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In the Supplemental Material, we present the details about the main results in this work.

I. QUANTUM MIRROR WITH CONTROLLABLE REFLECTION

The tunable reflection of mirrors can be used for manipulating cavities. The atomic mirrors studied in previous
works rely on waveguide-induced collective quantum effects to enhance light reflection. For these atomic mirrors
without direct couplings between atoms, it is challenging to tune the reflection of light. In this section, we discuss
the difference between Bragg and anti-Bragg conditions in affecting the reflection of light from two coupled atoms in
a waveguide. In particular, we show the advantages of the direct coupling between the atoms in order to manipulate
mirror reflection.

A. Waveguide scattering theory and tunable quantum interference in photon reflection

Waveguides are an important interface for light-matter interaction. Photons propagating in a waveguide can
be scattered by a single atom or an atom array. Without loss of generality, we consider that the atom-waveguide
interaction is much weaker compared to atomic frequency ω0. In the Born-Markov approximation, the atom-waveguide
coupled quantum system can be described by a master equation (~ = 1)

ρ̇(t) = −i[H0 +Hw, ρ(t)] +D[ρ]. (S1)

Here, H0 is the Hamiltonian of the atomic system, and Hw denotes long-range atom-atom interactions induced by
the waveguide, i.e., Hw =

∑
ij gij(σ

+
i σ
−
j + H.c.), where gij are related to decay rates of atoms. Operators of atoms

are σ+
i = |ei〉〈gi| and σ−i = |gi〉〈ei|, where |gi〉 and |ei〉 are the ground state and excited state of the ith atom,

respectively. Obviously, interactions in Hw are coherent. In addition to coherent atom-atom interactions, continuous
photonic modes in the waveguide give rise to correlated dissipation between atoms. This is described by the Lindblad
operator

D[ρ] =
∑
i,j

γij
(
2σ−i ρσ

+
j − σ+

i σ
−
j ρ− ρσ+

i σ
−
j

)
. (S2)

In the literature, γij are also known as dissipative couplings. These are responsible for collective quantum effects,
e.g., superradiance and subradiance. In a one-dimensional waveguide, one can show that the coherent couplings and
dissipative couplings are

gij =
√

ΓiΓj sin

(
2πdij
λ0

)
, (S3)

γij =
√

ΓiΓj cos

(
2πdij
λ0

)
, (S4)
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respectively. Here, Γi denotes the waveguide-induced decay rate of the ith atom. Without loss of generality, we
assume that atoms coupled to the waveguide have the same decay rate Γ. Above, dij is the spacing between the ith
and jth atoms, and λ0 is the wavelength of the photons corresponding to atomic frequency ω0. The single-photon
reflection amplitude in the waveguide is [S1]

r = −iΓ
∑
i,j

Gij exp[ik0(xi + xj)], (S5)

with k0 = ω0/c, and Gij are matrix elements of the Green’s function

G =
1

ω −Heff
. (S6)

Here, ω is the frequency of the driving field in the waveguide. Eq. (S5) can be written as

r = −iΓV > 1

ω −Heff
V , (S7)

where the vector V = (eik0x1 , eik0x2 , · · · )> represents propagating photons in the waveguide. Heff is the non-Hermitian
effective Hamiltonian of the atom-waveguide system

Heff = H0 +Hw − i
∑
ij

γij(σ
+
i σ
−
j + H.c.). (S8)

Therefore, optical responses in the waveguide are determined by this effective Hamiltonian. For simplicity, we
diagonalize the effective Hamiltonian as Heff =

∑
j Ej |ΦRj 〉〈ΦLj |, with the biorthogonal basis 〈ΦLj |ΦRj′〉 = δjj′ . In

terms of the eigenvectors of the effective Hamiltonian, the reflection amplitude becomes

r(ω) = −iΓ
∑
j

V >|ΦRj 〉〈ΦLj |V
ω − Re(Ej)− iIm(Ej)

(S9)

Here, xi denotes the position of the ith atom in the waveguide. Equation (S9) shows that photon reflection in the
waveguide results from quantum interference between scattered photons. Specifically, photon reflection is related
to energies and decay rates of the eigenstates, as well as the interaction spectrum V >|ΦRj 〉〈ΦLj |V in the reflection
process [S2].

From Eqs. (S3) and (S4), we know that atomic spacing determines the waveguide-mediated couplings. Therefore,
scattering states in the atomic system are changed by the atomic spacing, giving rise to various interaction spectra.
We discuss two types of atomic spacings, which have distinct influences on the reflection of light.

B. Bragg atomic mirror

The Bragg scattering condition is defined by the atomic spacing d = nλ0/4, where n is an even number.
In this scenario, atoms in the waveguide have largest dissipative couplings. However, the coherent coupling is
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FIG. S1. (a) Schematic diagram of a Bragg atom-dimer mirror in a waveguide. (b) V -type energy levels of the atom dimer. The
superradiant state has decay rate 2Γ, and the dark state does not decay. (c) Reflection of the Bragg atom-dimer mirror. Red-
solid and black-dashed curves correspond to Bragg atom-dimer mirrors with Ω = 0 and Ω = 2Γ, respectively. The blue-dotted
curve denotes the refection of a single atom.
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vanishing. Therefore, atoms have strong cooperative light-matter interactions, producing collective quantum effects,
e.g., superradiance and subradiance. In waveguide QED, Bragg scattering is of considerable interest in studying
photon transport. Waveguide-induced superradiant states enhance light reflection. Therefore, high-finesse atomic
cavities can be realized [S3].

We consider an atom dimer coupled to a waveguide, as shown in Fig. S1(a). Two atoms have a direct coupling Ω.
The corresponding Hamiltonian is H0 = ω0(σ+

1 σ
−
1 + σ+

2 σ
−
2 ) + Ω(σ+

1 σ
−
2 + H.c.). In the Bragg condition with atomic

spacing d = λ0, we have g12 = 0 and γ12 = iΓ. Therefore, the effective Hamiltonian of two coupled atoms is

Heff,Bragg =

(
ω0 − iΓ Ω− iΓ
Ω− iΓ ω0 − iΓ

)
. (S10)

We can obtain the eigenenergies

E± = ω0 − iΓ± (Ω− iΓ). (S11)

Namely, E+ = ω0 + Ω − i2Γ and E− = ω0 − Ω. The corresponding eigenstates are symmetric and anti-symmetric
superpositions of two mirror atoms, i.e., |Φ+〉 = 1√

2
(1, 1)> and |Φ−〉 = 1√

2
(1,−1)>, respectively.

