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S1. MEAN FIDELITY OF THE CODE SPACE

In this section, we determine the fidelity between initial and evolved code states averaged over the code space. An
arbitrary state in the code space (i.e., the initial state) can be expanded as

|ψθϕ⟩ = cos
θ

2
|0L⟩+ eiϕ sin

θ

2
|1L⟩ , (1)

where |0L⟩, |1L⟩ are the logical codewords, and θ, ϕ are the familiar Bloch sphere angles. A linear, positive definite, and
trace-preserving map M[·] evolves the initial state ρt0(θ, ϕ) = |ψθϕ⟩⟨ψθϕ| to the quantum state ρt(θ, ϕ) = M[ρt0(θ, ϕ)]
at time t. With the fidelity between the evolved state ρt(θ, ϕ) and the initial state ρt0(θ, ϕ) given by F (θ, ϕ, t) =
Tr[ρt0(θ, ϕ)ρt(θ, ϕ)], the mean fidelity of the code space can be written as

F̄ (t) =
1

4π

∫
Ω

F (θ, ϕ, t) dΩ. (2)

Next, we expand the initial state in terms of the logical Pauli operators

ρt0(θ, ϕ) = |ψθ,ϕ⟩ ⟨ψθ,ϕ| =
∑

j=0,x,y,z

cj(θ, ϕ)
σj
2
, (3)

where

σ0 = |0L⟩⟨0L|+ |1L⟩⟨1L|, σx = |0L⟩⟨1L|+ |1L⟩⟨0L|,
σy = i(|0L⟩⟨1L| − |1L⟩⟨0L|), σz = |1L⟩⟨1L| − |0L⟩⟨0L|,

(4)
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FIG. S1. (a) Plot of the maximum (upper bound of the shaded area), average (solid red line), and minimum rewards (lower
bound of the shaded area) as functions of the episodes during the training process, where the dynamic evolution time is
γat = 0.6. (b) Evolution of the mean fidelity with the number of steps for three randomly selected episodes. Other parameters
are g/γa = 400 and γb/γa = 1750 (i.e., C ≈ 91.4).

and the elements of the coherent Bloch vector are

c0(θ, ϕ) = 1, cx(θ, ϕ) = sin θ cosϕ, cy(θ, ϕ) = sin θ sinϕ, cz(θ, ϕ) = cos θ. (5)

By combining Eqs. (2), (3), (4), (5), we can reformulate the mean fidelity as

F̄ (t) =
1

4π

∫ π

0

∫ 2π

0

Tr

∑
j

cj(θ, ϕ)
σj
2
M

[∑
k

ck(θ, ϕ)
σk
2

] sin θ dϕdθ

=
∑
jk

1

4π

∫
θ

∫
ϕ

cjck sin θ dϕdθTr
(σj
2
M
[σk
2

])
=

1

6

∑
j=±x,±y,±z

Tr (ρjM [ρj ]) ,

(6)

where we have defined ρ0 = σ0/2 and ρ±j = (σ0 ±σj)/2 (j = x, y, z). This result is consistent with previous work [1].

S2. SEARCH FOR THE OPTIMAL CODE SPACE WITH REINFORCEMENT LEARNING

Finding the optimal coefficients c
(0)
n and c

(1)
n , such that the codewords, Eq. (2) of the main text, maximize the

mean fidelity F̄ (|0L⟩, |1L⟩) at some fixed reference time, represents a complex optimization problem that we solve
using reinforcement learning (RL). In brief, we divide each episode into a finite number of steps k = 1, 2, · · · ,K. At
step k the agent observes the state sk ∈ S of the surrounding environment and chooses an action ak according to
the policy π(A|S). Then the agent obtains the new state sk+1, and the environment returns a reward rk+1. The
policy π(A|S) is updated via the experience data to maximize the accumulated reward R. The state sk contains
six observations Tr(ρjM(ρj)), j = ±x,±y,±z [see Eq.(6)] that can be calculated by using the toolkit Qutip [2, 3].

The action of the agent consists of the vector of coefficients [c
(0)
n , c

(1)
n ]. The reward rk+1 is proportional to the

difference between the mean fidelities of the code space obtained by the policy function and of the break-even point,
ϵk = F̄k(|0L⟩, |1L⟩) − F̄ (|0⟩, |1⟩). The specific reward scheme is as follows: if ϵk+1 > 0 and ϵk+1 > ϵk, the reward is
1000ϵk+1; if ϵk+1 > 0 and ϵk+1 < ϵk, the reward is 100ϵk+1; if ϵk ≤ 0, the reward is 0.

