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Quantum simulation of different exotic topological phases of quantum matter on a noisy intermediate-
scale quantum (NISQ) processor is attracting growing interest. Here, we develop a one-dimensional
43-qubit superconducting quantum processor, named Chuang-tzu, to simulate and characterize emergent
topological states. By engineering diagonal Aubry-André-Harper (AAH) models, we experimentally
demonstrate the Hofstadter butterfly energy spectrum. Using Floquet engineering, we verify the existence
of the topological zero modes in the commensurate off-diagonal AAH models, which have never been
experimentally realized before. Remarkably, the qubit number over 40 in our quantum processor is large
enough to capture the substantial topological features of a quantum system from its complex band structure,
including Dirac points, the energy gap’s closing, the difference between even and odd number of sites, and
the distinction between edge and bulk states. Our results establish a versatile hybrid quantum simulation
approach to exploring quantum topological systems in the NISQ era.
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The Aubry-André-Harper (AAH) model [1,2] has been
attracting considerable attention in various topics of con-
densed matter physics, including Hofstadter butterfly [3,4],
Anderson localization [5], quasicrystals [6], and topological
phases of matter [7,8]. The incommensurate diagonal AAH
model describes a one-dimensional (1D) tight bonding
lattice with quasiperiodic potential. In this model a locali-
zation transition is predicted [2], which has been observed
experimentally [9,10]. Moreover, the diagonal AAH model
can be exactly mapped to the two-dimensional (2D)
Hofstadter model [3], showing a 2D quantum Hall effect
(QHE) with topologically protected edge states, which have
been observed in experiments [6,11]. The energy spectra
of Bloch electrons in perpendicular magnetic fields versus
the dimensional perpendicular magnetic field b form the
Hofstadter butterfly [3,4], showing the splitting of energy
bands for a specific value of b. The Hofstadter butterfly
energy spectrum has beenmeasured in quasiperiodic lattices
[12–14], superlattices [15–17], and Floquet dissipative
quasicrystal [18]. A further generalization to commensurate

off-diagonal AAH models, with the hopping amplitude
being cosine-modulated commensurate with the lattice,
indicates the existence of topological zero-energy edge
states in the gapless regime [19]. The topological zero
modes differ from the edge states in the 1D diagonal AAH
models (similar to the quantum Hall edge) and have never
been observed in experiments before.
Rapid developments in quantum techniques allow for

programming nontrivial topological models and observing
their topological states on quantum simulating platforms
with a fast-growing number of qubits [11,20–22]. Even
without fault tolerance, the programmability of a noisy
intermediate-scale quantum (NISQ) processor helps to
explore various topological phases that are still challenging
in real materials [23–27]. Here, we develop a 43-qubit
superconducting quantum processor arranged in a 1D array,
named Chuang-tzu [Fig. 1(a)], to simulate the generalized
1DAAH model. The mean energy relaxation time and pure
dephasing time of 41 qubits in our experiments are 21.0 and
1.2 μs, respectively. Since our processor is designed to
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fulfill the hard-core limit [11,28], the effective Hamiltonian
reads

Ĥ0 ¼
XN−1

j¼1

gj;jþ1ðâ†j âjþ1 þ H:c:Þ þ
XN

j¼1

ωjâ
†
j âj; ð1Þ

where â† (â) denotes the hard-core bosonic creation
(annihilation) operator. In our sample, the frequency ωj

of each qubit Qj is tunable, but the hopping strength gj;jþ1

between nearest-neighbor (NN) Qj and Qjþ1 cannot be
tuned directly. Here we use the Floquet engineering
technique as demonstrated in [29–35] to simulate the
generalized 1D AAH model with a form

