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I. GRAVITY-CAPILLARY WAVES AND
FINITE-DEPTH EFFECTS

A. General equations

Here we provide the derivation of Eqs. (1) of the main
text for deep-water gravity-capillary waves and consider
the finite-depth effects. We start with the standard text-
book equations involving the velocity potential Φ(𝑥, 𝑦, 𝑧):
𝒱 = ∇Φ [S1] and restrict ourselves to linear waves, as-
suming low-amplitude disturbances of the initially flat
surface at 𝑧 = 0.

Potential flow of an incompressible non-viscous fluid is
described by the Laplace’s equation

∇ · 𝒱 = ΔΦ = 0 , (S1)

with the boundary conditions imposed at the free surface
of the liquid and at its finite depth 𝑧 = −𝐻. The kine-
matic boundary condition for the vertical velocity at the
surface yields in the linear approximation:

𝒱𝑧

⃒⃒⃒⃒
𝑧=0

=
𝜕𝒵
𝜕𝑡

=
𝜕Φ

𝜕𝑧

⃒⃒⃒⃒
𝑧=0

. (S2)

Here 𝒵(𝑥, 𝑦, 𝑡) is the local vertical displacement of the
water surface. At the bottom of the liquid, the no-
penetration boundary condition 𝑉𝑧(𝑧 = −𝐻) = 0 reads

𝜕Φ

𝜕𝑧

⃒⃒⃒⃒
𝑧=−𝐻

= 0 . (S3)

Next, the surface tension at the curved water surface
𝑧 = 𝒵(𝑥, 𝑦, 𝑡) provides the local contribution to the pres-
sure under the surface: 𝑝st = −𝛼Δ2𝒵, where 𝛼 is the
surface-tension coefficient and Δ2 = 𝜕2/𝜕𝑥2 + 𝜕2/𝜕𝑦2 is
the 2D Laplace operator. With this contribution, the lin-
earized Euler equation results in the near-surface (𝑧 = 0)
equation of motion [S1]:

𝜕Φ

𝜕𝑡
= −

(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
𝒵 , (S4)

where 𝑔 is the gravitational acceleration. Applying the
time-derivative 𝜕/𝜕𝑡 to this equation and using Eq. (S2),

we obtain: [︂
𝜕2Φ

𝜕𝑡2
+

(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
𝜕Φ

𝜕𝑧

]︂
𝑧=0

= 0 . (S5)

We seek for the plane-wave-like solutions:

Φ = ReΦ0(𝑧) exp(−𝑖𝜔𝑡+ 𝑖k · r2) . (S6)

Substituting this into Eq. (S1) yields 𝑑2Φ0/𝑑𝑧
2 = 𝑘2Φ0,

and using the boundary condition (S3), we obtain

Φ0(𝑧) = 𝐶 cosh [𝑘(𝑧 +𝐻)] , (S7)

where 𝐶 is a constant amplitude. Substituting Eqs. (S6)
and (S7) into Eq. (S5), we derive the well known disper-
sion relation for the gravity-capillary waves:

𝜔2 =
[︀
𝑔𝑘 + (𝛼/𝜌)𝑘3

]︀
tanh(𝑘𝐻) . (S8)

For 𝑘𝐻 > 1, one can use the deep-water approximation
tanh(𝑘𝐻) ≃ 1. For 𝑘 ≫

√︀
𝑔𝜌/𝛼 the capillary effects

dominate, whereas for 𝑘 ≪
√︀
𝑔𝜌/𝛼 the gravity domi-

nates.

B. Deep-water gravity-capillary waves

We first consider capillary effects in the deep-water
approximation. In this case, all monochromatic fields Φ,
𝒱 , etc. share the same exponential dependence on 𝑧:
∝ exp(𝑘𝑧). To derive the equations of motion (1) in the
main text, we apply the operator (𝜕/𝜕𝑡)∇2 to Eq. (S4)
supplied with relations (S1), (S2), and obtain:

𝜕2𝒱2

𝜕𝑡
= −

(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
∇2𝒱𝑧 . (S9)

Next, since all scalar fields are proportional to each other
in linear deep-water waves, we can use Eq. (S5) with the
substitution Φ → 𝒵. Applying operator (𝜕/𝜕𝑡) to this
equation, together with relations (S1), (S2), we obtain:

𝜕2𝒱𝑧

𝜕𝑡
=

(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
∇2 · 𝒱2 . (S10)

Since the Eulerian velocity field is related to the dis-
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FIG. S1. Effect of finite water depth 𝐻 on a superposition of monochromatic plane water waves. These plots show three
wavevectors k of interfering plane waves and the corresponding trajectories ℛ(𝑡) of water-surface particles for each of these
plane waves. (a) In the deep-water approximation 𝑘𝐻 ≫ 1, the plane-wave water-particle trajectories are circles, whereas (b)
in the finite-depth case these are ellipses squeezed vertically by the factor 𝜀 = tanh(𝑘𝐻) < 1. The water-particle trajectories of
the resulting interference field can have complex distributions, as shown in the main text, but the deep-water and finite-depth
cases (a) and (b) always differ by the same global scaling 𝒵 → 𝜀𝒵.

placement as 𝒱 = 𝜕ℛ/𝜕𝑡, the same equations (S9) and
(S10) are valid for the displacement field on the water sur-
face. Assuming the monochromatic ansatz 𝜕/𝜕𝑡 → −𝑖𝜔
and ℛ → R, we arrive at Eqs. (1) of the main text:

𝜔2R2 =

(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
∇2𝑍 ,

𝜔2𝑍 = −
(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
∇2 ·R2 . (S11)

Note that the difference between the capillary-wave and
gravity-wave regimes, with different dispersion relations,
is inessential for our study. Indeed, the difference in dis-
persions is important for the evolution of wavepackets
(i.e., non-monochromatic waves), but it does not affect
the interference of monochromatic waves. This difference
only affects the velocity of motion of spatiotemporal vor-
tices in Fig. 3, but does not change this phenomenon
qualitatively.

