
SUPPLEMENTARY MATERIALS

Hybrid Spin and Anomalous Spin-Momentum Locking
in Surface Elastic Waves

Chenwen Yang#,1 Danmei Zhang#,1 Jinfeng Zhao#,2 Wenting Gao,1

Weitao Yuan,3 Yang Long,1 Yongdong Pan,2 Hong Chen,1 Franco
Nori,4, 5, 6 Konstantin Y. Bliokh,4, 7, 8, ∗ Zheng Zhong,2, † and Jie Ren1, ‡

1Center for Phononics and Thermal Energy Science, China-EU Joint Lab on Nanophononics,
Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology,

School of Physics Science and Engineering,
Tongji University, Shanghai 200092, China

2School of Aerospace Engineering and Applied Mechanics,
Tongji University, Shanghai 200092, China

3School of Mechanics and Aerospace Engineering,
Southwest Jiaotong University, Chengdu, Sichuan 610031, China

4Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research,
RIKEN, Wako-shi, Saitama 351-0198, Japan

5Center for Quantum Computing, RIKEN, Wako-shi, Saitama 351-0198, Japan
6Physics Department, University of Michigan, Ann Arbor, MI 48109-1040, USA

7Centre of Excellence ENSEMBLE3 Sp. z o.o., 01-919 Warsaw, Poland
8Donostia International Physics Center (DIPC), Donostia-San Sebastián 20018, Spain

1. Transverse spin of surface electromagnetic, acoustic, and elastic waves

We consider surface waves x-propagating along the z = 0 interface between two media, as
shown in Fig. 1 in the main text. First, a surface TM electromagnetic wave at an interface between
the vacuum and a metal (with permittivity ε < −1) is known as surface plasmon-polariton [1].
Considering the vacuum (z > 0) part, its complex electric field has the form

E ∝

−iκ/kx0

1

 exp(ikxx− κz) , (1)

where kx is the propagation wavenumber and κ is the spatial decay factor. The y-component of
the spin of this field, shown in Fig. 1(b), is [2]:

S ∝ Im(E∗zEx) ∝ −
κ

kx
exp(−2κz) , (2)
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where we omit the subscript “y” for the sake of brevity.

Second, acoustic analogues of surface plasmon-polaritons can appear at an interface between
air and a negative-density (ρ < 0) metamaterial [3, 4]. Considering the air (z > 0) part of such
wave, its complex velocity field can be written as

v ∝

 1

0

iκ/kx

 exp(ikxx− κz) , (3)

and the transverse spin density, shown in Fig. 1(c), becomes [5, 6]:

S ∝ Im(v∗zvx) ∝ −
κ

kx
exp(−2κz) . (4)

Third, we consider a surface elastic (Rayleigh) wave at the surface of an isotropic solid (z >
0). In contrast to the purely transverse surface electromagnetic wave (∇ · E = 0) and purely
longitudinal acoustic wave (∇ × v = 0), the Rayleigh wave is a hybrid mode including both
transverse and longitudinal contributions to the displacement wavefield: u = ul + ut , where
∇ × ul = 0 and ∇ · ut = 0. The longitudinal and transverse parts of the complex displacement
field of the Rayleigh wave can be written as [7]:

ul = A

 1

0

iκl/kx

 exp(ikxx− κlz) , ut = B

−iκt/kx0

1

 exp(ikxx− κtz) . (5)

Here the longitudinal and transverse contributions have different decay rates κl =
√
k2x − k2l

and κt =
√
k2x − k2t , with kl = ω

√
ρ/(λ+ µ) and kt = ω

√
ρ/µ being the wave numbers of

the longitudinal (compression) and transverse (shear) elastic bulk modes, where ω is the wave
frequency, ρ is the mass density of the medium, and λ and µ are the Lamé parameters of the
medium. According to the boundary conditions, the normal stress component on the surface must
vanish, which yields

B = −i 2κlkx
κ2t + k2x

A. (6)

The propagation constant kx of the Rayleigh wave satisfies the equation [7]

k6t
k6x
− 8

k4t
k4x

+ 8
k2t
k2x

(
3− 2

k2l
k2t

)
− 16

(
1− k2l

k2t

)
= 0. (7)

Substituting Eqs. (5) and (6) into Eqs. (1) and (2) of the main text, the transverse spin density
in the Rayleigh wave can be written as a sum of four contributions, S = Sll + Stt + Slt + Stl:

Sll ∝ Im(u∗l zul x) = −|A|2 κl
kx
e−2κlz, Stt ∝ Im(u∗t zut x) = −|B|2 κt

kx
e−2κtz, (8)

Slt ∝ Im(u∗l zut x) = Im(AB∗)
κtκl
k2x

e−(κt+κl)z, Stl ∝ Im(u∗t zul x) = Im(AB∗) e−(κt+κl)z. (9)
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Supplementary Figure 1. (a) The ratio r of the ‘pure’ and ‘hybrid’ contributions to the Rayleigh-wave
spin at the surface (z = 0), Eq. (10), versus the ratio of the Lamé parameters, µ/λ. (b) The critical depth zc,
Eq. (11), where the Rayleigh-wave spin vanishes and changes its sign, versus µ/λ. Note that µ/λ ' 0.46

for the aluminium used in our experiments (λ = 5.5× 1010, µ = 2.5× 1010).

From Eq. (6) one can see that the ‘hybrid’ contributions (9) have opposite signs as compared to
the ‘pure’ contribution (8). Moreover, since κt < κl, the hybrid contributions decay with z faster
than the pure transverse one. The normalized spin contributions are obtained via division of the
expressions (8) and (9) by |u|2/2.

At the surface z = 0, the ratio of the pure and hybrid contributions to the Rayleigh-wave spin
is:

r ≡ Sll + Stt
Slt + Stl

= − (|A|2κl + |B|2κt)kx
Im(AB∗) (k2x + κlκt)

. (10)

This ratio depends only on the ratio of the Lamé parameters, µ/λ, as shown in Fig. S1(a). Since
|r| < 1, the hybrid contributions dominate at the surface and determine the anomalous sign of the
transverse spin there, see Figs. 1(d) and 2 in the main text. However, with z growing, the pure
contributions (mostly the transverse one) start to prevail, so that the total spin vanishes and flips
its sign at a certain z = zc. By solving the equation Sll + Stt + Slt + Stl = 0 with respect to z and
neglecting negative solutions we find

zc =
1

κl − κt
ln

(
k2x + κ2t
2κlκt

)
. (11)

The dimensionless quantity kxzc depends only on the ratio µ/λ, as shown in Fig. S1(b).

2. Extraction of the longitudinal and transverse contributions to the Rayleigh-
wave field from experimental measurements

Importantly, only the total displacement field u and the corresponding total spin S are directly
measurable quantities, while the transverse/longitudinal/hybrid contributions there are theoretical
concepts. Nonetheless, one can retrieve these contributions from the experimental measurements
of the total Rayleigh-wave field and its gradients at a given point. Using u = ul +ut and Eqs. (5),
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Supplementary Figure 2. (a) Different spin contributions in the Rayleigh wave. Spin reversal along the
z-axis due to the faster decay of the summation of the hybrid contributions compared to the summation of
pure ones. (b) Reconstruction of the longitudinal (ul) and transverse (ut) contributions to the Rayleigh-
wave field u, as well as of the mixed fields ult and utl, from the finite-difference measurements of the total
field gradients in the vicinity of a chosen point M (see explanations in the text). (c) Here we give S on
the left panel as a supplement to the results of s in the main text. The position of point M is marked as a
green cross star. The right panel contains the experimentally retrieved and theoretically calculated elliptical
polarizations.

we express the transverse and longitudinal field components as

ulx =
1

1− κl/κt

(
∂xux
ik

+
∂zux
κt

)
, utx =

1

1− κt/κl

(
∂xux
ik

+
∂zux
κl

)
,

ulz = −∂zuz + ikutx
κl

, utz =
∂xuz+κlulx

ik
. (12)

To measure the (x, z) gradients of the total displacement field u in a point M , we arranged
four triangular pillars around this point, as shown in Fig. S2(b). Measuring the total field at the
four pillars, we calculate the field gradients in the finite-difference approximation, Fig. S2(b).
Substituting these results into Eqs. (12), we calculate the components of the longitudinal and
transverse fields ul and ut, as well as the ‘mixed’ fields ult = (ul z, ut x) and utl = (ut z, ul x)

corresponding to the hybrid contributions to the Rayleigh-wave spin, see Fig. 2(a) in the main text.
The comparison of the experimentally retrieved and theoretically calculated elliptical polarizations
of the fields ul, ut, ult, and utl is shown in Fig. S2(c). In the experiment, the position of the point
M is z = 5.5 mm, ∆z = 5 mm, and ∆x = 20 mm, the frequency of the Rayleigh wave is 35 kHz.
Taking into account the approximate character of this approach and the non-ideal character of the
measured wavefield, the agreement is quite good.

