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In this Letter, we investigate the ground state properties of an optomechanical system consisting of a
coupled cavity and mechanical modes. An exact solution is given when the ratio η between the cavity and
mechanical frequencies tends to infinity. This solution reveals a coherent photon occupation in the ground
state by breaking continuous or discrete symmetries, exhibiting an equilibrium quantum phase transition
(QPT). In the U(1)-broken phase, an unstable Goldstone mode can be excited. In the model featuring Z2

symmetry, we discover the mutually (in the finite η) or unidirectionally (in η → ∞) dependent relation
between the squeezed vacuum of the cavity and mechanical modes. In particular, when the cavity is driven
by a squeezed field along the required squeezing parameter, it enables modifying the region of Z2-broken
phase and significantly reducing the coupling strength to reach QPTs. Furthermore, by coupling atoms to
the cavity mode, the hybrid system can undergo a QPT at a hybrid critical point, which is cooperatively
determined by the optomechanical and light-atom systems. These results suggest that this optomechanical
system complements other phase transition models for exploring novel critical phenomena.

DOI: 10.1103/PhysRevLett.132.053601

Introduction.—Quantum phase transitions have garnered
significant attention for their crucial role in comprehending
the various intricacies involved in the evolution of matter
phases [1–3]. Equilibrium QPTs can be characterized by
the closing spectral gap and the emergence of degenerate
ground states due to the spontaneous breaking of a
continuous (or discrete) symmetry. For systems possessing
continuous U(1) symmetry, such as the Bose-Hubbard
model, their phase transitions [4,5] are attracting intense
interest due to their involvement in exhibiting notable
physics of the Anderson-Higgs mechanism [6,7].
In quantum optics, the well-known Dicke model,

describing the coupling between a cavity mode and N
two-level systems, can exhibit a superradiant QPT in the
thermodynamic limit, N → ∞, where the bosonic mode
gains the occupation of macroscopic coherence in the
ground state [8–10]. Recently, this QPTwas also predicted
in the Rabi model in the classical oscillator limit [11,12],
where the ratio between frequencies of the atomic transition
and the cavity mode approaches infinity. These two
fundamental spin-boson models can be reduced to a model
with a U(1) symmetry by dropping the so-called counter-
rotating terms, resulting in the emergence of Goldstone
modes [13,14]. In the ultrastrong-coupling regime, these
terms usually cannot be ignored [15,16]; however, recent
progress indicated that this requirement could be realized
by engineering the light-matter interaction in circuit-QED
systems [14] or through quantum simulation techniques
[17–19].

Previous investigations of the superradiant QPT have
predominantly focused on the spin-boson model, with
either infinite [20–31] or finite components [32–39].
This naturally leads to an intriguing question of whether
the boson-boson model can similarly exhibit a rich range of
quantum phases, thereby improving our understanding of
QPTs. The optomechanical system considered here is a
boson-boson model, describing the interaction between a
cavity mode and a mechanical oscillator through radiation
pressure [40,41]. With recent developments of strong
single-photon optomechanical couplings [42–51], it ena-
bles the investigation of quantum nonlinear effects in
optomechanical systems, such as preparing nonclassical
states [52–57] and observing the dynamical Casimir effect
[58–62]. These nonlinear effects lead to energy-level
repulsion and attraction that can cause the degeneration
of the lowest levels, implying the emergence of QPTs.
In this Letter, we study the ground state properties of

optomechanical systems based on models with either U(1)
symmetry or Z2 symmetry and give the analytical solutions
of their equilibrium QPTs. The exact solution for a model
possessing U(1) symmetry reveals the instability of the
ground state and indicates the emergence of a Goldstone
mode. For the model with Z2-symmetry, in the finite η,
displacing the phonon space can generate a pair of mutually
dependent squeezed vacuum between the cavity and
mechanical modes via radiation pressure; however, in
the limit, η → ∞, such dependence is unidirectional.
Interestingly, applying a squeezed field to drive the cavity
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with the required squeezed parameter, we find that the
features of QPTs can be remarkably influenced: the region
where the Z2-broken phase occurs is alterable, and the
coupling strength to reach the critical point can be
significantly reduced. In addition, interacting with atoms,
the hybrid system will have a hybrid critical point, where
the optomechanical and light-atom components of the
system could cooperatively determine the critical
phenomena.
Model.—We consider a typical optomechanical system

consisting of a cavity with a movable mirror. The system
Hamiltonian [63] can be written as

