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- Supplemental Material -
Quantum Phase Transitions in Optomechanical Systems

PHOTON OCCUPATIONS IN GROUND STATE

In this section, we interpret why the Hamiltonian,

H̃om = a†a− ξ2a†aa†a (S1)

with eigenvalues

Ẽom = n− ξ2n2, (S2)

does not have a well-defined ground state in the whole parameter space if the free term a†a is not considered as a
perturbation.

For a general Hamiltonian H = H0 + λHI, the interaction term HI would be conventionally considered as a
perturbation if the coupling strength λ is much smaller than the work frequency of the system. In this scenario, the
ground state is mainly determined by the free term H0. When increasing λ, HI becomes dominant, leading to the
ground state being determined by both the free and interaction terms.

The above description can be applied to the Dicke model and Rabi model. However, it is not true in Eq. (S1) even

though the parameter ξ is extremely small. This is because we can always find an eigenstate |n〉 in H̃om where its
corresponding eigenvalue is smaller than that of the vacuum state |0〉 (which is, in fact, the lowest energy state of a†a
), regardless of the value of this parameter ξ.

To clearly illustrate this point, we can evaluate the extrema of the energy,

dẼom

dξ
= −2n2ξ = 0 and

d2Ẽom

dξ2
= −2n2 < 0, (S3)

and find that for each value of n, the energy spectrum Eq. (S2) has only a maximum value but no minimum value,

as shown in Fig. S1. Additionally, Fig. S1 shows that, as n increases, the value of the intersection ξ0 between Ẽom(n)

and Ẽom = 0 (vacuum energy) will tend to zero. More precisely, by evaluating the formula n − ξ20n2 = 0, it is not
hard to find that when n→∞, ξ0 → 0. These analyses illustrate that no well-defined ground state can be determined
by the term a†a.

If the free term a†a is considered as a perturbation, we can examine whether the ground state is determined by
the quartic term a†aa†a. Under such a strategy, the negative half-axis of Ẽom in Fig. S1 constitutes the component
of the excitation spectrum of the system. Therefore, for ξ ∈ [1,∞], the lowest energy of system should be ẼG = 0,
giving the lowest level |0〉.

When ξ decreases until ξ = 1, there occurs a level crossing between the states |0〉 and |1〉, indicating that the
perturbation term a†a gradually becomes dominant. For ξ < 1, the lowest-energy state will meet a series of level
crossings between the states |n〉 and |n+ 1〉, showing the instability. Finally, we obtain a well-defined ground state.

In the main text, the parameter ξ becomes the dimensionless coupling strength κ =
√
ωmωc/g. Due to the excitation

spectrum on the negative half-axis of Ẽom shown in Fig. S1, performing the transformation Ẽom → −Ẽom, which only
changes the reference frame, can conveniently capture the physics, as shown in Figs.1(a), 2(a-c) in the main text.

SQUEEZED VACUUM IN THE PHOTON AND PHONON MODES

In this section, we show the squeezed vacuum of the cavity and mechanical modes at critical points, both of which
have infinitely squeezed vacuum when η →∞ and have inseparable relation between the two squeezed states when η is
finite. First, by applying a displacement transformation with U1 = exp[−(g/ωm)(b†− b)] to the system Hamiltonian,

H = ωca
†a+ ωmb

†b+ g(a+ a†)2(b+ b†), (S4)

the transformed Hamiltonian becomes

H̄ = ωca
†a+ ωmb

†b− 2g2

ωm
(a+ a†)2 +

g2

ωm
+ g(a2 + a†2)(b+ b†) + 2ga†a(b+ b†). (S5)
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FIG. S1. Level crossings of the low-energy states Ẽom, according to Eq. (S2). As n increases, the value of the intersection
between the states |n〉 and |0〉 tends to zero, meaning that there is no well-defined ground state if the term a†aa†a is considered
as a perturbation.

For convenience, this transformed Hamiltonian can also be rewritten as

H̄f = a†a+ η−1b†b− 1

4
γ2(a+ a†)2 +

1

8
γ2 +

1

2
√

2
γη−

1
2 (a2 + a†2)(b+ b†) +

1√
2
γη−

1
2 a†a(b+ b†), (S6)

where γ = 2
√

2g/
√
ωcωm is the dimensionless coupling strength and η = ωc/ωm. Note that the last two terms in

Eq. (S6) have a factor with a negative power of η. In the limit η → ∞, the coefficients of these nonquadratic terms
Eq. (S6) become zero, leading to

H̄f = a†a− 1

4
γ2(a+ a†)2 +

1

8
γ2. (S7)

Obviously, the Hamiltonian satisfies a Z2 parity symmetry, which is obtained by eliminating the non-symmetry part
with the classical limit. Further, equation (S7) can be diagonalized as

H̄f = 2εnpd
†d+

1

8
γ2 + εnp −

1

2
, (S8)

with εnp =
√

(1/4)(1− γ2), which is vaild for γ < 1 and vanishes at γ = 1. The eigenstates of H̄f for γ < 1 are
|ψ〉(γ) = S(ξ(γ))|n〉|k〉, where S(x) = exp[(x/2)(a†2 − a2)] and ξ(γ) = −(1/4) ln(1− γ2).