This four-point experiment aims to retrieve the transverse and longitudinal displacement vec-
tors from the experimental data, which can then be compared with the theoretical calculations.
This is important for understanding different contributions to the spin angular momentum. In this
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manner, we can not only observe the total spin of elastic waves, but also retrieve and analyse its
“pure” and “hybrid” parts.

3. Fields and spin contributions in Lamb modes

We now consider symmetric (S) and antisymmetric (A) elastic Lamb modes in a solid plate
ranging from z = −d to z = d and infinite along the x-axis. Akin to Eq. (5), the longitudinal and
transverse field contributions to these modes can be written as:

uSl = AS

 i cosh(κlSz)

0
κlS
kS

sinh(κlSz)

eikSx, uSt = BS

−
κtS
kS

cosh(κtSz)

0

i sinh(κtSz)

eikSx, (13)

uAl = AA

 i sinh(κlAz)

0
κlA
kA

cosh(κlAz)

eikAx, uAt = BA

−
κtA
kA

sinh(κtAz)

0

i cosh(κtAz)

eikAx. (14)

Here kS and kA are the propagation constants of the S and A modes, which can be found from
the characteristic equation [8], whereas κlS =

√
k2S − k2l , κtS =

√
k2S − k2t , κlA =

√
k2A − k2l ,

and κtA =
√
k2A − k2t . From the boundary conditions, the amplitudes of the longitudinal and

transverse fields are related as:

BS =
2iκlSkS sinh(κlSd)

(κ2tS + k2S) sinh(κtSd)
AS , BA =

2iκlAkA cosh(κlAd)

(κ2tA + k2A) cosh(κtAd)
AA . (15)

We consider only the lowest-order modes S0 and A0, where kA > kS for the aluminium strip
in our experiments. We also work in the frequency range below the cut-off frequency of the A1
mode. In this case kA > kt > kl and kt > kS > kl, so that κtS becomes imaginary, while BS/AS
is real. Substituting Eqs. (13) and (14) into Eqs. (1) and (2) of the main text, we obtain the four
contributions to the transverse spin density in the S0 and A0 Lamb modes:

SllS ∝ |AS|2
κlS
2kS

sinh(2κlSz), SttS ∝ |BS|2
−iκtS
2kS

sin(−2iκtSz), (16)

SltS∝−Re(A∗SBS)
−iκlSκtS

k2S
cos(−iκtSz) sinh(κlSz), StlS∝−Re(A∗SBS) cosh(κlSz) sin(−iκtSz),

SllA ∝ |AA|2
κlA
2kA

sinh(2κlAz), SttA ∝ |BA|2
κtA
2kA

sinh(2κtAz), (17)

SltA ∝ −Im(A∗ABA) cosh(κtAz) sinh(κlAz), StlA ∝ −Im(A∗ABA)
κlAκtA
k2A

cosh(κlAz) sinh(κtAz).

One can see that, similarly to the Rayleigh-wave case, the ‘pure’ and ‘hybrid’ contributions to
the spin have opposite signs. The z-distributions of the total spin density in the S0 and A0 Lamb
modes, as well as its ‘pure’ and ‘hybrid’ parts, are shown in Figs. 3 and 4(a) in the main text. The
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Supplementary Figure 3. (a) Dispersions of the symmetric and antisymmetric Lamb modes in an alu-
minium strip with d = 3 cm. (b) The frequency dependencies of the ratio of |uz|2/|u|2 and the normalized
spin density s at z = −d in the A0 and S0 modes. The light blue area indicates the frequency range of the
simulations in Fig. S4.
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Supplementary Figure 4. Numerical simulations of the excitation of the Lamb waves in an aluminium
strip with d = 3 cm by a circularly polarized source with s = +1 located at z = −d. The results are shown
for different central frequencies f = 14−24 kHz.

normalized spin contributions are obtained dividing the expressions (16) and (17) by |uS|2/2 and
|uA|2/2, respectively.