H ¼ ωca†aþ ωmb†bþ gðaþ a†Þ2ðbþ b†Þ; ð1Þ

where the annihilation operator aðbÞ denotes the optical
(mechanical)modewith the resonate frequencyωcðωmÞ, and
g is the strength of single-photon optomechanical coupling.
For most experiments to date [40], the Hamiltonian Hom ¼
ωca†aþ ωmb†bþ 2ga†aðbþ b†Þ is a sufficient good
approximation. While the single-photon coupling strength
is increasing, the terms gða2 þ a†2Þðbþ b†Þ, describing the
creation and annihilation of photon pairs [58,59], become
considerable. Obviously, 2ga†aðbþ b†Þ and gða2 þ
a†2Þðbþ b†Þ have distinct effects on the photon occupation
in the ground state due to the different symmetries of the
cavity mode.
Photon occupations in ground state.—First we focus on

the simplest model described by the Hamiltonian Hom. Let
us denote jni as an n-photon Fock state and jki as an k-
phonon Fock state, respectively. By performing a unitary
transformation with U ¼ exp½−ðg=ωmÞa†aðb† − bÞ�, the
Hamiltonian becomes H̄om¼ðU†HomUÞ=ωc¼a†aþ
η−1b†b−ð1=κ2Þa†aa†a with a dimensionless coupling
strength κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

ωcωm
p

=2g and a frequency ratio η ¼
ωc=ωm, where the eigenstate and the eigenvalue can be
described by the ket jn; ki and Eom ¼ n − ðn2=κ2Þ þ η−1k,
respectively. In the displaced basis, H̄om has a conserved
operator, P̄ ¼ exp½iθN� with θ∈ ½0; 2π� and N ¼ a†aþ
b†b, such that ½H̄om; P̄� ¼ 0, satisfying a U(1)-continuous
symmetry. Going back to the original basis, the correspond-
ing conserved operator and eigenstates can be written as

P ¼ UP̄U† ¼ eiθða
†aþb†bþ 2g

ωm
a†aðbþb†Þþ4g2

ωm
a†aa†aÞ ð2Þ

and jψi ¼ jn; kni ¼ Dðn ffiffiffi
η

p
=κÞjn; ki, with DðxÞ ¼

exp½xðb − b†Þ�, respectively.
Now we consider a particular limit, i.e., η → ∞. The

Hamiltonian can be rewritten as

H̃om ¼ a†a −
1

κ2
a†aa†a ð3Þ

with eigenvalues Ẽom ¼ n½1 − ðn=κ2Þ�, exhibiting an
anharmonic spectrum. To obtain a well-defined ground

state in Eq. (3), a†a needs to be treated as a perturbation,
which means the system energy is dominated by the
negative nonlinear term with ð−1=κ2Þn2 [64]. Therefore,
we can perform the transformation Ẽom → −Ẽom shown in
Fig. 1 (or ĒG → −ĒG shown in Fig. 2), which only changes
the reference frame but allows us to conveniently capture
the nature of the ground state.
For κ < 1, the well-defined ground state of H̃om is the

vacuum state j0i, until at κ ¼ 1 there occurs a level crossing
between j0i and j1i. After that, the ground state meets a
series of level crossings between the states jni and jnþ 1i,
as shown in Fig. 1(a). From Ẽðnþ1Þ

om − ẼðnÞ
om ¼ 0, the number
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FIG. 1. Analytic solution of the Hamiltonian Hom. (a) Level
crossings of the low-energy state near the ground state for a
frequency ratio η → ∞. (b) The total number of excitations in the
ground state for a frequency ratio η → ∞.
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FIG. 2. Mean-field solution of the Hamiltonian H̄om. Mean-
field energy of the ground state when κ ¼ 0.5 (a) and when κ ¼ 2