Energy levels of the Bragg atom-dimer mirror are shown in Fig. S1(b). In particular, |Φ+〉 is a superradiant state
with a decay rate 2Γ, and |Φ−〉 is the subradiant state without dissipation. The atomic coupling Ω changes the
energy splitting between these two collective states. One can find the interaction spectrum V >|ΦR+〉〈ΦL+|V = 2 for

the superradiant state |Φ+〉. Because |Φ−〉 is a dark state, its interaction spectrum is V >|ΦR−〉〈ΦL−|V = 0. Therefore,
the reflection amplitude of the Bragg atom dimer becomes

r(∆) =
−i2Γ

∆− Ω + i2Γ
, (S12)

with ∆ = ω − ω0. The reflection spectrum is shown in Fig. S1(c). The atomic coupling gives rise to a shift of the
reflection spectrum with respective to the one Ω = 0. Although the spectrum is broader, the profile is still Lorentzian.
The reflection spectrum of this Bragg atom dimer is the same as for a single atom with frequency ω0 + Ω and decay
rate 2Γ. In other words, the atomic coupling plays a trivial role in changing the reflection spectrum of a Bragg atom
dimer.

C. Anti-Bragg atomic mirror

Distinct from the Bragg atomic mirror, the anti-Bragg atom-dimer mirror produces a single-peak or two-peak
reflection spectrum depending on the direct atomic coupling Ω. This reflection-tunable mirror makes it possible to
control the flow of light in the waveguide. The anti-Bragg condition is defined by the atomic spacing d = mλ0/4,
where m is an odd number. Without loss of generality, the spacing between two atoms is assumed to be d = λ0/4. In
this scenario, the waveguide induces the coherent coupling between the two atoms; however, the dissipative coupling
is vanishing. Therefore, the non-Hermitian Hamiltonian of the waveguide-mediated atom-dimer mirror is

Heff,anti−Bragg =

(
ω0 − iΓ Ω + Γ
Ω + Γ ω0 − iΓ

)
. (S13)

The eigenvalues of the Hamiltonian in Eq. (S13) are E± = ω0 ± (Ω + Γ)− iΓ. The eigenvectors are |Φ+〉 = 1√
2
(1, 1)>

and |Φ−〉 = 1√
2
(1,−1)>, same as for the Bragg atom dimer. Different from the Bragg counterpart, the anti-Bragg

atom dimer has two scattering states with the same decay rate. Therefore, both of them are responsible for reflection
of light in the waveguide. Another difference from the Bragg atom dimer is that no collective quantum effect appears
in the anti-Bragg atom dimer. In this sense, the anti-Bragg atom mirror seems to be trivial. In fact, the anti-Bragg
condition gives rise to many interesting optical properties in the atom-dimer mirror.

From the multi-channel scattering approach [S2], the reflection amplitude produced by the anti-Bragg atom-dimer
mirror is

r(∆) = −iΓ
(
V >|ΦR+〉〈ΦL+|V

∆− (Ω + Γ) + iΓ
+

V >|ΦR−〉〈ΦL−|V
∆ + (Ω + Γ) + iΓ

)
. (S14)

These two scattering states have different energies ω0 ± (Ω + Γ). Different from the Bragg atom-dimer mirror,
the anti-Bragg atom-dimer mirror yields quantum interference in the reflection process. After a straightforward
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FIG. S2. Reflection intensity R = |r|2 (solid) and photon phase shift Arg(r) (dashed) produced by the anti-Bragg atomic
mirror. Red and blue curves correspond to Ω = −0.2Γ and Ω = 0.6Γ, respectively. The phase shift at ∆ = 0 is zero for the
single-peak and two-peak reflection spectra.

calculation, we obtain the interaction spectra between propagating photons in the waveguide and atom-dimer mirror:
V >|ΦR+〉〈ΦL+|V = −i, and V >|ΦR−〉〈ΦL−|V = i. Hence, the reflection intensity (R = |r|2) becomes

R(∆) =

∣∣∣∣( −Γ

∆− (Ω + Γ) + iΓ
+

Γ

∆ + (Ω + Γ) + iΓ

)∣∣∣∣2 . (S15)

Quantum interference in the reflection process can be tuned by the atomic coupling Ω. By changing the energy
difference W = 2(Ω + Γ) between two scattering states, the reflection of the atom-dimer mirror can be modified.
Specifically, for −Γ < Ω ≤ Γ, the atom-dimer mirror yields a single-peak reflection spectrum. However, for Ω > Γ, a
two-peak reflection spectrum is obtained. In Fig. S2, we show the reflection intensities and phase shifts of photons
for Ω = −0.2Γ and Ω = 0.6Γ, respectively. For the reflection at the central frequency ∆ = 0, the phase shift is zero
when Ω > −Γ, different from the π phase shift in the light reflection produced by the Bragg atomic mirror. However,
when two scattering states are swapped with Ω < −Γ, a π phase shift is obtained.

We note that a waveguide-mediated anti-Bragg atom dimer with fixed direct coupling Ω = −Γ was recently realized
in superconducting quantum circuits [S4]. We find that the atom dimer with Ω = −Γ gives rise to degenerate
scattering states. Destructive quantum interference produces vanishing reflection for various frequencies. In other
words, the atom-dimer mirror is transparent for incident photons. Hence, by tuning the atomic coupling Ω of the
anti-Bragg atom-dimer mirror, we can drastically modify the reflection spectrum. This makes it feasible to realize a
controllable open cavity using atomic mirrors, which is challenging for conventional optical cavities.
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FIG. S3. (a) Schematic of anti-Bragg atom-dimer mirror in superconducting quantum circuits. The crosses represent Josephson
junctions. Here, a superconducting artificial atom consists of two Josephson junctions. The tunable coupling between two
artificial atoms can be realized by a Josephson junction. Two red dots denote coupling points between two atoms and the
waveguide. (b) Tunable atomic coupling Ω versus δ, the phase difference across the coupler junction. Here, we consider
LJ = 8.34 nH, Lg = 0.2 nH and Lc = 0.566 nH, as studied in the experiment [S5].
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D. Tunable atomic coupling in superconducting quantum circuits

