole-dipole interaction. Note that the dipole-dipole interaction favors the Bloch-type skyrmions
with the helicity values of n = w/2 and n = 37/2. The spin dynamics driven by the magnetic field is described by the
Landau-Lifshitz-Gilbert equation [21]

dm dm

—_— == X h X —— 161

7 Yom eﬂ+a<m dt), (161)
where heg = —#O}WS - % is the effective field, ug is the vacuum permeability constant, ¢ is the time, « is the Gilbert

damping parameter, and vy is the absolute gyromagnetic ratio. The simulation parameters are [19, 20]: J; = 3 meV,
Jo = —0.8 (in units of J; = 1), J3 = —0.6 (in units of J; = 1), K = 0.005 (in units of J;/a®> = 1), a = 0.01,
Yo = 2.211 x 10° m A~! s7!, and Mg = 580 kA m~!. The lattice constant is @ = 0.4 nm, and thus the cell size is
a3. The simulated model is a square film with 21 x 21 spins, that is, the length and width are equal to 8.4 nm. We
also assume that the edge spins have enhanced PMA of K = 0.05 in order to confine the frustrated skyrmion. The
simulation is carried out by using the Object Oriented MicroMagnetic Framework (OOMMF) [22] upgraded with our
extension modules to simulate the model.

In the simulation, we first apply a time-dependent gradient magnetic field to drive the dynamics of a relaxed
frustrated skyrmion at the square film center. The initial helicity state of the skyrmion is n = /2. For the sake
of simplicity, we assume that the profile of the time-dependent gradient magnetic field is B = (B,,0, B,) with
B, = BY(32? +y?)sin(2n ft) and B, = BY cos(2m ft) — B%(2? + y?) cos(27 ft). We assume a frequency of f = 20 GHz
and field strength parameters of BY = 0.32 mT, B? = 1.29 mT, and B% = 73.89 mT. The time-dependent gradient
magnetic field is applied for 400 ps during ¢ = 0 — 400 ps, followed by a 1000-ps-long relaxation without the magnetic
field. Namely, the total simulation time is 1400 ps.

C. Results and discussion

The results of the micromagnetic simulation are presented in Fig. S17. The initial state of the skyrmion, with a
helicity 7/2, is depicted in Fig. S17(a). As discussed in Sec. VIIT A, the classical correspondence of the interaction
between magnons and skyrmion qubits is as follows: the excitation of magnons leads to the generation of a time-
dependent gradient field, which influences the dynamics of skyrmions. Here, we focus on &, qubits, where the
transitions of their quantum states correspond to changes in the z component of the skyrmion’s magnetization, while
the helicity oscillates around its equilibrium position. Simultaneously, transitions in the quantum states correspond
to changes in the system’s energy, the classical analog of which is the change in the total energy of the skyrmion.
As described in Sec. VIIIB, the interaction between the magnon and the skyrmion qubit is simulated by applying
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FIG. S18. Spin wave eigenmodes are identified using the finite element simulation software COMSOL. Panels (a), (b), and
(c) illustrate the uniform precession modes, known as Kittel modes, in a circular dot (radius R, = 100 nm and thickness
¢ =10 nm), a square dot (width w = 200 nm and thickness ¢ = 10 nm), and a YIG sphere (radius Rx = 100 nm), respectively.
In COMSOL, the YIG material parameters are defined with values Gilbert damping o = 5 x 10™%, saturation magnetization
M, = 587 kA /m, exchange coefficient Aex = 0.328 X 1010 A/m, and magnetic crystal anisotropy Kan = 0.385 x 10° A/m.

the time-dependent gradient field (158). After 400 ps, the time-dependent gradient field is removed to simulate the
relaxation process of the skyrmion qubit. As shown in Figs. S17(b, ¢, d), when the time-dependent gradient field
exists, the total energy of the skyrmion, the helicity, and the z component of the magnetization all oscillate over time;
when the time-dependent gradient field is removed (i.e., the skyrmion qubits are not coupled to the magnons), it can
be seen that the total energy of the skyrmion, the helicity, and the z component of the magnetization all gradually
relax to the steady state, and after a sufficiently long time, they will relax back to the initial steady state.