(b). (c) Ground state energy ĒG (solid blue line) and its second
derivative d2ĒG=dκ2 (red dashed line). (d) Coherence hαi of the
cavity field in its ground state.
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of photons occupying the ground state, denoted as nG, can
be described by

nG ¼ κ2 − 1

2
: ð4Þ

Obviously, as κ increases, the quantity ⌈nG⌉, which counts
the number of photons using the ceiling function ⌈ ⌉,
experiences a discrete stepwise ascent, as shown in
Fig. 1(b), showing the trend of photon occupations in
the ground state.
Results in mean-field approach.—Next we use the mean-

field approach, a semiclassical approximation, to observe
the distribution of the ground-state energy. By displacing
both modes a and b in H̄om, with respect to their
corresponding mean values α and β, and neglecting the
fluctuations, we can obtain the mean value of the ground
state energy in terms of α and β,

ĒG ¼ jαj2 þ η−1jβj2 − 1

κ2
ðjαj2 þ jαj4Þ: ð5Þ

When κ < 1, the ground state energy has a single minimum
at α ¼ β ¼ 0, where the energy is ĒG ¼ 0, as shown in
Fig. 2(a). For κ > 1, the distribution of the ground-state
energy abruptly changes as a profile of Mexican hat shown
in Fig. 2(b), where the ground state in α ¼ 0 becomes
unstable and will fall into the stable one with the energy
minima occurring at

α ¼ �eiθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ðκ2 − 1Þ

r
and β ¼ 0: ð6Þ

Because the phase θ can be an arbitrary value from 0 to 2π,
the ground states are infinitely degenerate with the energy
minima lying on a circle, which is known as the Goldstone
mode [65] with broken U(1) symmetry.
For κ > 1, the ground state energy becomes ĒGðκÞ ¼

ð1=4Þðκ2 þ κ−2 − 2Þ. When the ground state energy is
continuous, there is a discontinuity in the second derivative
of ĒGðκÞ at κ ¼ 1, revealing a second-order phase transition
[Fig. 2(c)]. In Eq. (6), the nonzero values of αmean that the
ground state in κ > 1 has a nonzero coherence of the cavity
mode, which is an order parameter of the phase transition
[Fig. 2(d)] and indicates the spontaneous breaking of U(1)
symmetry. Based on nonzero coherence, we can obtain
the photon occupation in the ground state, namely,
ha†aiG ¼ ðκ2 − 1Þ=2, which is consistent with the solution
of Eq. (4).
Although the results in Fig. 2 can significantly indicate that

the model Hom can undergo a phase transition through the
critical point κ ¼ 1, the lack of thermodynamic limit in
Eq. (6) implies that spontaneous symmetrybreakingwould be
restored by quantum fluctuations. Nevertheless, for a finite-
component system [10] or finite-frequency system [12],

quantum fluctuations still require a finite time to restore
the symmetry of the real ground state [66]. Therefore, it is
possible to observe the above results, even though the
symmetry-breaking ground state is not stable.
Squeezed vacuum in photon and phonon modes.—When

the Hamiltonian includes gða2 þ a†2Þðbþ b†Þ, it is diffi-
cult to determine the symmetry of the system. However, we
find that the Hamiltonian H commutes with the operator
Pc ¼ expðiπa†aÞ, indicating that the cavity mode pos-
sesses an independent Z2-parity symmetry. Accordingly,
one may execute a displacement transformation on the
mechanical mode with the unitary operator, U1 ¼
exp½−ðg=ωmÞðb† − bÞ�, and the transformed Hamiltonian
U†