C. Finite-depth effects

We now examine the effects of finite water depth 𝐻.
Let us consider a single plane wave propagating along the
𝑥-axis: k ≡ (𝑘𝑥, 𝑘𝑦) = (𝑘, 0). It follows from Eqs. (S6)
and (S7) that the vertical and horizontal velocity com-
ponents trace an ellipse in the (𝑧, 𝑥) plane:

𝑉𝑧 ∝ sinh[𝑘(𝑧 +𝐻)]𝑒𝑖𝑘𝑥 , 𝑉𝑥 ∝ 𝑖 cosh[𝑘(𝑧 +𝐻)]𝑒𝑖𝑘𝑥 .
(S12)

In the deep-water limit, this ellipse becomes a circle:
(𝑉𝑧, 𝑉𝑥) ∝ (1, 𝑖). In the finite-depth case, the ellipse on
the 𝑧 = 0 surface is elongated along the 𝑥-axis, with the
ration of the minor and major semiaxes 𝜀 = 𝑖𝑉𝑧/𝑉𝑥 =
tanh(𝑘𝐻) < 1, see Fig. S1.

When we consider a superposition of multiple plane
waves with the same frequency, different wavevectors k,
and different complex amplitudes, it is easy to see that
the effect of the finite depth on the surface motion of

water particles is simply the global scaling of the vertical
component of this motion: 𝑉𝑧 → 𝜀𝑉𝑧 or 𝑍 → 𝜀𝑍.

Thus, all the main-text results for monochromatic
waves remain valid because this vertical scaling of the
vector field R = (𝑋,𝑌, 𝑍) → (𝑋,𝑌, 𝜀𝑍) does not change
any topological or angular-momentum properties. Con-
cerning the equations of motion for monochromatic finite-
depth gravity-capillary waves, the first equation (S11)
remains valid, while the second equation should be mod-
ified as follows:

𝜔2R2 =

(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
∇2𝑍 ,

𝜔2𝑍 = − 𝜀2
(︂
𝑔 − 𝛼

𝜌
Δ2

)︂
∇2 ·R2 . (S13)

II. VORTICES AND SKYRMIONS IN CLOSED
RESERVOIRS

It is possible to experimentally generate and study in-
terference of multiple propagating water wave; see, e.g.,
the two-wave interference experiment in [S2]. However,
such experiments are challenging because of reflections of
propagating waves from the boundaries of the reservoir.
Therefore, configurations with standing waves, which are
naturally supported by finite cavities are always prefer-
able.
First, we note that the Bessel-like cylindrical vortices,

described in the second section of the main text, can be
considered as an interference of multiple standing waves.
Indeed, every wavevector k shown in Fig. 1(b) has its
counter-vector −k. Such pairs form standing waves with
the same amplitudes but different phases. It is known
from the generation of similar surface plasmon-polariton
vortices [S3, S4] that such vortices can be generated in a
near-circular cavity with a spiral boundary. Similar spiral
boundary having radial discontinuity of 2𝜋ℓ/𝑘, vertically
oscillating in a water tank can generate stationary Bessel-
like vortices inside the boundary. Alternatively, a good
approximation to such vortices can be provided by a finite
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FIG. S2. The hexagonal skyrmion lattice formed by the instantaneous displacement distribution ℛ(𝑥, 𝑦, 0), entirely similar to
that in Fig. 2 of the main text, but now produced by the interference of three standing waves (i.e., six propagating waves) with
the wavevectors shown in the panel (a).

number 𝑁 ≫ 1 of point sources equidistributed along a
circle of suitable diameter with the azimuthal phase delay
ℓ𝜙.
Second, in the main text we considered the interfer-

ence of three propagating waves with different phases,
because this simple example exhibits a variety of struc-
tures: skyrmions, spin merons, and vortices. However,
the same lattice of skyrmions can be generated using the
interference of three standing (i.e., 6 propagating) waves,
with an orientation of 2𝜋/3 relative to each other, Fig. S2.
The displacement field is real-valued in this case:

⎛⎝𝑋
𝑌
𝑍

⎞⎠ ∝ 𝐴

⎛⎜⎜⎜⎝
− sin 𝑘𝑥− sin

(︀
𝑘𝑥
2

)︀
cos

(︁√
3𝑘𝑦
2

)︁
−
√
3 cos

(︀
𝑘𝑥
2

)︀
sin

(︁√
3𝑘𝑦
2

)︁
cos 𝑘𝑥+ 2 cos

(︀
𝑘𝑥
2

)︀
cos

(︁√
3𝑘𝑦
2

)︁
⎞⎟⎟⎟⎠ . (S14)

It coincides, up to the lateral translation, with the real
part of the complex field (9) in the main text. Note that
vortices and spin merons do not appear in this case (the
spin density vanishes identically). This configuration of
three standing waves is naturally produced in a closed
hexagonal reservoir, entirely similar to experiments with
surface plasmon-polaritons [S5], acoustic [S6], and elastic
Rayleigh waves [S7].

Thus, water-wave vortices and skyrmions can be read-
ily generated using standing waves in closed reservoirs,
akin to experiments with optical or acoustic surface
waves and to earlier water-wave experiments [S2, S8–S10]
with orthogonal standing waves in square reservoir.
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