From Eq. (S8), we can find an infinitely squeezed vacuum of cavity mode at γ = 1, which implies an infinitely
squeezed photon condensate in the ground state. It is not hard to imagine that the squeezing phenomenon of the
cavity mode will give feedback to the mechanical mode by the radiation pressure.

To further explore the underlying physics, one can employ a transformation with the unitary operator, U2 =
exp[−(g/2ωc)(b + b†)(a†2 − a2)], to the Hamiltonian H̄ in Eq. (S5). The transformed Hamiltonian can be expressed

as H̃ = H̃e + H̃o, where

H̃e = ωca
†a+ ωmb

†b− 1

2!

g2ωm
2ω2

c

(a†2 − a2)2 +

∞∑
n=1

[
1

(2n)!
− 1

(2n− 1)!

]
22n−3

g2n

ω2n−1
c

(b+ b†)2n(8a†a+ 4)

−
∞∑
n=0

1

(2n)!
22n+1 g

2n+2

ωmω2n
c

(b+ b†)2n(a† + a)2 −
∞∑
n=1

1

(2n− 1)!
22n−1

g2n

ω2n−1
c

(b+ b†)2n(a†2 + a2) +
g2

ωm
,

(S9)

which consists of even-order operators, while H̃o consists of odd-order operators.

This Hamiltonian H̃ still cannot be diagonalized, but a variational method can be used for analysis. We propose a
trial wave function |ψ(r, s)〉 = Sa(r)Sb(s)|0a, 0b〉 for H̃, where Sy(x) = exp[(x2/2)(y†2− y2)] is the squeezing operator
with a bosonic operator y ∈ [a, b] and a variational parameter x ∈ [r, s]. The energy function can be obtained as
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follows

Ẽ(r, s) = sinh2(r) + η−1 sinh2(s) +

∞∑
n=1

[
1

(2n)!
− 1

(2n− 1)!

]
22n−3

1

8n
γ2nη−n

(2n)!

2nn!
e2ns[8 sinh2(r) + 4] +

1

8
γ2

−
∞∑
n=0

1

(2n)!
22n+1 1

8n+1
γ2n+2η−n

(2n)!

2nn!
e2nse2r −

∞∑
n=1

1

(2n− 1)!
22n−1

1

8n
γ2nη−n

(2n)!

2nn!
e2ns sinh(2r),

(S10)

where Ẽ(r, s) has been renormalized by ωc. By minimizing the energy function with respect to the r and s, we can
obtain

exp(4r) =
1 +A1 + C1

1 +A1 −B1 − C1
, (S11)

where

A1 =

∞∑
n=1

[
1

(2n)!
− 1

(2n− 1)!

]
22n−3

1

8n−1
γ2nη−n

(2n)!

2nn!
e2ns,

B1 =

∞∑
n=0

1

(2n)!
22n+3 1

8n+1
γ2n+2η−n

(2n)!

2nn!
e2ns,

C1 =

∞∑
n=1

1

(2n− 1)!
22n

1

8n
γ2nη−n

(2n)!

2nn!
e2ns,

(S12)

and

exp(4s) =
1 +A2

1− γ2
[
sinh2(r) + 1

2 + sinh(2r) + 1
4γ

2e2r
] , (S13)

where

A2 = −
[
8 sinh2(r) + 4

] ∞∑
n=2

[
1

(2n)!
− 1

(2n− 1)!

]
22n−2

1

8n
γ2nη1−n

(2n)!

2nn!
e2ns+2s

+ e2r
∞∑
n=2

1

(2n)!
22n+2 1

8n+1
γ2n+2η1−n

(2n)!

2nn!
e2ns+2s2n

+ sinh(2r)

∞∑
n=2

1

(2n− 1)!
22n

1

8n
γ2nη1−n

(2n)!

2nn!
e2ns+2s2n.