To realize the tunable atom-dimer mirror, we need to manipulate the direct coupling Ω between atoms. Waveguide
QED with an atom dimer has been experimentally realized for fixed direct coupling between atoms [S4]. In this
experiment, the direct coupling Ω is set to be −Γ, such that the coupling between the two atoms is zero. Here, we
suggest an experimental setup for a tunable atom-dimer mirror, as shown in Fig. S3(a). A superconducting artificial
atom consisting of two Josephson junctions is known as a gmon qubit. The coupling between two artificial atoms is
mediated by a tunable Josephson junction with inductance Lc. Its concrete form is

Ω = −M
2

ω0

LJ + Lg
, (S16)

where the mutual inductance M = L2
g/(2Lg +Lc). Here, ω0 is the frequency of two atoms. The Josephson inductance

is Lc = Φ0/(2πI0 cos δ) = L0/ cos δ, where Φ0 = h/2e is the magnetic flux quantum; I0 is the critical current of the
coupler junction; and δ is the phase difference across the coupler junction. This phase difference can be controlled by
the external dc flux. Therefore, the atom-atom coupling becomes

Ω = −ω0

2

L2
g

(LJ + Lg)(2Lg + L0

cos δ )
. (S17)

This direct coupling can be tuned from positive to negative by controlling the phase δ of the coupler junction, as shown
in Fig. S3(b). Here, we use the experimental parameters in Ref. [S5]. The atom-atom coupling can be appropriately
adjusted by optimizing parameters of the circuit elements.

II. ATOMIC CAVITY PROTECTED BY ANTI-PT SYMMETRY

A waveguide has continuous photonic modes, which enable the propagation of light with various frequencies. The
tunable reflection of mirror allows to control the flow of light in a waveguide. From this aspect, an atom dimer is
more useful than a single atom. It has been shown [S6] that a large reflection of single-peak mirrors leads to an
effective cavity mode. However, it is unclear how the effective cavity mode survives in an open atomic cavity with
reduced mirror reflection. A controllable atomic coupling makes it possible to construct a reconfigurable cavity with
atom-dimer mirrors. Such a cavity can be used to control light-matter interactions and has potential applications in
quantum information processing. In this section, we discuss the mechanism of the atom-dimer cavity.

A. Cavity supermodes

For a cavity with tunable reflection, a challenge is how to build a connection between the properties of the cavity and
the reflection of mirrors. We have shown in Sec. I that mirror reflection is related to the non-Hermitian Hamiltonian of
the atom dimer. The reflection of light between two mirrors should be responsible for optical properties of an atomic
cavity, which can be also described by a non-Hermitian Hamiltonian. In this way, we can understand how tunable
mirror reflection nontrivially alters the cavity. We now consider a cavity consisting of two anti-Bragg atom-dimer
mirrors with a separation λ0 in the waveguide, as shown in Fig. S4(a). From Eqs. (S3) and (S4), the Hamiltonian of
this system becomes

Hc = −iΓ
4∑
j=1

σ+
j σ
−
j + (Ω + Γ)(σ+

1 σ
−
2 + σ+

3 σ
−
4 + H.c.) + Γ(σ+

1 σ
−
3 + σ+

1 σ
−
4 + H.c.) + iΓ(σ+

1 σ
−
4 − σ+

2 σ
−
3 + H.c.). (S18)

To uncover the mirror-cavity relation, we write the non-Hermitian Hamiltonian of the atom-dimer cavity in the
single-excitation subspace {σ+

j |g1g2g3g4〉} as

Hc =

 − iΓ Ω + Γ Γ iΓ
Ω + Γ −iΓ −iΓ Γ

Γ −iΓ −iΓ Ω + Γ
iΓ Γ Ω + Γ −iΓ

 . (S19)



6

left mirror 

right mirror

(a) (b)

Ω Ω

waveguide

FIG. S4. (a) Schematics of a cavity with two anti-Bragg atom-dimer mirrors in a waveguide. The left and right mirrors are
denoted byMl andMr, respectively. In each mirror, there are two mirror atoms A1 and A2. The distance between two mirrors
is d = λ0. (b) Reflection spectra for two atom-dimer mirrors. Two peaks correspond to reflection channels in the atomic cavity.

In particular, two 2× 2 matrices in the diagonal line denote the Hamiltonians of two mirrors. The other two matrices
in the off-diagonal line are mirror-mirror couplings mediated by the waveguide. In subspaces of two mirrors and two
mirror atoms, the Hamiltonian becomes

Hc = (Ω + Γ)s0 ⊗ τx + Γsx ⊗ τ0 − iΓsy ⊗ τy − iΓs0 ⊗ τ0, (S20)

i.e., Eq. (3) in the main text. Here, sn and τn (n = x, y, z) are Pauli matrices in the space {Ml,Mr} of two mirrors
and the subspace {A1,A2} of mirror atoms, respectively. Equation (S20) characterizes the relation between the atomic
cavity and mirrors. The first and the last terms represent the atomic coupling and decay rate of two atom-dimer
mirrors, as we studied in Eq. (S13). The second and third terms describe the waveguide-induced dispersive and
dissipative couplings between mirrors. Hence, the mode loss and distribution are determined by the interplay among
the first three terms.