ĤgAAH ¼
XN−1

j¼1

u½1þ λ cosð2πbλjþ φλÞ�ðâ†j âjþ1 þ H:c:Þ

þ
XN

j¼1

v cosð2πbvjþ φvÞâ†j âj; ð2Þ

with λ ¼ 0 and v ¼ 0 corresponding to the diagonal and
off-diagonal AAH models, respectively. In our system, we
can independently vary the effective on-site potential ωeff

j

and the effective hopping strength geffj;jþ1 by the rectangle
flux bias and time-periodic driving on the Z control lines of
qubits, respectively. The effective geffj;jþ1 can be adjusted
from about −3.0 to 7.6 MHz. Thus, the dynamics of the
generalized AAH models are simulated with an approxi-
mately effective Hamiltonian using Floquet engineering,
and our simulator behaves as a programmable hybrid
analog-digital quantum simulator from the viewpoint in
[25]. Details of tuning hopping strength via Floquet
engineering are discussed in [36].
First, we engineer the diagonal AAH model [40,41] with

N ¼ 41 qubits and measure the Hofstadter butterfly spec-
trum in the quasiperiodic lattices by setting λ ¼ 0 and
tuning the on-site potential as v cosð2πbvjÞ with v=ð2πÞ ≃
15.2 MHz and φv ¼ 0 [Fig. 1(b)]. We simulate 121

instances of diagonal AAH chains when varying bv from
0 to 1. Using the band structure spectroscopic technique
[11,12], we obtain the squared Fourier transformation (FT)
magnitude jχ̃jj2 of the response function χjðtÞ≡ hσ̂xjðtÞiþ
ihσ̂yjðtÞi, after preparing a selected qubit Qj at jþji ¼
ðj0ji þ j1jiÞ=

ffiffiffi
2

p
. Figure 2(a) plots jχ̃jj2 for several

selected qubits Qj, and each of them only contains partial
information about the energy spectrum. The summation of
the squared FT magnitudes [Fig. 2(b)] of all chosen qu-
bits Ibv ≡

P
j jχ̃jj2 clearly shows the Hofstadter butterfly

energy spectrum, which agrees well with the numerical
calculation by simulating the system’s dynamics [Fig. 2(c)]
and the theoretical prediction [Fig. 2(d)]. Note that the
fractal structure of “Hofstadter’s butterfly,” splitting of
energy bands for several bv, are clearly shown, which is
attributed to the sufficiently large qubit number of our
quantum processor [13]. In addition, the winglike gaps
emerge because of the topological feature of the diagonal
AAH models, and the 2D integer QHE is characterized by
the Chern number [42], which has been experimentally
investigated in [11] for bv ¼ 1=3.
Next, we perform a hybrid analog-digital quantum

simulation of the off-diagonal AAH models with v ¼ 0
and λ ≠ 0 using Floquet engineering [30] [Fig. 1(c)], which
show no QHE [19]. With the bulk-edge correspondence
[11,43], we characterize their topological zero-energy
modes, of which the experimental observation is still
absent. We first engineer the commensurate off-diagonal
AAHs for bλ ¼ 1=2 that can be mapped to a 2D Hofstadter
model with π flux per plaquette. We experimentally extract
the band structures of the lattices with N ¼ 40 (even) and
41 (odd) sites by measuring Iφλ

for φλ ∈ ½0; 2π� as shown in
Figs. 3(a) and 3(b), respectively, which agrees well with the
theoretical prediction (dashed curves). The measured gap-
less band structure clearly shows two Dirac points with a
linear dispersion, which is similar to those observed in
graphene [19]. On the lattice with N ¼ 40 (even) sites, two
topological zero modes appear for φλ ∈ ð−π=2; π=2Þ
[Fig. 3(a)], while the topological zero edge mode exists
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FIG. 1. Device and pulse sequences. (a) Optical micrograph of the 43-qubit quantum chip. (b) Diagonal AAH model simulated by
periodically tuning the qubit’s frequency and the pulse sequence for its band structure spectroscopy. (c) Off-diagonal AAH model
engineered by Floquet engineering qubit’s frequency and the pulse sequence for its band structure spectroscopy.
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for the whole parameter regime [Fig. 3(b)] with N ¼ 41
(odd) sites. These exotic topological edge states are
also verified from the experimentally measured squared
FT magnitudes jχ̃jj2 for boundary qubits, as shown in
Figs. 3(c)–3(f). For even sites, the jχ̃1j2 [Fig. 3(c)] and
jχ̃40j2 [Fig. 3(d)] for Q1 and Q40, respectively, both contain
information of topological zero edge states in the regime
ð−π=2; π=2Þ. However, for odd sites, the jχ̃1j2 [Fig. 3(e)]
for Q1 shows left edge state for ð−π=2; π=2Þ and the Q41’s
jχ̃41j2 [Fig. 3(f)] implies the existence of the right edge
mode for ðπ=2; 3π=2Þ. The small shift of the zero energy of
the edge state is attributed to the existence of weak next-
nearest-neighboring (NNN) hopping (with an average of
about 0.7 MHz) of our sample that slightly breaks the
particle-hole symmetry; see details in [36]. Our experi-
ments therefore verify the robustness of the topological
zero-energy edge states in the commensurate off-diagonal
AAH models.
Furthermore, the topological edge state can also be