1HU1 becomes

H̄ ¼ ωca†aþ ωmb†b −
2g2

ωm
ðaþ a†Þ2 þ g2

ωm

þ gða2 þ a†2Þðbþ b†Þ þ 2ga†aðbþ b†Þ: ð7Þ

Note that this displacement elicits an antisqueezing term,
the third one in Eq. (7), which could induce nonanalytic
behavior of the cavity mode at one point upon changing the
coupling strength [64]. Such behavior will give feedback to
the mechanical oscillator by radiation pressure and poten-
tially influence the phonon mode’s behavior. To gain
insight into the underlying physics, one can perform a
transformation on the Hamiltonian H̄ [64] with the unitary
operator, U2 ¼ exp½−ðg=2ωcÞðb† þ bÞða†2 − a2Þ�. This
transformed Hamiltonian, H̃ ¼ U†

2H̄U2, although not yet
able to be diagonalized, may be analyzed via a variational
method.
We propose a trial wave function jψðr; sÞi ¼

SaðrÞSbðsÞj0a; 0bi for H̃, where SyðxÞ ¼ exp½ðx2=2Þ×
ðy†2 − y2Þ� is the squeezing operator with a bosonic
operator y∈ ½a; b� and a variational parameter x∈ ½r; s�
providing the energy function Ẽðr; sÞ [64]. Without loss of
generality, we here require that the energy function is up to
fourth order in γ in the following analysis, where γ ¼
2

ffiffiffi
2

p
g=

ffiffiffiffiffiffiffiffiffiffiffiffi
ωcωm

p
is a dimensionless coupling strength. By

minimizing the energy with respect to r and s, we can
obtain

e4r ¼ 1þ 1
4
γ2η−1e2s þ 1

32
γ4η−2e4s

1 − γ2
�
1þ 3

4
η−1e2s þ 1

4
γ2η−1e2s þ 7

32
γ2η−2e4s

� ð8Þ

and

e4s ¼ ½ 3
32
γ4η−1ð8 sinh2 rþ 4Þ þ 1

2
γ4η−1 sinh 2r�e6s þ 1

½1 − γ2ðsinh2 rþ sinh 2rþ 1
2
þ 1

4
γ2e2rÞ� :

ð9Þ

When η is finite, nonzero and correlated solutions for the
squeezing parameters r and s always exist if γ < 1. This
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reflects the inseparable relation between the squeezed
vacuum states of the cavity and mechanical modes induced
by the radiation pressure.
When η → ∞, Eqs. (8), (9) can be rewritten as e4r ¼

1=ð1 − γ2Þ and e4s ¼ 1=½1 − γ2ðsinh2 rþ sinh 2rþ 1
2
þ

1
4
γ2e2rÞ�, respectively. In this case, r no longer relies on

s, but s still depends on r, indicating that the cavity mode
carries an irreversible feedback to the mechanical mode.
This arises from the deterministic symmetry of the cavity
mode itself, independent of the mechanical mode, namely,
½H;Pc� ¼ 0. Moreover, as γ → γc ¼ 1, a transition arises,
signifying a profound divergence in both r and s. These
divergences in the ground state imply the phase transitions
of the system [10,12], where the twofold degeneracy
occurs. Interestingly, the phase transition of the mechanical
mode would suggest a hidden symmetry withinH, which is
cooperatively determined by the cavity and mechanical
modes and would be broken in the ground state.
Superradiant phase.—To address the superradiant phase

in the HamiltonianH, it is necessary to recognize thatHI ¼
gðaþ a†Þ2ðbþ b†Þ is unbounded, which is an obstacle in
locating the position of macroscopic coherence of the
bosonic mode in the ground state [67]. One feasible way
is to introduce a nonlinear quartic term to each bosonic
mode, thereby obtaining a Hamiltonian