For the cavity with single-peak mirrors using single atoms [S6], an effective cavity mode is obtained with the anti-
symmetric superposition of these two mirror atoms. Similarly, for the cavity with two-peak atomic mirrors, we may
assume that there are two channels supporting cavity modes, as shown in Fig. S4(b). We consider superpositions of

mirror states Φ±+ = (1/
√

2)(Φl+ ± Φr+) and Φ±− = (1/
√

2)(Φl− ± Φr−), where the indexes l and r denote the left and
right mirrors, respectively. This is equivalent to making a unitary transformation

U =

1 −1 1 −1
1 1 −1 −1
1 −1 −1 1
1 1 1 1

 , (S21)

to the atom-dimer cavity. We obtain the Hamiltonian

Hc =

− Ω− iΓ −iΓ 0 0
− iΓ Ω− iΓ 0 0

0 0 −Ω− 2Γ− iΓ iΓ
0 0 iΓ Ω + 2Γ− iΓ


= H1

⊕
H2. (S22)

We find that the states Φ±± are not eigenmodes of the atomic cavity. In other words, the two reflection channels are
not independent. The waveguide-mediated dissipative couplings mix these two channels. Owing to the dissipative
couplings, the effective cavity supermodes can be created. An important feature of Hc is that two non-Hermitian
Hamiltonians H1 and H2 are protected by anti-PT symmetry (PT )Hi(PT )−1 = −Hi. Therefore, the emergence of
cavity supermodes in the atom-dimer cavity is related to non-Hermitian phase transitions.

In these two anti-PT symmetric Hamiltonians, H1 and H2, the non-Hermitian phase transitions do not require to
tune the frequencies of the atoms. In the literature, anti-PT symmetry has been broadly studied, e.g., Refs. [50-58]
in the main text. In previous works involving anti-PT symmetric systems, manipulations of non-Hermitian phase
transitions relied on controlling the frequency detunings of resonators or atoms, depending on specific systems. Here,
we show an atom-dimer proposal to realize anti-PT -symmetry-protected non-Hermitian Hamiltonians.

A significant difference from anti-PT non-Hermitian systems studied in other works is that here the atomic coupling
replaces the frequency detuning. Therefore, we are able to realize anti-PT phase transitions by adjusting the atomic
coupling. Our scheme has two-fold advantages:
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FIG. S5. Tuning anti-PT phase transitions of the atom-dimer cavity by means of the width W = 2(Ω + Γ) between the two
reflection peaks of atomic mirrors. (a) Energy levels of the supermodes of the atom-dimer cavity. The second-order exceptional
points are created at W = ±4Γ and W = 0. (b) Decay rates of cavity supermodes. The degenerate supermodes have different
decay rates in anti-PT symmetric phases, i.e., W ∈ (−4Γ, 0) ∪ (0, 4Γ).

(1) Changing frequency detuning would modify the waveguide-induced couplings between atoms in a waveguide. By
tuning anti-PT phase transitions with atomic couplings, we are able to avoid waveguide-induced frequency-dependent
couplings.
(2) As we demonstrated in Sec. (I), the coupling of two atoms gives rise to a nontrivial photon reflection. By studying
how the atom-dimer cavity changes with atomic couplings, we can reveal the relation between the cavity and mirrors.

Because Hamiltonians H1 and H2 are protected by anti-PT symmetry, we can further diagonalize the atom-dimer
cavity Hamiltonian Eq. (S22) as Hc =

∑
j Ej |ΨR

j 〉〈ΨL
j |, with 〈ΨL

j |ΨR
j′〉 = δjj′ . The real and imaginary parts of the

non-Hermitian energy spectrum Ej are shown in Fig. S5(a) and Fig. S5(b), respectively. There are four supermodes
in the system. We use Ψ± to represent the two degenerate cavity supermodes in the anti-PT symmetric phases.
Besides, there are two supermodes which are not protected by the anti-PT symmetry. These unprotected supermodes
have energies different from Ψ±. For 0 < W < 4Γ (−4Γ < W < 0), H1 (H2) has preserved the anti-PT symmetry.
For simplicity, we only show two degenerate supermodes in the anti-PT symmetric phases of the main text.

The emergence of degenerate supermodes is related to mirror reflection. From Eq. (2) in the main text, we have

r0Ω2 − 2Γ(1− r0)Ω− 2Γ2(1− r0) = 0, (S23)

with r0 =
√
R(0). By solving the above equation, we obtain

Ω1 =
1− r0 − t0

r0
Γ, (S24)

Ω2 =
1− r0 + t0

r0
Γ, (S25)

with t0 =
√

1−R(0). We can find that −Γ ≤ Ω1 < 0 and Ω2 > 0. The parameter regimes −Γ < Ω1 < 0 and Ω2 > 0
correspond to single-peak and two-peak mirrors, respectively. In Fig. S6(a), we show the energy levels and decay
rates of supermodes in the cavity with single-peak mirrors. R(0) = 0 corresponds to Ω1 = −Γ, i.e., no reflection is
produced. Substituting Eq. (S25) to Eq. (6) in the main text, we can obtain Fig. S6(b), i.e., Fig. 2(d) in the main
text. A reflection threshold of two-peak mirrors is found at Ω2 = Γ for the emergence of cavity supermodes.
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FIG. S6. Energy levels and decay rates of cavity supermodes changed by mirror reflection. Supermodes in the atom-dimer
cavity with (a) single-peak mirrors and (b) two-peak mirrors.
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B. Single-photon transmission of the atom-dimer cavity

The optical properties of a cavity are different from those of a waveguide. An important issue about the atom-dimer
cavity is: how the output changes when mirror reflection varies. To answer this question, we start from the original
Hamiltonian of the waveguide-cavity system

H =

4∑
i=1

ω0σ
+
i σ
−
i + Ω(σ+

1 σ
−
2 + σ+

3 σ
−
4 + H.c.) + ic

∫
dx
(
â†l (x)

∂âl(x)

∂x
− â†r(x)

∂âr(x)

∂x

)
−g
∑
i

(
σ+
i âl(xi) + σ+

i âr(xi) + H.c.
)

+ ε
√

Γc
∑
i

(
σ+
i e

ikinxi−iωint + H.c.
)
. (S26)

Here, âl,r (â†l,r) are the annihilation (creation) operators for the left and right propagating photons; g denotes the
coupling between atoms and photons in the waveguide; xi is the position of the ith atom along the waveguide; and
ε is assumed to be a classical coherent field. The continuous photonic modes make the waveguide act as a reservoir.
Considering the Born-Markov approximation, we trace out the photonic degrees of freedom, and obtain the master
equation for the atomic operators

ρ̇ = −i(Heffρ− ρH†eff) + 2Γ
∑
ij

σ−i ρσ
+
j . (S27)

Within the rotating-wave approximation, and in the rotating frame with respect to the probe field frequency, the
effective non-Hermitian Hamiltonian is