We truncate the code space to 6 photons and set the maximum number of steps per episode to K = 11. The
parameters for the simulation of the dynamics are chosen as g/γa = 400, γb/γa = 1750 (i.e., C ≈ 91.4), γa = 0.02 MHz,
and γat = 0.6, in agreement with current experimental conditions. We apply the proximal policy optimization
algorithm to optimize the policy [4], which is achieved by using the Python toolkit Ray [5]. The parameters of the
neural networks are the default ones offered by Ray.

As shown in Fig. S1(a), the mean reward approximately converges to a constant after about 200k episodes. Mean-

while, the max reward is obtained when the coefficient is c
(0)
1 ≈ 1, c

(1)
0 ≈ 1, and c

(0)
0 ≈ c

(1)
1 ≈ 0. We thus conclude

that the optimal code space consists of the Fock states |2⟩ and |4⟩.
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To demonstrate that different initial states converge to the same mean fidelity, we display in Fig. S1(b) three
random episodes. One can easily see that all three episodes converge towards the same mean fidelity (well above the
break-even point of 0.84), in each case yielding the same optimal codewords, the Fock states |2⟩ and |4⟩, as described
by the RL code.

S3. ASSESSING THE PERFORMANCE OF THE APPROXIMATE AQEC

Here we analytically assess the performance of the approximate AQEC. First, we solve the dynamical evolution
for an arbitrary initial code state, and then calculate the mean fidelity. The dynamic evolution of the hybrid system
composed of the encoding and the auxiliary mode is governed by the master equation

dρ

dt
= −i[HI , ρ] +

γa
2
D[a] +

γb
2
D[σ−], (7)

where the Hamiltonian of the hybrid system is HI = g(Lengσ+ +L†
engσ−), and the resulting error correction operator

is the same as in the main text.
If the parameters satisfy the conditions g, γa ≪ γb, we can approximately write the density operator of the hybrid

system as ρ(t) = ρa(t) ⊗ |0⟩⟨0|, where ρa(t) is the state of the encoding mode and |0⟩⟨0| is the ground state of the
auxiliary qubit. Therefore, the dynamical evolution of the encoding mode is governed by the effective master equation
[6]

dρa
dt

=
γa
2
D[a] +

γaλ

2
D[Leng], λ =

8|g|2

γbγa
= 8C. (8)

Without loss of generality, we can restrict the effective master equation to the first five Fock states (from the ground
state to four photons). The density matrix elements then satisfy the equations

1

γa

dρ22
dt

=
1

2
(6ρ33 − 4ρ22 + λρ11),

1

γa

dρ24
dt

=
1

2
(−6ρ24 + λρ13),

1

γa

dρ44
dt

=
1

2
(−8ρ44 + λρ33),

1

γa

dρ42
dt

=
1

2
(−6ρ42 + λρ31),

1

γa

dρ11
dt

=
1

2
(4ρ22 − 2ρ11 − λρ11),

1

γa

dρ13
dt

=
1

2
(2
√
8ρ24 − 4ρ13 − λρ13),

1

γa

dρ33
dt

=
1

2
(8ρ44 − 6ρ33 − λρ33),

1

γa

dρ31
dt

=
1

2
(2
√
8ρ42 − 4ρ31 − λρ31),

where we have defined the density matrix as ρa(t) =
∑

ij ρij(t)|i⟩⟨j|. If we assume λ≫ 1 and λ≫ γat, we obtain the
approximate solution

ρ00 ≈1−
(
6

5
+

48

25λ

)
ρ44(0)

{
exp

[
− 4

λ
γat+O

(
γat

λ

)2
]
− exp

[
−24

λ
γat+O

(
γat

λ

)2
]}

− ρ22(0) exp

[
− 4

λ
γat+O

(
γat

λ

)2
]
− ρ44(0) exp

[
−24

λ
γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ11 ≈ 24

5λ
ρ44(0)

{
exp

[
− 4

λ
γat+O

(
γat

λ

)2
]
− exp

[
−24

λ
γat+O

(
γat

λ

)2
]}

+
4

λ
ρ22(0) exp

[
− 4

λ
γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ22 ≈
(
6

5
− 72

25λ

)
ρ44(0)

{
exp

[
− 4

λ
γat+O

(
γat

λ

)2
]
− exp

[
−24

λ
γat+O

(
γat

λ

)2
]}

+

(
1− 4

λ

)
ρ22(0) exp

[
− 4

λ
γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ33 ≈ 8

λ
ρ44(0) exp

[
−24

λ
γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,
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FIG. S2. (a) Evolution of the mean fidelity for different choices of λ. (b) The analytic fidelity F (ρa(θ, ϕ, 0), ρa(θ, ϕ, t)) (i.e.,
Eq.(12)) as function of the Bloch angles θ and ϕ. (c) The numerical fidelity F (ρa(θ, ϕ, 0), ρa(θ, ϕ, t)) (i.e., numerically simulating
the master equation Eq.(8) with λ = 50, 000) as function of the Bloch angles θ and ϕ. Other parameters are γat = 0.6.

