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Superradiant phase transitions (SPTs) are important for understanding light-matter interactions at the
quantum level, and play a central role in criticality-enhanced quantum sensing. So far, SPTs have been
observed in driven-dissipative systems, but the emergent light fields did not show any nonclassical
characteristic due to the presence of strong dissipation. Here we report an experimental demonstration of
the SPT featuring the emergence of a highly nonclassical photonic field, realized with a resonator coupled
to a superconducting qubit, implementing the quantum Rabi model. We fully characterize the light-matter
state by Wigner matrix tomography. The measured matrix elements exhibit quantum interference intrinsic
of a photonic mesoscopic superposition, and reveal light-matter entanglement.

DOI: 10.1103/PhysRevLett.131.113601

The Dicke model [1,2], involving a quantized light field
coupled to N two-level atoms, represents a paradigm for
realizing exotic quantum phenomena that are absent in
semiclassical light-matter systems. Superradiant phase
transitions (SPTs) are one of the most famous examples
[3–5], where the behavior of the light is sharply changed
when the light-matter coupling strength becomes compa-
rable to their frequencies. Under equilibrium conditions,
the SPT features a sudden buildup of a photonic field that is
highly entangled with the atoms in a mesoscopic super-
position [5]. In addition to its fundamental appeal, such cat
states can be used as an intrinsically protected qubit for
fault-tolerant quantum computation [6] and as a resource
for quantum enhanced metrology [7]. The equilibrium SPT
has been attracting enduring attention since the 1970s, but
its experimental demonstration still remains very challeng-
ing. This is mainly because the neglected square of the
vector potential actually increases quadratically with the
coupling strength and the photon number, which prohibits
the occurrence of SPTs, known as the no-go theorem [8].
Over the past decade, breakthrough experiments have been
reported for dynamical realizations of SPTs with a collec-
tion of driven atoms trapped in an optical cavity [9–16],

whose photonic dissipation enabled the phase transition to
be monitored by measuring the output field. This dissipa-
tion, however, at the same time obscured the quantum
coherence of the light, as well as the light-matter entangle-
ment inherent in the superradiant phase (SP).
Although originally proposed in the thermodynamic

limit N → ∞, SPTs can actually occur in the quantum
Rabi model (QRM), which only involves a single atom
coupled to a light field [17,18]. Recent years have wit-
nessed remarkable advances in simulations of the Rabi
model in different systems, where the photonic mode was
emulated by a phononic mode of a trapped ion [19,20],
while the light field coupling the ion’s internal and external
degrees of freedom is classical. Circuit QED represents an
alternative excellent platform for exploring quantized light-
matter systems in regimes that are inaccessible with
conventional cavity QED [21–24], and for simulating
controlled many-body dynamics [25,26]. In particular,
recent experiments [27] have demonstrated some spectro-
scopic signatures in the deep-strong coupling regimes. The
long coherence times of the superconducting qubits and the
microwave photons makes circuit QED promising for
realizing SPT produced by a unitary process, in distinct
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contrast with ultracold-atoms-based cavity QED systems
[9–16], where SPT was realized in a dissipative-driven
manner. This unitary nature, together with the ability to
individually control and measure the superconducting
qubits, enables the exploration of nonclassical character-
istics associated with the SPT, such as the qubit-resonator
entanglement and phase-space quantum interference be-
haviors of the resonator.
Theoretical investigations indicate that the no-go theo-

rem can be circumvented in circuit QED systems [28].
However, the approximation for describing a superconduct-
ing artificial atom as a qubit may break down when
increasing the coupling strength due to the limited anhar-
monicity [29], which prohibits the occurrence of dynamical
signatures of the Rabi model, even when the deep-strong
regime is reached [27]. To overcome this problem, it was
proposed to effectively transform the Jaynes-Cummings
model into the Rabi model, by applying continuous micro-
wave fields to the qubit [22,30] or by introducing a two-
photon drive to the resonator [31–34]. Following these
approaches, some important features predicted by the Rabi
model have been observed [35,36]. Despite these advance-
ments, so far the SPT of a real radiant field with non-
classical features has not been reported in any system.
Here we report a realization of the first-order SPT of a