Heff = −
∑
i

∆σ+
i σ
−
i + Ω(σ+

1 σ
−
2 + σ+

3 σ
−
4 + H.c.)− iΓ

∑
i,j

eik0|xi−xj |σ+
i σ
−
j

+ε
√

Γc
∑
i

(
σ+
i e

ikinxi + H.c.
)
. (S28)

with ∆ = c(kin − k0) and k0 = ω0/c. The dynamics of the system is captured by

〈σ̇−i 〉 = i∆〈σ−i 〉 − iΩ〈σ−i+(−1)i−1〉 − Γ
∑
j

〈σ−j 〉eik0|xi−xj | − iε
√

Γceikinxi . (S29)

From the input-output method [S7], the transmitted field is

ât(x) = εeikinx − i
∑
i

√
Γ

c
σ−i e

ik0(x−xi). (S30)

Therefore, the output field is dominated by the dynamics of atomic coherence, which is related to the direct coupling
Ω and the waveguide-mediated coupling in [see Eq. (S29]). From Eq. (S29), we can obtain the steady-state solution
of the atomic coherence

〈σ−〉 = ε
√

Γc(∆−Hc)
−1V , (S31)

with 〈σ−〉 = (〈σ−1 〉, 〈σ−2 〉, 〈σ−3 〉, 〈σ−4 〉)> and V = (eik0x1 , eik0x2 , eik0x3 , eik0x4)>. The cavity Hamiltonian Hc is shown
in Eq. (S18). We have assumed that |kin − k0|d� 1. In terms of the biorthogonal basis of the non-Hermitian cavity
Hamiltonian Hc, we have

〈σ−〉 = ε
√

Γc
∑
j

|ΨR
j 〉〈ΨL

j |
∆− Re(Ej)− iIm(Ej)

V . (S32)

From Eq. (S30), we have the photon transmission amplitude

t =
〈ât(x)〉
εeikinx

= 1− iΓ
∑
j

V †|ΨR
j 〉〈ΨL

j |V
∆− Re(Ej)− iIm(Ej)

. (S33)
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This formula allows us to study the role played by cavity supermodes in producing the output field. In the waveguide
with a single atom, the photon transmission amplitude is

t = 1− iΓ

∆ + iΓ
. (S34)

It comes from two contributions: the incident photon in the waveguide and the photon scattered by the atom. The
superposition of these two components produces vanishing transmission at resonance (∆ = 0). Namely, a single atom
gives rise to complete photon reflection in a waveguide. Therefore, it acts as a mirror. For waveguide QED with
many atoms, the transmission amplitude is determined by all eigenmodes of the system [see Eq. (S33)]. As we studied
in Ref. [S2], subradiant states are responsible for reduced photon transmission, in agreement with the single-atom
scattering. However, the slow-decay supermode Ψ− in the atom-dimer cavity produces an anomalous transmission
peak. This enhanced photon transmission effect reveals the cavity-like photon transport of the slow-decay supermode.

In cavity QED, the photon transmission exhibits a Lorentzian peak, where the linewidth is the decay rate of
the cavity mode [S8]. The cavity-like optical feature of the atom-dimer cavity is not solely attributed to the slow-
decay supermode. The supermode Ψ+ plays an important role. At Ω = 0, the atom-dimer cavity gives rise to a
transmissionless spectrum owing to anti-Bragg scattering in atomic mirrors. The supermode Ψ− does not scatter
photons because it decouples with the waveguide, i.e., Γ− = 0. So, the transmissionless spectrum is produced by
dissipative supermodes in the atom-dimer cavity. From Fig. S5, we know that the fast-decay supermode Ψ+ is
responsible for the transmissionless photon transport around ∆ = 0. For a small atomic coupling Ω � Γ, optical
responses of those dissipative supermodes which are responsible for photon transport at Ω = 0 are not changed
too much. Quantum interference between scattered photons from these supermodes yields vanishing transmission.
However, the slow-decay supermode Ψ− couples to the waveguide, leading to the net effect of photon transmission

t ≈ Γ−
i∆ + Γ−

. (S35)

As a result, the incident photon can transmit through the atom-dimer cavity at resonance (∆ = 0). Equation (S35)
is the photon transmission of the bare optical cavities [S8], with decay rate Γ− of the cavity mode. This is evidence
that the slow-decay supermode Ψ− plays the role of cavity mode. Therefore, the slow- and fast-decay supermodes
in the atom-dimer cavity give rise to a cavity-like optical response. This cavity-like photon transport is crucial for
observing interesting quantum phenomena arising from non-Hermitian cavity-atom coupling.

C. Atom-dimer cavity without anti-PT symmetry protection

In the main text, we show that the atom-dimer cavity is protected by the anti-PT symmetry. This symmetry
protection comes from the special cavity structure shown in Fig. S4(a). There are two conditions to realize the
atom-dimer cavity: (1) The atom-dimer mirrors should obey the anti-Bragg condition; (2) The distance between two
atomic mirrors should be nλ0/2 with n being an integer. However, in experiments, the distance between atoms might
deviate from these values. Therefore, the anti-PT symmetry can be broken. In Figs. S7(a) and S7(b), we show cavity
structures where these two conditions are not satisfied. In the following, we discuss how the atomic cavity is changed
when these two conditions are not met.

At first, we consider atom-dimer mirrors that do not satisfy the anti-Bragg condition. We assume that the distance
between two atoms in a mirror is (λ0/4 + ∆d) with ∆d� λ0. From the waveguide-induced couplings Eqs. (S3) and

(a)
λ0

4 +∆d λ0

4 +∆d λ0

4
λ0

4

(b)

FIG. S7. Atom-dimer cavity without satisfying anti-PT symmetry. (a) The distance between two mirrors is λ0 + ∆d. (b) The
distance between atoms in atom-dimer mirrors is (λ0/4 + ∆d). We assume that ∆d� λ0.
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FIG. S8. (a) Energy spectrum of the atomic cavity with a distance (λ0 + ∆d) between the two mirrors. (b) Decay rates of two
cavity supermodes. We consider ∆d = 0.001λ0.