4. Frequency-dependent polarization properties of the Lamb modes

The dispersions of the Lamb modes, calculated from the characteristic equations [8] for an
aluminium strip with d = 3 cm, are shown in Fig. S3(a). In this work we focus on the A0/S0
modes and avoid the excitation of higher modes. Therefore, the central frequency of the pulses
used in our experiments was below the cutoff frequency fc ' 25 kHz of the A1 mode.

The displacement field u of the A0/S0 mode at the edge (z = −d) is elliptically polarized. Im-
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Supplementary Figure 5. Experimentally measured spectra of the normalized spin density s (at z = −d)
in the Lamb waves excited by a circularly-polarized source (s = +1) and propagating in the +x and −x
directions.

portantly, the properties of the polarization ellipse, and hence the spin s at the edge, are frequency-
dependent. To characterize this dependence, in Fig. S3(b) we plot the ratio γ = |uz|2/|u|2 ∈ (0, 1)

and the normalized spin s = 2Im(u∗zux)/|u|2 versus frequency f = ω/2π. The value γ = 0.5

corresponds to a circular polarization (maximum normalized spin |s| = 1), whereas γ = 0 and 1

correspond to linear polarizations (vanishing spin s = 0). In the limit of low frequencies f → 0,
the polarizations of the A0/S0 modes are linear and their spins vanish at the edge. As the frequency
grows, the polarizations become elliptical, with opposite rotation directions, and the spins of the
S0 and A0 modes at the edge, achieve almost maximum opposite values sA ' 1 and sS ' −1

for frequencies f ' 20−25 kHz. That is why we chose the central frequency f = 20 kHz in
our experiments on the spin-controlled directional excitation of the Lamb modes, see Fig. 4 in the
main text.

Remarkably, the edge spin of the S0 mode vanishes and changes its sign at f ' 37 kHz. For
higher frequencies, the polarization-spin properties of the A0 and S0 modes coincide with each
other. This is because both of these modes can be approximated by a pair of Rayleigh waves
at the upper and lower edges of the strip [8]. This leads to the same dispersion relations and
polarizations.

In addition to the experimental measurements shown in Fig. 4 in the main text, we performed
numerical simulations of the excitation of the Lamb waves by a circularly-polarized source with
s = +1 at the z = −d edge. Results of these simulations with the parameters corresponding
to the experimental one and different central frequencies f = 14−24 kHz are shown in Fig. S4.
One can see an excellent agreement with the experimental results for f = 20 kHz, Fig. 4(c) in
the main text. In addition, one can see that lower central frequencies cause an admixture of the
S0 mode propagating in the +x direction, whereas higher frequencies cause an admixture of the
higher-order A1 mode.

Finally, in our experiment we checked that the positive spin s > 0 generated by the source
is transferred by the excited Lamb modes propagating in the +x and −x directions. For this, we
measure the frequency spectra of the spin s at distances x = 45 cm and x = −45 cm from the
source. Figure S5 clearly shows that both propagating Lamb waves carry positive spins s > 0.
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Supplementary Figure 6. The zero-spin (Sy = 0) planes in the A0 and S0 Lamb modes. These planes are
shown in black in the panels (a) and (b) against the spin-density background. The central zero-spin plane
is always present at z = 0 due to the symmetry. Two additional planes appear in the center/edges for the
A0/S0 mode and move to the Rayleigh-wave position (at the distances zc from the edges) as the frequency
increases. The panel (c) shows the frequency dependences of the spin zeros for the A0 mode, S0 mode, and
the Rayleigh waves (zc distances from the edges). The shaded region corresponds to the opposite spin signs
in the A0 and S0 modes.

5. Zero spin planes in Rayleigh-Lamb mode

As shown in Fig. 3, the spin properties of the A0 and S0 modes gradually become the same
as the frequency increases. This is because at high frequencies, the skin depth of a pair of surface
modes is much shorter than the width of the solid strip, causing the two surface modes to become
independent of each other. Thus, both the A0 and S0 modes can be regarded as a pair of Rayleigh
modes at high frequencies.

Similar to the critical depth zc in Rayleigh waves, the Lamb modes also contain planes where
the elastic spin vanishes. In the main text, we show that the central z = 0 plane of a solid strip
is such a zero-spin plane. This is determined by the symmetry of the plate, which requires that
s(z) = −s(−z). As the frequency increases, two additional zero-spin planes appear. These zero
planes gradually approach positions at the zc distances from the plate surfaces, as shown in Fig. 6.
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