(S14)

Now we have derived the results of the squeezed vacuum of photon and phonon mode, as shown in Eqs. (S11) and (S13).
When η →∞, Eqs. (S11) and (S13) can be rewritten as

exp(4r) =
1

1− γ2
(S15)

and

exp(4s) =
1

1− γ2
[
sinh2(r) + 1

2 + sinh(2r) + 1
4γ

2e2r
] , (S16)

which are given in the main text. Note that after implementing the unitary transformation U†2 H̄U2, we obtain not
only the result in Eq. (S15), which is consistent with that in Eq. (S8), but also the squeezing information of the
mechanical mode shown in Eq. (S16), which is induced by the squeezed field of the cavity mode.

It is clear that upon displacing the mechanical mode by g/ωm, the squeezed vacuum of cavity mode could be induced
and subsequently gives feedback to the mechanical mode via radiation pressure. Notably, such feedback would not
once again transfer to the cavity mode in the classical limit η →∞, Eq. (S15), except for finite η, Eq. (S11).

In the main text, without loss of generality, we have chosen the energy function Ẽ(r, s) up to the fourth order for
analyzing the case of η →∞ and finite η, whose conclusions are the same as that of Eqs. (S11) and (S13).
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MODIFYING A QPT IN OPTOMECHANICAL SYSTEM

In the previous section, Eq. (S8) showed that the normal phase occurs for γ < 1. In this section, we will show that
when the system is driven by a squeezed field of the cavity mode with a suitable squeezing parameter, the occurrence
of the normal phase can be allowed to occur in the region γ > 1, and the coupling strength required to reach the
critical point can be significantly reduced.

By employing a transformation with the unitary operator, Sζ = exp [(1/2)(ζ∗a2 − ζa†2)], where ζ = ξeiθ represents
the squeezed parameter, to the system Hamiltonian H in Eq. (S4), with the squeezing driven term ξ(a†2e−iθ +a2eiθ),
we can obtain a transformed Hamiltonian

H(θ,ξ) =
ωc
2

cosh(2ξ)(2a†a+ 1)− ωc
2

sinh(2ξ)(eiθa†2 + e−iθa2)− ωc
2

+ ωmb
†b+ g(b+ b†)

[
cosh (ξ)(a+ a†)− sinh (ξ)(e−iθa+ eiθa†)

]2
+ S†ζ

[
ξ(a†2e−iθ + a2eiθ)

]
Sζ ,

(S17)

which depends on the squeezing direction θ and the squeezing amplitude ξ.
When the squeezing direction is θ = 0, the transformed Hamiltonian can be written as

H(θ=0,ξ) =
ωc
2

cosh(2ξ)(2a†a+ 1)− ωc
2

sinh(2ξ)(a†2 + a2)− ωc
2

+ ωmb
†b+ ge−2ξ(a+ a†)2(b+ b†) + S†(θ=0,ξ)

[
ξ(a†2 + a2)

]
S(θ=0,ξ).

(S18)

In order to find the anti-squeezing term of the cavity mode, which can induce a singularity of the intrinsic squeezed
vacuum, one can perform a displacement transformation with Ũθ→0 = exp[−(ge−2ξ/ωm)(b† − b)], to the Hamiltonian
H(θ=0,ξ). The transformed Hamiltonian becomes

H̃(θ=0,ξ) =
1

2
cosh(2ξ)(2a†a+ 1)− 1

2
sinh(2ξ)(a†2 + a2)− 1

2
+ η−1b†b− 1

4
γ2e−4ξ(a+ a†)2

+
1

2
√

2
γη−

1
2 e−2ξ(a2 + a†2)(b+ b†) +

1√
2
γη−

1
2 e−2ξa†a(b+ b†) +

1

8
γ2e−4ξ

+ η−1
1

ωm
S†(θ=0,ξ)

[
ξ(a†2 + a2)

]
S(θ=0,ξ),

(S19)

where H̃(θ=0,ξ) has been renormalized by the cavity frequency ωc. In the classical limit, η → ∞, Eq. (S19) can be
written as

H̃(θ=0,ξ) =
1

2
cosh(2ξ)(2a†a+ 1)− 1

2
sinh(2ξ)(a†2 + a2)− 1

4
γ2e−4ξ(a+ a†)2 +

1

8
γ2e−4ξ − 1

2
. (S20)

Equation (S20) can be diagonalized giving

H̃(θ=0,ξ) = 2εξd
†d+

1

8
γ2e−4ξ + εξ −

1

2
, (S21)

with

εξ =
1

2

√
1− γ2 exp(−2ξ). (S22)

When ξ = 0, the result of Eq. (S22) is the same as that of Eq. (S8). However, for ξ = 2 ln(γ), Eq. (S22) becomes