Hop ¼ Nωca†aþ ωmb†bþ gða2 þ a†2 þ 2a†aÞðbþ b†Þ
þ Ngðbþ b†Þ þ ϵ1

N2
a†a†aaþ ϵ2

N2
b†b†bb; ð10Þ

where N is a macroscopic factor. Given the factor N, the
detuning between the two oscillators is determined. As N
becomes large, the resulting Hamiltonian in Eq. (10) is
equivalent to the one in Eq. (1), faithfully illustrating that
the two nonlinear quartic terms are vanishingly small.
Next, we adopt a mean-field approach to examine the

ground state energy of the Hamiltonian Hop by displacing
both modes a and b from their mean values, denoted as α
and β. The expression of the ground state energy is given by

EG ¼ Nωcα
2 þ ωmβ

2 þ 2gβðN þ 4α2Þ þ ϵ1
N2

α4 þ ϵ2
N2

β4:

ð11Þ

To minimize the energy EG, we let β=α2 ∼ 1 and α ∼
ffiffiffiffi
N

p
,

which yields

α2 ¼ N
4
ðγ2 − 1Þ and β ¼ −

Nωc

8g
; ð12Þ

where ϵ1 ¼ ϵ2 ¼ ð4ω2
m=ωcÞðγ6 − γ2Þ. For γ > 1, the non-

zero coherence of the mode hai ¼ �α indicates the
superradiant phase with a spontaneously broken-parity
symmetry Pc.

Modification to features of QPT.—We will now show
that by employing a controllable squeezed field of the
cavity mode to drive the optomechanical system, it is
possible to modify the characteristics of the QPT. To
illustrate this point, we apply the transformation with the
unitary operator, Sζ ¼ exp ½ð1=2Þðζ�a2 − ζa†2Þ�, where
ζ ¼ ξ expðiθÞ represents the squeezed parameter, to the
system Hamiltonian H with a squeezing-driven term
ξða†2e−iθ þ a2eiθÞ. The transformed Hamiltonian depends
on the squeezing direction θ and the squeezing amplitude
ξ [64], providing a channel to modify the ground state
properties of the cavity mode.
First, we consider the squeezing direction θ ¼ 0, where

the Hamiltonian Hðθ¼0;ξÞ exhibits a similar structure to H.
By performing a displacement transformation with
Ũ ¼ exp½−ðge−2ξ=ωmÞðb† − bÞ�, and taking the limit
η → ∞, the Hamiltonian Hðθ¼0;ξÞ can be diagonalized as

H̃ðθ¼0;ξÞ ¼2εξd†dþẼGðξÞ, with εξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þð1 − γ2e−2ξÞ

p
.

For ξ ¼ 2 lnðγÞ, εξ simplifies to

εξ→2 lnðγÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þð1 − γ−2Þ

q
; ð13Þ

which is real only for γ ≥ 1 and vanishes at γ ¼ 1.
However, when ξ ¼ 0, i.e., without the squeezing-driven
field, the eigenvalue is given by εξ→0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þð1 − γ2Þ

p
,

indicating the occurrence of the phase for γ < 1. This result
demonstrates that the region where the quantum phase
occurs can be altered by driving the system with a squeezed
field of the squeezing direction θ ¼ 0 and an appropriate
squeezing amplitude. This feature is remarkably unusual
within the field of phase transitions, indicating the modi-
fying capability on phase diagrams.
Furthermore, for the squeezing direction θ ¼ π, the cor-

responding eigenvalue is given by εξ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=4Þð1 − γ2e2ξÞ

p
,

indicating that the optomechanical coupling strength required
to reach the critical point can be exponentially reduced by
increasing the squeezing amplitude ξ. This result suggests the
possibility of the phase transition in the optomechanical
system even with a common coupling strength. Of note, such
a way cannot apply to the Rabi and Dicke models, as these
models lack the inherent symmetry of the cavity mode itself.
QPTs in hybrid systems.—We now turn to an optome-

chanical system interacting with atoms in the cavity, as
shown in Fig. 3. The results reveal that QPT can emerge in
such a system, which has a hybrid critical point co-
operatively determined by the optomechanical system
and the light-atom system. Here, we employ the Dicke
model to describe the light-atom interaction. The
Hamiltonian of this hybrid system [68] can be written as