identified in real space by witnessing the localization of
an edge excitation during its quantum walks (QWs) on the
1D qubit chain [11,29], due to its main overlap with the
edge state. We monitor the time evolution of the excitation
probabilities Pj for all qubits during the QWs. For even
sites, QWs of an excitation at either boundary qubit present
localization for φλ ¼ 0 [Figs. 3(g) and 3(h)] in the
topological regime and dispersion for φλ ¼ π [Figs. 3(i)

and 3(j)] in the trivial regime, respectively. In comparison,
as shown in Figs. 3(k)–3(n), the QWs of an excitation atQ1

(Q41) shows localization (diffusion) for φλ ¼ 0 and dif-
fusion (localization) for φλ ¼ π. Thus, our experimental
results assert that there always exists only one zero-energy
mode localized at either edge in the commensurate off-
diagonal AAH models for π flux with odd sites. Note that it
is still challenging to observe these different behaviors of
topological edge modes between even and odd sites in real
materials or some other quantum simulating platforms
without a fixed number of lattice sites. In our NISQ device,
the individually addressable superconducting qubits
assisted by Floquet engineering help to overcome these
difficulties and show its potential for investigating various
exotic topological phenomena.
As the π-flux off-diagonal AAH model can be mapped

to the Su-Schrieffer-Heeger (SSH) model [44], the off-
diagonal AAHmodels as a new class of topological models
are given by bλ ¼ 1=ð2qÞ with an integer q > 1 [19]. Here,
we apply 40 qubits to experimentally investigate the
generic off-diagonal AAH model for bλ ¼ 1=4 by tuning
geffj;jþ1 ¼ u½1þ λ cosð2πbλjþ φλÞ�, with φλ varying from
0 to 2π. This model has four energy bands, and the top and
bottom bands are fully gapped, where the quantum Hall
edge states are clearly exhibited from the measured band
structure, see Fig. 4. By tuning λ ¼ ffiffiffi

2
p

, we see that the
central gap closes as theoretically predicted in [19], see

FIG. 2. Hofstadter butterfly energy spectrum. By engineering various instances of AAH models, the energy spectrum of the Bloch
electrons in perpendicular magnetic fields can be measured using band structure spectroscopy [11,12]. Here we use N ¼ 41 qubits to
simulate the quasiperiodic lattice. (a) Experimentally measured squared FT magnitudes jχ̃jj2 when choosing a target qubit Qj.
(b)–(d) Experimental data of Ibv ≡

P
j jχ̃jj2 (b), the summation of the squared FT magnitudes, which is compared with the numerical

data by simulating the dynamics of the system (c), and the theoretical prediction (d).
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Fig. 4(a), which is difficult to be realized with a small-scale
quantum simulator. Then, we tune λ ¼ 1 and measure the
band structure as shown in Fig. 4(b), where the central two
bands are shown to have four band crossing points near

φλ ¼ π=4, 3π=4, 5π=4, and 7π=4. Although the midgap is
very small to observe, we can imply from the measured
energy spectrum [Fig. 4(b)] that the central two bands are
gapped in the regime ð−π=4; π=4Þ and ð3π=4; 5π=4Þ; the

(a)

(c)

(d)

(f)

(e)

(j)

(g) (i)

(h)