In summary, using micromagnetism simulations, we demonstrate the feasibility of the scheme proposed here. All
the simulations here are based on the YIG magnetic sphere, but these results are equally valid for the magnetic
multilayer structure discussed later.

IX. MAGNETIC MULTILAYER CONFIGURATIONS
A. Micromagnetic simulations of spin waves

In the preceding discussions, Kittel modes in spherical YIG materials are highlighted. Additionally, spin wave
behaviors in non-spherical magnetic geometries have received extensive attention. Here we focus on the uniform
precession mode in square and circular dots, which corresponds to the case k = 0 [2]. The orientation of magnetization
presents two scenarios: perpendicular to the dot plane, and within the dot plane. For the former, the resonance
frequency, denoted as w = wy = |7y|po(H — M), while for the latter, designated as w = \/wg(wo + war) [2]. These are
defined where M, represents the saturation magnetization, H is the applied field, and wys = |v|uoMs. To validate
these uniform precession modes, we conducted simulations using micromagnetic techniques. In these simulations, YIG
material was selected for its small magnetic damping o = 10~% ~ 107°.

Initially, eigenmodes in the circular dot, square dot, and YIG sphere were investigated using the finite element
simulation software COMSOL, as depicted in Fig. S18. This analysis confirmed the presence of uniform precession
modes, namely Kittel modes, in each geometry. Subsequent simulations, employing the micromagnetic software
mumax3 [23], focused on spin wave excitation via a magnetic field pulse. These simulations exclusively addressed
classical spin waves. Figures S19(a) and (b) reveal that the Kittel mode in both circular and square dots follows an
elliptical, rather than circular, precession trajectory. This elliptical precession is attributed to the thinness in the
z-direction of these dots, resulting in surface spin behavior akin to pinning, which impedes circular precession. In
contrast, the heightened symmetry of the YIG sphere facilitates circular precession trajectories for its Kittel modes,
as shown in Fig. S19(c).

B. Magnon-skyrmion qubit coupling

This section focuses on the two models depicted in Fig. S20, with an emphasis on calculating their coupling strengths.
Here, a magnetic dot is separated from the skyrmion by a spacer, its thickness indicated as | = 5 nm. The interaction
between the magnons and skyrmions occurs through a magnetic field. The magnetic dots are magnetized in the y
direction. Given that the calculation methodology for coupling strength is identical for both square and circular dots,
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FIG. S19. Figures (a), (b), and (c) respectively represent the excited Kittel modes in a circular dot (radius R. = 100 nm and
thickness ¢ = 20 nm), a square dot (width w = 100 nm and thickness ¢ = 10 nm), and a YIG sphere (radius Rx = 100 nm).
The shaded regions in the figure correspond to areas with an applied driving magnetic field. Figure (d) illustrates the magnetic
field applied during the complete evolution. For ¢ < 0.25 ns, the magnetic field is set to B = (B sinwt, By, 0); for ¢t > 0.25 ns,
it is defined as B = (0, By, 0), where By = 10 mT, w/27 =1 GHz, and B, = 0.1 T.
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FIG. S20. Figures (a) and (b) respectively present models of square and circular dots coupled with skyrmion qubits, with the
YIG dot and the skyrmion separated by a spacer.

the analysis in this instance will use square dots as a representative example to examine the coupling strength between
the magnon and the skyrmion qubit.

This analysis considers a square dot characterized by dimensions (w,w,c), where w represents the width and ¢
denotes the thickness. To calculate the magnetic field impacting the skyrmion qubit, generated by this square dot, a

discretization approach is applied. Within this framework, the magnetic field from each volumetric microelement of
the dot is estimated using a magnetic dipole model

_ HodVsp [3rsp - (Msp -7rsp)  Msp

B
SD I

= 3 (162)
Tsp TsSp

with rsp = (¢ — =5,y — ys, —2s). The distance from any point of the square dot to the skyrmion is rgp =
\/(x —x5)2+ (y — ys)? + 22, where the coordinates of any point of the square dot are (xs,ys, 25). Following the
quantization process of the spin wave in Sec. I, we can introduce the quantum magnetization operator Mgp =
Mgsp(mgspSsp + ﬁgDégD) with msp = 7n.€, + ié;, where for a square dot, the zero-point magnetization can be

written as Msp = /Ay.M;/(2Vsp) with Vgp = w?c. The parameter 1. indicates that the trajectory is an ellipse.
Depending on the results in Fig. S19(b), 1. can be approximated as 0.5. Then the quantized magnetic field in each
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FIG. S21. (a) illustrates the variation of coupling strength with the width w of the square dot. (b) delineates the coupling
strength’s dependence on the thickness ¢ of the square dot.
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direction can be expressed as