(S4), we obtain the effective coupling between two atoms in a mirror

g12 − iγ12 = Γ sin
(π

2
+

2π∆d

λ0

)
− iΓ cos

(π
2

+
2π∆d

λ0

)
≈ Γ− iΓδ, (S36)

with δ = 2π∆d/λ0. Obviously, deviation from the anti-Bragg condition introduces dissipative coupling to two mirror
atoms. Similarly, we can calculate the couplings between atoms in two mirrors. Therefore, the Hamiltonian of the
atomic cavity becomes

H
′

c ≈

 − iΓ Ω + Γ− iΓδ Γ− iΓδ −2Γδ + iΓ
Ω + Γ− iΓδ −iΓ −iΓ Γ− iΓδ

Γ− iΓδ −iΓ −iΓ Ω + Γ− iΓδ
−2Γδ + iΓ Γ− iΓδ Ω + Γ− iΓδ −iΓ

 . (S37)

After making the transformation U in Eq. (S21), we obtain

H
′

c =

Γδ − Ω− iΓ Γδ − iΓ 0 0
Γδ − iΓ Γδ + Ω− iΓ 0 0

0 0 −Ω− 2Γ− Γδ − i(Γ− 2Γδ) −Γδ + iΓ
0 0 −Γδ + iΓ Ω + 2Γ− Γδ − i(Γ + 2Γδ)


= H′1

⊕
H′2. (S38)

We can find that, because of the nonzero parameter δ, H′1 and H′2 do not preserve the anti-PT symmetry. In
Figs. S8(a) and S8(b), we show the energy spectrum and decay rates of two cavity supermodes, respectively. Due to
symmetry breaking induced by δ, the two supermodes are not degenerate. The energy spectrum for W > 0 is different
from the one for W < 0. For W > 0, the energy spectrum is split. However, for W < 0, the two energy levels cross
each other. This means that the dispersive coupling is important for an atom-dimer mirror. The decay rates of these
two supermodes are almost unchanged.

Now we study that the distance between two atomic mirrors deviates from λ0 by ∆d, as shown in Fig. S7(b). The
coupling between two middle atoms is

g23 − iγ23 = Γ sin
(2π∆d

λ0

)
− iΓ cos

(2π∆d

λ0

)
≈ Γδ − iΓ, (S39)

i.e., a weak dispersive coupling is introduced. We can calculate couplings between other atoms in two mirrors. The
Hamiltonian of the cavity becomes

H̃c =

 − iΓ Ω + Γ Γ− iΓδ −Γδ + iΓ
Ω + Γ −iΓ Γδ − iΓ Γ− iΓδ

Γ− iΓδ Γδ − iΓ −iΓ Ω + Γ
−Γδ + iΓ Γ− iΓδ Ω + Γ −iΓ

 . (S40)
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FIG. S9. (a) Energy spectrum of the atomic cavity where the distance between two mirrors is (λ0 + ∆d). (b) Decay rates of
two cavity supermodes. We consider ∆d = 0.001λ0.

The slight change of distance between the two mirrors alters the couplings between these two mirrors, i.e., the second
and third terms in Eq. (S20). Similarly, the transformation U in Eq. (S21) simplifies the cavity Hamiltonian as

H̃c =

− Ω− i(Γ + Γδ) Γδ − iΓ 0 0
Γδ − iΓ Ω− i(Γ− Γδ) 0 0

0 0 −Ω− 2Γ− i(Γ− Γδ) −Γδ + iΓ
0 0 −Γδ + iΓ Ω + 2Γ− i(Γ + Γδ)


= H̃1

⊕
H̃2. (S41)

As shown in Fig. S9(a), the energy levels of two cavity supermodes Ψ± become split. Their decay rates are robust to
the perturbation of cavity length shown in Fig. S9(b). Here, we consider ∆d = 0.001λ0. For superconducting artificial
atoms with ω0 = 5 × 2π GHz, 0.001λ0 is about 60 µm. In experiments, the coupling points of artificial atoms in a
waveguide can be controlled with high accuracy [S9] such that ∆d can be much smaller than 0.001λ0.

In Fig. S10(a), we show the population dynamics of the probe atom for the atom-dimer cavity without obeying the
anti-Bragg condition. Dark polaritons exist for ∆d = 0.001λ0 at different values of atomic coupling Ω. Hence, the state
transfer between the probe atom and atom-dimer cavity is robust to the change of atomic spacing in mirror atoms.
In Fig. S10(b), we consider that positions of the probe atom and atoms of the cavity have disorder x̃i = xi + ∆xi,
with i = 1, 2, 3, 4, 5. Here, xi represents the disorder-free atomic position of the ith atom, and ∆xi ∈ [−ελ0, ελ0]
denotes its disorder with strength ε. We find that even at large disorder strength, e.g., ε = 0.01, population of the
probe atom exhibits long-lasting Rabi oscillations. This means that the dark polaritons are robust to disorder in the
atomic position.

time0 30
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n

time0 30
0

1
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n

(a) (b)

FIG. S10. (a) Population dynamics of the probe atom when the atom-dimer cavity does not meet the anti-Bragg condition.
Black-solid and red-dashed curves correspond to ∆d = 0 and ∆d = 0.001λ0, respectively, at Ω = γ = 0.1Γ. The blue-dotted
curve denotes ∆d = 0.001λ0 at Ω = γ = 0.4Γ. (b) Population dynamics of the probe atom with atomic position x̃i = xi + ∆xi.
Here, xi denotes the atomic position without disorder, and ∆xi ∈ [−ελ0, ελ0] with disorder strength ε. Here, we consider the
disorder strength ε = 0.01 and Ω = γ = 0.1Γ.
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III. ATOM-DIMER CAVITY QED AND MIRROR-TUNED POLARITONS

According to cavity QED theory, a cavity which nontrivially modifies the distribution of electromagnetic fields
can be detected with a probe atom. To study quantum optical phenomena produced by the atom-dimer cavity, we
consider a probe atom in the cavity. The coupling between the probe atom and the atom-dimer cavity is mediated
by continuous photonic modes in the waveguide. We assume that the decay rate of the probe atom in the waveguide
is γ, different from the decay rate Γ of the mirror atoms. The atom-cavity interaction is described by