(n)

(k) (m)

(l)

(b)

N = 40

N = 41

FIG. 3. Experimental characterization of the topological zero-energy edge modes in commensurate off-diagonal AAH models for π
flux (bλ ¼ 1=2). Band structure spectroscopy of off-diagonal AAHmodels with even numberN ¼ 40 (a) and odd numberN ¼ 41 (b) of
sites, which are compared with the theoretical projected band structures (dashed curves). Here u=ð2πÞ ¼ 4.78 MHz and λ ¼ 0.4.
Normalized squared FT magnitudes jχ̃jj2n:m: when choosing the leftmost qubit Q1 (c) and the rightmost qubit Q40 (d) as target qubits with
N ¼ 40. jχ̃jj2n:m: for boundary qubits Q1 (e) and Q41 (f) as target qubits with N ¼ 41. (g)–(j) Time evolution of the excitation probability
Pj during the QWs of a single excitation initially prepared at the boundary qubits (Q1 or Q40) for φλ ¼ 0 (g),(h) and φλ ¼ π (i),(j) with
N ¼ 40. (k)–(n) Time evolution of Pj during the QWs of a single excitation initially placed at the boundary qubits (Q1 or Q41) for
φλ ¼ 0 (k),(l) and φλ ¼ π (m),(n) with N ¼ 41.

(a) (b) (c) (d)

FIG. 4. Band structure spectroscopy of generic commensurate off-diagonal AAH models with N ¼ 40 for bλ ¼ 1=4. (a) Experimental
Iφλ

for λ ¼ ffiffiffi
2

p
and u=ð2πÞ ¼ 2.77 MHz. The gap between two central bands closes, and no topological edge states between these two

bands are observed. (b) Experimental Iφλ
for λ ¼ 1 and u=ð2πÞ ¼ 3.35 MHz. The two central bands are clearly observed gapped with-

out edge modes in the regimes φλ ∈ ð−π=4; π=4Þ and ð3π=4; 5π=4Þ. (c) Normalized FT magnitudes of two boundary qubits
ðjχ̃1j2 þ jχ̃40j2Þn:m:, compared with the theoretical projected band structures (dashed curves). The topologically nontrivial zero-energy
modes are observed between two central bands. (d) Four bulk qubits ðPj¼13;15;26;32 jχ̃jj2Þn:m:, compared to the theoretical projected band
structures (dashed curves). Four band crossing points are observed near φλ ¼ π=4, 3π=4, 5π=4, and 7π=4.
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topological edge states appear in the regime ðπ=4; 3π=4Þ
and ð5π=4; 7π=4Þ. To further analyze these two central
bands, we separately study the edge and bulk states from
the FT signals by only considering the boundary and bulk
qubits, respectively. In Fig. 4(c), we plot the summation of
the squared FT magnitudes of two boundary qubits Q1 and
Q40 versus φλ, which mainly shows the information for
both the quantumHall edges in the top and bottom gaps and
the zero-energy edges between two central bands. We also
illustrate in Fig. 4(d) the summed FT signals for selected
bulk qubitsQ13,Q15,Q26, andQ32, indicating the existence
of four band crossing points. Note that the NNN hopping
merely causes the shift of zero-energy edge states to mid-
gap edges, which verifies the robustness of the topological
properties of the commensurate off-diagonal AAH model.
In summary, we experimentally measure the celebrated

Hofstadter butterfly energy spectra of up to 41 super-
conducting qubits and verify the existence of topological
zero-energy edge modes in the gapless commensurate
AAH models. We introduce multi-qubit Floquet engineer-
ing in superconducting circuits, which can be used to
realize a wider range of models in condensed matter
physics than AAH models, e.g., lattice gauge theories
[45] and non-Hermitian systems [46]. In addition, we
provide a general automatic calibration scheme for the
devices with Floquet engineering (see details in [36]),
which is also adaptable to other quantum simulating
platforms. Our universal 1D hybrid analog-digital quantum
simulator shows the potential to use programmable NISQ
device to investigate exotic topological phases of quantum
matter that is still arduous to do in real materials.
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