quantum light field manifested by an emergent cat state.
Our demonstration involves a resonator and a supercon-
ducting qubit coupled at the second sideband of a strong
parametric modulation produced by an ac magnetic flux.
This strong longitudinal modulation, together with a weak
modulation and a transverse microwave driving, enables
the realization of an effective Rabi model with a control-
lable coupling-frequency ratio. We fully describe the non-
classical behavior of the system by measuring the Wigner

function matrix of the joint qubit-resonator system, which
contains full information about its state. The measured
matrix elements unambiguously demonstrate that the pho-
tonic field emergent in the SP is in a quantum superposition
of two quasiclassical states that are degenerate in amplitude
but have opposite phases. These results bridge the gap
between the phase transitions predicted in closed quantum
systems and those observed in real macroscopic systems,
which is critical to understanding how a symmetry-broken
macroscopic order emerges from the dynamics governed by
a symmetry-preserving Hamiltonian.
The theoretical model includes a quantized light field

stored in a resonator coupled to a qubit, e.g., a tunable
Xmon qubit [see Fig. 1(a)], whose transition frequency is
periodically modulated [37] as ωq ¼ ω0 þ ε1 cosðν1tÞþ
ε2 cosðν2tÞ, where ω0 corresponds to the mean transition
frequency of the qubit, and ε1;ð2Þ [ν1;ð2Þ] are the correspond-
ing modulation amplitudes (frequencies). In addition to
these longitudinal modulations, the qubit is transversely
driven by an external field at the frequency ω0 with an
amplitude K. The system dynamics is described by the
Hamiltonian

H¼ℏ

�
ωpa†aþ

ωq

2
σzþðλa†σ−þKeiω0tσ−þH:c:Þ

�
; ð1Þ

where a† (a) denotes the creation (annihilation) operator for
the photonic field with frequency ωp, λ is the qubit-
resonator coupling strength, σz ¼ jeihej − jgihgj, and σ− ¼
jgihej are Pauli operators for the qubit. Under the condition
ν1 ≫ λ, K, δ with δ ¼ ωp − ω0 − 2ν1, the resonator inter-
acts with the qubit at the second sideband associated with

Resonator Tunable Xmon Qubit 

(a) modulation with (b) (c)

Larmor precession

FIG. 1. Theoretical model. (a) Sketch for the qubit-resonator coupling. The test qubit is coupled to the resonator at the second sideband
of a sine longitudinal modulation with modulating amplitude ε1 and frequency ν1. A second sine modulation with amplitude ε2 and
frequency ν2 is used to control the effective frequency of the qubit. These two modulations, together with a transverse drive K,
effectively realizes an effective Rabi Hamiltonian. Bloch representations in (b) the laboratory frame and (c) the precessing frame. By
analogy with the motion of a spin-1=2, the transverse drive can be regarded as a static magnetic field of strength B0 ∝ K along the x axis,
which forces the Bloch vector of the qubit to precess with angular frequency B0. The second longitudinal modulation corresponds to
applying two magnetic fields on the yz plane with the same amplitude jB�

1 j ¼ ε2=4, rotating at the same angular frequency ν2 ¼ B0, but
in opposite directions. The light field stored in the resonator acts as an effective magnetic field with components Bx

2 and By
2. In the

precessing frame associated with B0, the components Bþ
1 and Bx

2 are aligned with the z and x axes, respectively. The remaining
components have negligible effects in the rotating-wave approximation (not shown).
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the first modulation, while the drive works at the carrier, as
shown in Fig. 1(a).
The effective dynamics can be well understood in terms

of the motion of a spin-1=2 in magnetic fields. As shown in
Fig. 1(b), the transverse drive can be thought of as a static
magnetic field of strength B0 ¼ 2KJ0ðμÞ along the x axis,
forcing the Bloch vector of the qubit to make a Larmor
precession with angular frequency B0, where JmðμÞ denotes
the mth Bessel function of the first kind with μ ¼ ε1=ν1.
The second longitudinal modulation acts as the combina-
tion of two components: B�

1 that have the same amplitude
jB�

1 j ¼ ε2=4, but rotate with opposite angular velocities
�ν2 on the yz plane. On the other hand, the quantized
light field behaves like a magnetic field with the x and
y components

Bx
2 ¼ 2ηðaþ a†Þ; By

2 ¼ 2iηða† − aÞ; ð2Þ

where η ¼ λJ2ðμÞ=2. When B0 ¼ ν2 ≫ B1; B
xðyÞ
2 , in the

framework coinciding with the Larmor precession, the
components B−

1 and By
2 can be discarded due to fast

rotations [see Fig. 1(c)]. Consequently, the dynamics can
be described by the effective quantum Rabi Hamiltonian
(ℏ ¼ 1)

HR ¼ 1

2
Ωσz þ δa†aþ ησxðaþ a†Þ; ð3Þ

which is obtained by subsequently performing the
transformations exp ½i R t

0 H0 dt� and exp ðiB0σxt=2Þ and

neglecting the fast-oscillating terms (see Supplemental
Material, Sec. S1 A [38]), where Ω ¼ ε2=2 and

H0 ¼ ðω0 þ 2ν1Þa†aþ 1

2
½ω0 þ ε1 cosðν1tÞ�σz: ð4Þ

We note that the synthesized qubit-resonator system cor-
responds to an isomorphism of the QRM [52], where the
effective counterrotating-wave coupling is produced by the
external drive, but not inherent in the qubit-resonator inter-
action as in the QRMwithout driving. With this realization,
the system frequencies are replaced by the transverse
driving detuning and the longitudinal modulation ampli-
tude, which can be easily tuned. Consequently, the critical
point of the SPT can be reached in the effective QRM
without requiring the qubit-resonator coupling to be com-
parable to the system frequencies, thereby circumventing
the restriction of the no-go theorem.
Our experimental device possesses a bus resonator and

five frequency-tunable Xmon qubits, one of which is used
as the test qubit for realizing the QRM. Before the
experiment, each qubit is initialized to its ground state.
The experiment starts by tuning the test qubit to the
operating frequency ω0=2π ¼ 5.18 GHz, where a continu-
ous microwave K is applied. This transverse driving,
together with the two longitudinal sine modulations,
effectively realizes the Rabi Hamiltonian of Eq. (3). The
experimental details are shown in Supplemental Material,
Sec. S2 [38], including experimental setup, device
parameters, and pulse sequence. During the quenching
process where the ratio ξ ¼ 2η=

ffiffiffiffiffiffi
Ωδ

p
is slowly increased,
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FIG. 2. (a) Control parameter ξðtÞ versus time t. During the quenching process, the effective frequencies of the qubit and the resonator
are respectively varied as Ω ¼ 2

ffiffiffiffiffi
10

p
η=½1.5 − exp ð−8t=tfÞ� and δ ≃ Ω=10, with tf ¼ 2 μs, while the effective coupling strength is fixed

to η=2π ¼ 0.81 MHz. Experimentally, Ω is controllable by ε2, and δ is adjustable by the Stark shift produced by an ancilla qubit
dispersively coupled to the resonator. With these settings, ξðtÞ depends on t as ξðtÞ ¼ 1.5 − expð−8t=tfÞ. (b) Observed dynamical
evolution of the average photon number n̄ ¼ ha†ai. The green curve shows the result of numerical simulation based on the master
equation, where the parameters of the control fields are set to K=ð2πÞ ¼ 19.9, ε1=ð2πÞ ¼ 165.85, ν1=ð2πÞ ¼ 200, ν2=ð2πÞ ¼
33.28 MHz, and ϵ2 ¼ 3.08Ω, and the qubit and resonator frequencies are ω0=ð2πÞ ¼ 5.18 GHz and ωp ¼ ω0 þ 2ν1 þ δ, respectively.
The relaxation time T1 (dephasing time T�

2) for the qubit and the resonator are 21.5 and 12.9 μs (1.1 and 234.5 μs), respectively, each
measured in independent experiments. The inset shows the photon number distribution of the resonator measured at t ¼ 2 μs.
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all the qubits, except the test one, remain in their ground
states as they are detuned from the resonator by an amount
about twenty times larger than the corresponding qubit-
resonator coupling strengths. Such a process is realized by
varying the control parameter as ξðtÞ ¼ 1.5 − expð−8t=tfÞ,
with tf ¼ 2 μs.
To characterize the photon-number populations after a

preset quench time, the microwave drive and the frequency
modulations are switched off, so that the test qubit is
effectively decoupled from the resonator since the detuning
between the qubit and the resonator is 20 times their
coupling strength without modulations. Subsequently, an
ancilla qubit is tuned on resonance with the resonator,
undergoing photon-number-dependent Rabi oscillations.
The photonic populations of the resonator can be inferred
from the measured Rabi oscillations signals [53]. Figure 2
shows the measured average photon number (n̄ ¼ ha†ai)
versus time. We compare the measured values with the
theoretical predictions and show that the experimental
result agrees well with the simulation.
The exotic behavior in the SP can be characterized by the

Wigner function matrix that contains full information about
the joint qubit-resonator state [54]. In terms of the qubit
basis fjgi; jeig, the density operator is expressed as

ρ ¼
X
k¼g;e

X
k0¼g;e

ρk;k0 ⊗ jkihk0j; ð5Þ

with ρk;k0 ¼ hkjρjk0i matrix elements.

The information of the element ρk;k0 is contained in the
correspondingWigner matrix elementWk;k0 ðβÞ. To measure
the Wigner matrix elements, we translate in phase space the
resonator state by β. The matrix elements are inferred by
measuring the test qubits along three mutual axes, and
correlating the outcomes to the photon number distribu-
tions of the resonator measured with the ancilla qubit (see
Supplemental Material, Sec. S5 [38] for detailed charac-
terization of the qubit-resonator state). Figures 3(a)–3(d)
show the Wigner matrix elements reconstructed at
t ¼ 1.946 μs, which reveal that the field exhibits two
quasiclassical components with the same amplitude but
opposite phases j � αi and a vacuum component, featuring
a first-order phase transition. The strong quantum coher-
ence between the “empty” state j0i and “filled” states
j � αi, distinguishes this SPT from the first-order phase
transition previously investigated in the Dicke model with
the mean field description [15,33,55]. The resulting output
state can be regarded as a super-cat state, featuring being
simultaneously empty and filled, where the filled state itself
is a cat state composed of the two components j � αi
superimposed with each other. This super-cat state is
significantly distinct from the ground state of the ideal
Rabi model with an infinite frequency ratio [18], in which
the population of the vacuum component tends to 0. As
shown in Fig. S7 of the Supplemental Material [38],
Sec. S4, the limitation of the effective frequency ratio,
nonadiabaticity, and deviation from model Hamiltonian
contribute vacuum populations of 0.04, 0.03, 0.06,

(a)3
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FIG. 3. Wigner matrix tomography. (a)–(d) Measured matrix elements for the super-cat state. The value of the matrix elements at each
point is reconstructed from the Wigner diagonal elements measured along the three mutually orthogonal axes of the Bloch sphere of the
qubit. Each of these diagonal elements is obtained from the measured photon number distribution of the field displaced by β in phase
space, correlated with detection of the test qubit along the corresponding axis. All the data are measured at t ¼ 1.946 μs. (e)–(h) Matrix
elements for the superradiant-phase cat state. These Wigner matrix elements are extracted by reconstructing the qubit-resonator density
matrix in the Fock basis, discarding the elements associated with j0i to obtain system density matrix associated with the superradiant
phase, from which the corresponding Wigner matrix is obtained. The inferred vacuum population in the superradiant phase is ∼0.1%,
which implies that the measured vacuum population of about 30% mainly arises from the normal phase that coexists with the
superradiant phase. (i),(j) Normalized density matrices of the resonator associated with the qubit states jei and jgi. For clarity, we here
only display the magnitudes of the elements.
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respectively. The dissipation is responsible for the rest of
vacuum population (∼0.16), and turns the qubit-resonator
system into a partially mixed state, with a purity of
Trðρ2Þ ¼ 0.46. With the increase of the distance from
the critical point, the size of the cat state would be improved
at the price of degradation of the state purity, as a
consequence of its increasing sensitivity to dissipation
and the longer time needed for the quenching process.
To further confirm this exotic phenomenon, we separate