~ ,UdeVSDMSD 3 [Z (éSD B ggD) (‘7: - :L'S) — ZsTle (<§SD + g;D)] ) ('§SD — §£D)
B, = , Pemy) b (163a)
Am "Sp TSp
3 i (4sp — 8Ly) (z — ) — zsme (SsD + 81
A ,UOdVSDMSD |: ( SD SD) s slle \ 5SD SD
By == : (y—vs) ¢ (163b)
d SD
A UOdVSDMSD 3 [7’ <§SD B §;D) ('T - 373) — ZsTe <§SD + é&))} (§SD - ééD)
B = 4m 5 (=2) = =5 —" - (163c)
SD SD

According to Sec. III B, the interaction Hamiltonian can be given by

N S
HSDK = 79#615 / /dTBSD - 8. (164)
Vsp

After a similar algebraic process as in Sec. III B, the interaction Hamiltonian can be reduced to

Hspic = iGru (Ssp64 — slpo ) +Grene (S +8lpo ) +iGrar (Ssp — sl ) &+ Grene (Ssp + 8l ) 62, (165)

where the counter-rotating terms have been ignored. The coupling strengths are denoted as Gy = 1/2[(gl + gy) -
(92 +9,)], Grp = 1/2[(92 + 92) + (93 + g2)], Gum = 1/2g}, and Grp = 1/2g2. The detailed expressions of gi-2%* and
g% in the coupling strength are

M, - —z)® 1
gl = —MguBS/dﬂcs/dys/dzs/dp/dqﬁp [(M - 3) sin Qg cos¢] , (166a)
dm "SD "Sp
2
g2 = MOMSDguBS’/dxs/dys/dzs/dp/dgbp [(w — ;) sin@osin¢>} , (166Db)
dm TSD TSp

95 = MOYSDQMBS/drES/dys/dzs/dp/d¢p [3: (z
T r3n
4 _ MOMSD
gy = ————gupS [ dxs [ dys [ dzs | dp | dép | == xs)sinOgsing| (166d)
SD
g,u S/da: /dyg/dzg/dp/dqbp{ )(y Ys) sin O bln¢:| (166e)
gu S/d:cs/dys/dzs/dp/dgﬁp{ )(y Ys) sin Og cosgb} (166f)
= /L()ZliwguBS/dxs/dys/dzs/dp/d(ﬁp [%(y—ys) sin B¢ singb] , (166g)
SD
gy = MguBg/d:vs/dys/dzs/dp/dép Ffs(y—ys)sin@o cos 4 : (166h)
4 T3p

xs) sin O cos 4 ) (166¢)
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M, S - ds

gl = _MQ“BS/da:s/dys/dzs/dp/dqsp F’(“"s“zsu —cos@o)} : (1661)
47 A "Sp
M,

g% = “04 SD Q“Bs/d /dys/dzs/dp/dqsp[ } (1 — cos Oy). (1667)
0 SD

We have dimensionlessized the integral in the expression using the lattice constant a. Taking the parameters w =
100 nm ~ 200 nm and ¢ = 5 nm ~ 20 nm, the coupling strength can be obtained via numerical calculations as shown
in Fig. S21. Numerical calculations shows Gy =~ 0 and Gpm = 0. Figure S21(a) illustrates that the coupling strength
decreases as the width w of the square dots increases, while Figs. S21(b) shows that the coupling strength increases
as the thickness c¢ of the square dots increases. Figure S21 also demonstrates that the coupling of square dots and
skyrmion qubits can reach the strong-coupling region (Grp/27,Grp/2m > max{vsky, Yk }). In other words, strong
coupling of magnons and skyrmion qubits is experimentally feasible in the magnetic multilayer structure (Fig. S20).
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