εξ→2 ln(γ) =
1

2

√
1− γ−2, (S23)

which is real only for γ ≥ 1 and vanishes at γ = 1. This result shows that exploiting a squeezed field of the cavity
mode with an appropriate squeezing parameter ζ to drive the system can alter the region where the normal phase
occurs. Moreover, by employing the strategy used in the section “superradiant phase”of the main text to Eq. (S18),
we can also determine that the corresponding superradiant phase occurs in the region γ < 1 for the same squeezing
amplitude ξ = 2 ln(γ).
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Now we discuss the case when the squeezing direction is chosen as θ = π. The transformed Hamiltonian becomes

Hθ=π,ξ =
ωc
2

cosh(2ξ)(2a†a+ 1) +
ωc
2

sinh(2ξ)(a†2 + a2)− ωc
2

+ ωmb
†b+ ge2ξ(a+ a†)2(b+ b†) + S†(θ=π,ξ)

[
ξ(a†2 + a2)

]
S(θ=π,ξ).

(S24)

After implementing the above similarity transformation, we can obtain

H̃(θ=π,ξ) = 2ε(θ=π,ξ)d
†d+

1

8
γ2e4ξ + ε(θ=π,ξ) −

1

2
, (S25)

with

ε(θ=π,ξ) =
1

2

√
1− γ2 exp(2ξ). (S26)

This result shows that increasing the squeezing amplitude ξ can exponentially reduce the coupling strength g required
to reach the critical point.

In addition, these results do not apply to the Rabi or Dicke models, as the cavity fields of these two models have
no deterministic symmetry. Therefore, if one controllable squeezed field of the cavity mode is exploited to drive the
hybrid quantum system described in the main text, it is possible to find two superradiant phases, which are induced
by the optomechanical system and light-atom system, respectively, and separated by the hybrid critical point. The
two ordered phases could be characterized by two types of thermodynamic limits. Therefore, they belong to distinct
symmetry-broken phases. In this scenario, it naturally arises the exciting topic of whether the hybrid system can
undergo a direct second-order QPT between the two ordered phases beyond the Landau-Ginzburg-Wilson paradigm.

QUANTUM PHASE TRANSITIONS IN HYBRID QUANTUM SYSTEMS

In this section, we will examine the characteristics of the superradiant phase in the hybrid quantum system. To
determine the superradiant phase, we must find the macroscopic coherence of the cavity mode in the ground state.
Generally, when the ground-state energy has been weighted by one thermodynamic limit, the macroscopic coherence
of the cavity mode can be evaluated using the mean-field approach. In the case of a hybrid quantum system, the
macroscopic coherence would be determined by the two types of thermodynamic limits, where one of them is described
by ωc/ωm →∞ and the other is described by N →∞.

Due to the possibility that these two limits may affect the nontrivial phase of the system, either competitively or
independently, finding the solutions of macroscopic coherence in the ground-state energy using the mean-field approach
with the two limits is very complicated. However, suppose we need to roughly capture the potential characteristics
of the superradiant phase in the hybrid quantum system. In this case, we may only consider one of the two limits in
the mean-field energy, while the other could become a large constant. Here, we will only consider the limit, N →∞,
for the mean-field approach.

The hybrid quantum system can be described by

Hh = ωca
†a+ ωmb

†b+ g(a+ a†)2(b+ b†) + ωaJz +
λ√
Na

(a+ a†)(J+ + J−) +
αλ2

ωa
(a+ a†)2, (S27)

where the cavity frequency and the atomic transition frequency are in resonance, namely, ωc = ωa. Note that using
the Hamiltonian Hop in Eq.(10) in the main text, instead of H = ωca

†a + ωmb
†b + g(a + a†)2(b + b†) to describe

the optomechanical system, we can also reach the same conclusions. By displacing the mechanical mode with the
single-photon coupling strength g/ωm, the system Hamiltonian can be transformed to

Hh = ωca
†a+ωmb

†b+g(a2+a†2+2a†2a)(b+b†)+

(
αλ2

ωa
− 2g2

ωm

)
(a+a†)2+

g2

ωm
+ωaJz+

λ√
Na

(a+a†)(J++J−). (S28)

After the displacement, the cavity field can reach a singularity induced by the two terms, −2g2/ωm(a + a†)2 and
(λ/
√
Na)(a + a†)(J+ + J−), together. However, the latter will be suppressed if we consider the A2 term. Now, we

first consider the limit, ωc/ωm →∞, Eq. (S28) can be written as

H̃h = a†a+

(
αλ2

ωaωc
− 2g2

ωmωc

)
(a+ a†)2 +

g2

ωmωc
+
ωa
ωc
Jz +

λ

ωc
√
Na

(a+ a†)(J+ + J−), (S29)
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where H̃h is renormalized by ωc.
By applying a squeezing transformation, a = cosh(r)d + sinh(r)d† with a squeezing parameter r = (−1/4) ln(1 +