the measured coherent fields with amplitude jαj from the
vacuum field, enabled by their large distance in phase
space. The extracted Wigner matrix elements for the SP are
displayed in Figs. 3(e)–3(h). As expected, each of these
elements exhibits two peaks, between which there exists an
oscillating pattern featuring the alternating appearance of
positive and negative values, as a consequence of quantum
interference between j � αi [56]. The distortions of the
Gaussian peaks are mainly due to the neglected high-order
nonlinear processes and the limited frequency ratio
Ω=δ ≃ 10. These results unambiguously demonstrate that
the photons produced in the SP spontaneously form a
catlike state. For each of the two quasiclassical components
forming the cat state, the parity symmetry is broken. The
extent of the symmetry breaking is quantified by the field
coherence, hai, which is equal to the amplitude of the
quasiclassical coherent state and can be used as an order
parameter to characterize the QPT [18,57].
After the quenching dynamics, this coherence has a

magnitude of 2.62, which indicates the occurrence of a
phase transition during the quenching process [58]. The
resulting cat state formed by two coherent states j � αi has
a size of d2 ¼ 4jαj2 ¼ 27.46 [56]. The inferred diagonal
element W̃e;e (W̃g;g) has a minimum value of −0.060
(−0.068) at β ¼ −0.48 − 0.36i (β ¼ −0.48i). These neg-
ative phase-space quasi-probability densities show the
nonclassicality of the emergent photonic field. The pho-
ton-matter entanglement can be quantified by using the
negativity obtained from the partially transposed density
matrix [59]. The negativity for the SP, inferred from the
qubit-resonator density matrix associated with the SP, is
0.12, which confirms the existence of strong light-matter
entanglement, making the present SP distinct from those
realized in previous experiments [9–16], where no entan-
glement was observed due to the strong decoherence.
Because of the decoherence effects, this negativity is
smaller than that for the ideal superradiant ground state,
which has a value of 0.44.
The quantum coherence between the coexisting phases

can be further confirmed by the off-diagonal elements
between j0i and jni (n ≠ 0) in the Fock basis associated
with We;e and Wg;g, displayed in Figs. 3(i) and 3(j). The
coherences between the empty state and filled state, defined
as Ck;k ¼

P
n≠0 jh0jρk;kjnij=Trðρk;kÞ, are 1.018 and 1.020

for the renormalized resonator density matrices correlated
with jei and jgi, respectively. Each of these coherences is

much larger than that of the coherent state jαi,
Cα ¼

P
n≠0 jh0jαihαjnij ¼ 0.1147, which verifies that

these coherences are mainly due to the quantum super-
position between the SP and the normal phase. The
negativity of the realized first-order phase transition is
0.25, which quantifies the qubit-resonator of the output
density matrix, reconstructed without removing the ele-
ments associated with the vacuum state component j0i.
This negativity is significantly higher than that for the SP,
mainly due to the fact that the vacuum state is not subjected
to decoherence.
In conclusion, we have theoretically proposed and

experimentally demonstrated a method for exploring the
SPT of a microwave photonic field stored in a resonator
coupled to a superconducting artificial atom. The recon-
structed resonator-qubit Wigner matrix reveals quantum
interference effects between the vacuum and the SP cat
states, and between the two SP states, as well as light-
matter entanglement. It is expected that the emergent cat
state loses its coherence at an increasing rate with the
increase of the photon number, as a consequence of the
information acquisition about the phase or amplitude of
the field by the environment. Progressively increasing the
quench parameter would make it possible to experimentally
explore the intimate relation between the symmetry break-
ing process and decoherence, which plays a central role in
the quantum-to-classical transition. In addition to funda-
mental interest, our system may find applications in
quantum technology.
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