Hint = (δω − iγ)σ+
p σ
−
p − i

4∑
j=1

√
γΓeiφj (σ+

j σ
−
p + σ+

p σ
−
j ), (S42)

with a detuning δω between the probe atom and mirror atoms, and φj = 2π|xj − xp|/λ0. In order to study the
atom-dimer cavity QED, we should know how the probe atom interacts with the effective cavity mode. We rewrite
the interaction Hamiltonian in terms of cavity supermodes

Hint =
(
|ψp〉〈ψp|+

∑
j

|ΨR
j 〉〈ΨL

j |
)
Hint

(
|ψp〉〈ψp|+

∑
j

|ΨR
j 〉〈ΨL

j |
)

= (δω − iγ)|ψp〉〈ψp|+
∑
j

〈ψp|Hint|ΨR
j 〉|ψp〉〈ΨL

j |+
∑
j

〈ΨL
j |Hint|ψp〉|ΨR

j 〉〈ψp|, (S43)

with 〈ψp|Hint|ΨR
j 〉 = −i√γΓ

∑
j′ e

iφj′ 〈ψj′ |ΨR
j 〉 and 〈ΨL

j |Hint|ψp〉 = −i√γΓ
∑
j′ e

iφj′ 〈ΨL
j |ψj′〉. The couplings between

the probe atom and two supermodes, which are not protected by the anti-PT symmetry, are denoted by G̃R =
〈ψp|Hint|ΨR

1 〉 and ṼR = 〈ψp|Hint|ΨR
4 〉, where 1 and 4 indicate supermodes with lower and upper energy levels,

respectively. In Figs. S11(a) and S11(b), we show real and imaginary parts of G̃R and ṼR, respectively. Different from
the degenerate supermodes Ψ±, these two unprotected supermodes have maximal couplings with the probe atom at
the center or boundaries of the cavity. When the probe atom is placed at xp = λ0/4 or xp = 3λ0/4 in the cavity, it
has a vanishing coupling with these two supermodes. Hence, we can study cavity QED produced by two degenerate
cavity supermodes Ψ±.

In cavity QED with single-atom mirrors, as studied in experiments [S6], the dark state (effective cavity mode)
has a coherent coupling with the probe atom. This is similar to optical cavities where the probe atom is coherently
coupled to a single cavity mode. Therefore, the coupling between the effective cavity mode and the probe atom gives
rise to polaritons. However, the superradiant mode degenerate with the effective cavity mode is not coupled to the
probe atom. The role played by the superradiant mode has not been discussed in Ref. [S6]. In the atom-dimer cavity
we study in this work, the fast-decay supermode (superradiant mode) is degenerate with the effective cavity mode.
Naively, the role played by the fast-decay supermode might appear to be negative. However, this is not the case.

In the atom-dimer cavity protected by the anti-PT symmetry, both slow- and fast-decay supermodes are coupled
to the probe atom. In terms of two supermodes Ψ±, the Hamiltonian for the cavity-atom system can be written as

H̃ =

−iΓ− 0 GL
0 −iΓ+ VL
GR VR δω − iγ

 , (S44)

-1

1

0

0 1 0 1
-1

1

0

(a) (b)

G̃
R
/
√
γ
Γ

Ṽ
R
/√

γ
Γ

FIG. S11. (a, b) Couplings between the probe atom and two supermodes which are not protected by the anti-PT symmetry.
Solid and dashed curves correspond to coherent and dissipative couplings, respectively. Here, we consider W = 2.4Γ and
γ = 0.2Γ.
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probe atom

coherent coupling dissipative coupling

ground state

FIG. S12. Non-Hermitian couplings between the probe atom and the two degenerate cavity supermodes Ψ±. The supermode
Ψ+ has large decay rate and is dissipatively coupled with the probe atom. The supermode Ψ− with low decay rate has coherent
non-Hermitian coupling with the probe atom.

where GR,L and VR,L are coherent and dissipative atom-cavity couplings, respectively. For clarity, we show these
couplings in Fig. S12. The fast-decay supermode Ψ+ has nonreciprocal dissipative couplings VR,L with the probe
atom, and the coupling strengths are as large as the couplings GR,L between the slow-decay supermode Ψ− and the
probe atom. Specifically, in the anti-PT -symmetry-protected regime, the couplings are GR =

√
γW , VR = iGR,

GL = GR/
√

1− Ω2/Γ2 and VL = VR/
√

1− Ω2/Γ2. As we studied in the main text, GR reveals the intrinsic relation
between mirror reflection and cavity properties. Specifically, the coherent strong coupling in the cavity is related to
the reflection threshold of atom-dimer mirrors.

To study the non-Hermitian physics produced by atom-cavity interactions, we calculate the eigenvalues of |H̃−E| =
0, i.e.,

E3 + x1E
2 + x2E + x3 = 0, (S45)

with

x1 = i(Γ− + Γ+ + γ), (S46)

x2 = −γ(Γ− + Γ+)− Γ−Γ+ − VRVL −GRGL, (S47)

x3 = −iΓ−VRVL − iΓ+GRGL − iγΓ−Γ+. (S48)

We find VRVL +GRGL = 0 and Γ−VRVL + Γ+GRGL = 2ΓG2
R. In these coefficients xi (i = 1, 2, 3), only x3 is related

to G2
R, which comes from both coherent and dissipative couplings. Therefore, it can be concluded that Eq. (S45) is

determined by the coupling GR. In other words, GR characterizes the efficient atom-cavity coupling as we claimed
in the main text. The cubic equation Eq. (S45) can be solved using Cardano’s formula [S10]. By introducing
E = µ− x1/3, we have

µ3 + pµ+ q = 0, (S49)

with p = x2 − x2
1/3 and q = x3 − x1x2/3 + 2x3

1/27. With

u =

(
−q

2
+

√
p3

27
+
q2

4

)1/3

, (S50)

v =

(
−q

2
−
√
p3

27
+
q2

4

)1/3

, (S51)
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FIG. S13. (a) Cavity-atom polaritons in the coherent coupling regime. Blue-solid (red-solid) and blue-dashed (red-dashed)
curves correspond to Re(E1) and Re(E2), respectively, for γ = 0.0001Γ (γ = 0.001Γ). (b) Energy levels of the polaritons
(red-solid) and couplings GR,L between the probe atom and the slow-decay supermode. Here, we consider γ = 0.2Γ.