αµ2 − γ2) (µ = 2λ/
√
ωaωc is a dimensionless coupling strength of light-atoms interacting system), the Hamiltonian

H̃h can be written in a more compact form,

H̃h = ω̃cd
†d+ ωaJz +

λ̃√
Na

(d+ d†)(J+ + J−) + Q̃, (S30)

where ω̃c = ωce
−2r, λ̃ = λer, and Q̃ = (ωc/2)(e−2r − 1) + g2/ωm. By using the Holstein-Primakoff approach with the

transformation J+ = d†
√
Na − d†d, J− =

√
Na − d†dd, and Jz = d†d−Na/2, Eq. (S30) becomes

H̃h(np) = ω̃cd
†d+ ωa(c†c− Na

2
) +

λ̃√
Na

(
d+ d†

) (
c†
√
Na − c†c+

√
Na − c†c c

)
+ Q̃, (S31)

whose energy reads

εnp± =

√
1

2

(
ω̃2
c + ω2

a ±
√

(ω̃2
c − ω2

a)2 + 16λ̃2ω̃cωa

)
. (S32)

The excitation energy of the lowest branch ε− vanishes at µ2(1−α) + γ2 = 1, locating the quantum critical point for
the hybrid quantum system, as shown in Eq.(15) in the main text.

In the following, we can determine the superradiant phase of the system by only considering the thermodynamic
limit, N →∞, in the mean-field approach. Through displacing the bosonic operator with respect to their mean value,
i.e., d → d +

√
Naζ and c → c +

√
Naβ, for the Hamiltonian H̃h(np), we can derive the Hamiltonian H̃h(sp), whose

ground state energy reads

EG = Naωa|β|2 +Naω̃c|ζ|2 + 4λ̃Naζβ
√

1− β2 − Na
2
ωa. (S33)

By minimizing the ground state energy with respect to α and β, we can obtain

β = ±
√

1

2

(
1− δ̃−2

)
,

ζ = ∓
√

ωa
4ω̃c

√
δ̃2 − δ̃−2,

(S34)

where δ̃ = 2λ̃/
√
ωaω̃c is a dimensionless coupling strength. The nonzero value of ζ can be found for δ̃ > 1 and

indicates a nonzero coherence of the boson field in the ground state, which is an order parameter of the superradiant
phase transition. According to those nonzero coherences in Eq. (S34), the Hamiltonian of the superradiant phase can
be written as

H̃h(sp) = ω̃cd
†d+

(
ωa −

2λ̃ζβ√
1− β2

)
c†c+

(
λ̃
√

1− β2 − λ̃β2√
1− β2

)
(c+c†)(d+d†)−

(
ζβλ̃√
1− β2

+
λ̃ζβ3

2 (1− β2)
3
2

)
(c+c†)2,

(S35)
whose energy spectrum reads

εsp± =

√
1

2

(
ω̃2
c + δ̃4ω2

a ±
√

(ω̃2
c − δ̃4ω2

a)2 + 4ω̃2
cω

2
a

)
. (S36)

From the results of the mean-field in Eq. (S34), we can also determine that δ̃ = 1 is the critical point of the system,
which can be expanded as

µ2(1− α) + γ2 = 1. (S37)

When α = 0 (meaning the absence of the A2 term), Eq. (S37) becomes µ2 +γ2 = 1, indicating a hybrid critical point.
Such a point features the boundary between the normal and superradiant phases. Therefore, based on the energy
spectrum [Eq. (S32) and Eq. (S36)] or the nonzero coherence ζ, we can plot the phase diagram shown in Fig. S2(a),
where the boundary has been characterized by the hybrid critical point µ2 + γ2 = 1. When α = 1 (meaning including
the A2 term), the critical point of the system is γ2 = 1 and the corresponding phase diagram is displayed in Fig. S2(b).
In this case, we find that the region of the superradiant phase can still be affected by the light-atom interaction (µ),
even though the critical point is only dominated by the optomechanical system (γ).
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FIG. S2. Phase diagram of the hybrid quantum system in the (µ,γ) plane, described by Eq. (S32) and Eq. (S36). (a) α = 0:
the boundary (critical line) between the superradiant phase (SP) and the normal phase (NP) is characterized by µ2 + γ2 = 1.
(b) α = 1: the boundary is given by γ2 = 1.
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