Hh ¼ H þ ωaJz þ
λffiffiffiffiffiffi
Na

p ðaþ a†ÞðJþ þ J−Þ þ χðaþ a†Þ2

ð14Þ
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with the angular momentum operator Jz ¼ ð1=2ÞPNa
i¼1 σ

ðiÞ
z

and J� ¼ PNa
i¼1 σ

ðiÞ
� , satisfying the commutation relation

½J−; Jþ� ¼ −2Jz. The last term in Eq. (14) is so-called A2

term with χ ¼ αλ2=ωa [69]. The coefficient α ≥ 1 ensures
that the Dicke model has a precisely gauge-invariant
Hamiltonian satisfying the TRK sum rule [70,74], while
α ¼ 0 corresponds to the standard Dicke model [10]. After
diagonalizing the Hamiltonian Hh [64], the spectrum
shows that the excitation energy of the lowest branch ϵ−
vanishes at

μ2ð1 − αÞ þ γ2 ¼ 1; ð15Þ

indicating a quantum critical point of the hybrid system,
where μ ¼ 2λ=

ffiffiffiffiffiffiffiffiffiffiffi
ωaωc

p
is a dimensionless coupling strength

of the light-atoms interacting system.
When neglecting the A2 term, i.e., α ¼ 0, the critical

point can be expressed as μ2 þ γ2 ¼ 1. This formula
contains two distinct types of dimensionless coupling
strength, μ and γ, which correspond to the critical points
in the standard Dicke model (μ2 ¼ 1) and the optomechan-
ical model (γ2 ¼ 1), respectively. Thus, the hybrid quantum
system features a hybrid critical point that separates the
normal and superradiant phases, where the critical phe-
nomena are dominated by both the light-atom and opto-
mechanical systems.
When α ¼ 1, the hybrid critical point becomes γ2 ¼ 1. In

this scenario, one trend of the closing spectrum gap,
induced by the light-atom interaction, is completely sup-
pressed by the A2 term, in agreement with the no-go
theorem [70]. However, the other trend, caused by the
interaction between the cavity mode and the mechanical
oscillator, results in a gapless spectrum, where the critical
point only depends on γ. Nevertheless, the energy spectrum
for the superradiant phase remains influenced by μ [64].
Conclusion and outlook.—We demonstrate that several

optomechanical systems can exhibit distinct spontaneous
broken-symmetry phases, either continuous or discrete,
yielding different coherent photon occupations in the
ground state. By interacting with the two-level atoms,
we find that the closing spectrum gap of the hybrid
quantum system is determined by two distinct types of
coupling degrees of freedom, which results in the emer-
gence of a hybrid critical point.

In addition, the hybrid critical point may display anoma-
lous behavior when a drive with squeezed light is applied to
the cavity. With appropriate squeezed parameters, it is
possible to find two superradiant phases separated by this
critical point. Considering that these two phases are
independently induced by the two subsystems, respectively,
they should be characterized by the two corresponding
thermodynamic limits (η and Na), yielding two distinct
order parameters. In this scenario, exploring whether such a
system can undergo a second-order QPT between the two
ordered phases with different broken symmetries would be
an interesting topic beyond the Landau-Ginzburg-Wilson
paradigm [75–77]. With the impressive ongoing advance-
ments in technology that allow for the realization of strong
and even ultrastrong coupling between the cavity and a
movable mirror, cavity optomechanical systems will
become a potential platform for investigating critical
phenomena.
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