we can analytically solve Eq. (S49). Therefore, the final solutions of Eq. (S45) are

E1 = u+ v − x1

3
, (S52)

E2 =

(
−1

2
− i
√

3

2

)
u+

(
−1

2
+ i

√
3

2

)
v − x1

3
, (S53)

E3 =

(
−1

2
+ i

√
3

2

)
u+

(
−1

2
− i
√

3

2

)
v − x1

3
. (S54)

In these three solutions, there are two polaritons arising from coherent atom-cavity interactions, as shown in Fig. S12.
In Fig. S13(a), we show the real parts of E1 and E2 when the probe atom is weakly coupled to the waveguide, i.e.,
γ � Γ. The large mirror reflection in the strong-coupling regime leads to efficient energy exchange between the
probe atom and the supermode Ψ−. The cavity-atom polaritons are formed due to cavity-enhanced interactions.
This is the coherent coupling regime of cavity QED. The energies of the polaritons are not symmetric because the
atom-cavity coupling is stronger in Ω > 0 than Ω < 0. When |Ω| is increased, the loss of the effective cavity mode Ψ−
becomes significant. The excitation in the probe atom is transported to two cavity supermodes and quickly dissipates
to the waveguide. In other words, no coherent energy exchange takes place between the probe atom and the cavity.
Therefore, the polaritons disappear in the dissipative coupling regime. In Fig. S13(b), we show energies of polaritons
and coherent atom-cavity couplings GR,L. We find that GR agrees well with the polariton’s energy. This justifies the
role played by GR in characterizing the atom-cavity interaction.

In Fig. (S12), the coherent and dissipative couplings play different roles in controlling the dynamics of the probe
atom. At first, we focus on the dissipative coupling between the probe atom and the supermode Ψ+. The dissipative
coupling mixes the probe atom and the supermode Ψ+, as shown in Fig. S14. The decay rates of the eigenstates are

κ± =
1

2

(
γ + Γ+ ±

√
(γ − Γ+)2 − 4VRVL

)
. (S55)

probe atom

FIG. S14. Schematics of dissipatively coupled probe atom and fast-decay supermode Ψ+. Two degenerate states |v±〉 with
decay rates κ± are produced.
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FIG. S15. (a) The component of the probe atom in |v±〉. We consider |α〉 = (1, 0)>. (b) Rabi oscillations (red-solid) of the
probe atom for γ = 0.1Γ. The blue-dashed curve corresponds to a decay rate 0.0044Γ. Here, we consider Ω = 0 for (a) and (b).

The eigenvectors are

|v+〉 =
1

N+

(
[−iγ + iΓ+ −

√
−(γ − Γ+)2 + 4VRVL]/2VR

1

)
, (S56)

|v−〉 =
1

N−

(
[−iγ + iΓ+ +

√
−(γ − Γ+)2 + 4VRVL]/2VR

1

)
, (S57)

where N± are normalization factors. Here, (1, 0)> and (0, 1)> correspond to the probe atom and the supermode Ψ+,
respectively.

In Fig. S15(a), we plot the component of the probe atom in |v+〉 and |v−〉. The probe atom has large (small)
component in |v−〉 (|v+〉). Without loss of generality, we consider that the decay rate of the probe atom is much smaller
than in the mirror atoms, i.e., γ � Γ. The condition that |v−〉 becomes a dark state (κ− = 0) is γΓ+ + VRVL = 0,
which gives rise to Ω = 0.

We now consider the slow-decay supermode Ψ−. Because of the large component of probe atom in |v−〉, Ψ− has
coherent coupling with |v−〉. This coupling is responsible for the energy splitting of polaritons, as shown in Fig. S13(a).
At Ω = 0, the supermode Ψ− has vanishing decay rate. In other words, the states formed by the coupling between Ψ−
and |v−〉 are dissipationless. However, taking into account the small coupling between Ψ− and |v+〉, we can obtain
dissipative polaritons, which lead to slow-decaying Rabi oscillations.

In Fig. S15(b), we show the Rabi oscillations of the probe atom at Ω = 0. From the period of the Rabi oscillations,
we can obtain the coupling strength 0.44Γ, which agrees with the coupling GR = 0.447Γ. The decay of the Rabi
oscillations is 0.0044Γ, corresponding to a decay rate γp = 0.0022Γ for the cavity-atom polaritons. Therefore, the
dissipative coupling and coherent coupling play different roles in affecting the dynamics of the probe atom.

Figure S16(a) shows the transmission spectrum of the polaritons for Ω = 0. The complete mirror reflection around
∆ = 0 makes polaritons invisible for δω > 0, similar to the cavity QED experiment with single-atom mirrors [S6].
By reducing the mirror reflection, polaritons can be observed in a broad range of parameter space. Spectroscopic
measurement of polaritions in the atom-dimer cavity with two-peak mirrors has been studied in the main text. To
compare with the results in experiment [S6], we consider atom-dimer mirrors with a single-peak reflection spectrum.

(a) (b)

FIG. S16. Transmission for the coupled cavity-atom system at (a) Ω = 0 and (b) Ω = −0.1Γ. We assume that the probe atom
has a waveguide-induced decay rate γ = 0.1Γ and a free-space loss γ′ = 0.01Γ.
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In Fig. S16(b), we show the transmission spectrum of polaritons in the atom-dimer cavity with atomic coupling
Ω = −0.1Γ between the mirror atoms. The cavity-like photon transport makes the polaritons detectable from photon
transmission in the waveguide.

The solutions Eqs. (S52 – S54) can be simplified by considering Ω = γ. Hence, we have x3 = x1x2. Therefore,
Eq. (S45) can be written as

(E + x1)(E2 + x2) = 0. (S58)

This gives rise to three solutions

E1 =
√

Ω2 + 2Γγ, (S59)

E2 = −
√

Ω2 + 2Γγ, (S60)

E3 = −i(2Γ + γ). (S61)

Here, E1,2 denote two dark polaritons, and E3 contains the whole dissipation of the cavity-atom system. The fast-
decay supermode nontrivially modifies the dissipation of the cavity-atom polaritons in the coherent coupling regime,
and makes the atom-dimer cavity distinct from conventional single-mode optical cavities.
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