ρ44 ≈
(
1− 8

λ

)
ρ44(0) exp

[
−24

λ
γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ24 ≈

(
1− 4

√
2

λ

)
ρ24(0) exp

[
4(
√
2− 4)γat

λ
+ (2

√
2− 3)γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ13 ≈4
√
2

λ
ρ24(0) exp

[
4(
√
2− 4)γat

λ
+ (2

√
2− 3)γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

, (9)

where we have expanded the elements of the density matrix to the first order of 1
λ and γat

λ . Similar to other autonomous
error correction schemes [1, 7], the error correction efficiency based on the RL code also depends on the evaluation
time γat. If γat is too large, the system has decayed into the ground state (ρ00(t) ≈ 1), i.e., the capability for AQEC
is lost. Therefore, we limit γat to an appropriate scale γat ≤ 0.6. If λ ≫ 24 (i.e., λ → ∞), we can approximate the
density matrix to order zero in the parameters 1

λ and γat
λ

ρa(t) ≈


0 0 0 0 0
0 0 0 0 0
0 0 ρ22(0) 0 ρ24(0) exp(−uγat)
0 0 0 0 0
0 0 ρ42(0) exp(−uγat) 0 ρ44(0)

 , u = 3− 2
√
2 ≈ 0.17. (10)

With this, we can derive the approximate mean fidelity of the RL code space

F̄ (t) =
1

4π

∫ 2π

0

∫ π

0

[
ρ222(0) + ρ244(0) + 2|ρ24(0)|2 exp(−uγat)

]
sin θ dθdϕ

=
1

2

∫ π

0

{
1 + 2 sin2

(
θ

2

)
cos2

(
θ

2

)
[exp(−uγat)− 1]

}
sin θ dθ

=
2

3
+

1

3
exp(−uγat),

(11)

which can be further simplified as F̄ (t) = 1 − 1
3uγat due to the condition uγat ≪ 1. Moreover, the fidelity between

an individual initial state ρa(θ, ϕ, 0) and the corresponding evolved state ρa(θ, ϕ, t) is

F (ρa(θ, ϕ, 0), ρa(θ, ϕ, t)) = Tr[|ψθϕ⟩⟨ψθϕ| ρ(θ, ϕ, t)] = 1 + 2 sin2
(
θ

2

)
cos2

(
θ

2

)
[exp(−uγat)− 1] , (12)

which depends on the Bloch angle θ, but not on the Bloch angle ϕ for λ→ ∞. If the angle θ is equal to 0 and π, the
fidelity is close to the maximum value of 1; if it is π

2 , then the fidelity is the lowest (about 0.95), but still well above
the break-even point (about 0.84). For a comparison between the numerical and analytical results, we simulate the
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FIG. S3. Performance of the RL code in terms of the error-correctable fidelity. (a) Fidelity ⟨2|ρ(t)|2⟩ for a random quantum
trajectory with the initial state |2⟩. (b) Trajectory-wise, temporally coarse-grained fidelity F̄ ∗

τ (t) , averaged over the code space
and over 104 quantum trajectories, with γaτ = 0, 0.006, 0.012, and 0.018; other parameters are the same as in Fig. S1. For
sufficiently large τ , the initial, delay-induced dip is removed. The resulting error-correctable fidelity reflects the irreversible
fidelity loss.

time-dependent mean fidelity with different λ in Fig. S2(a). Our results demonstrate that the mean fidelity increases
with increasing λ. Moreover, the numerical mean fidelity (i.e., simulating the master Eq. (8) with λ = 8000) well
agrees with the analytical solution Eq. (11) (i.e., λ = ∞). Similarly, we get very good agreement between analytical
prediction and numerical evaluation for individual state fidelities, as shown in Figs. S2(b) and (c). Numerical fidelities
are obtained by simulating the master Eq. (8) with λ = 50, 000. This shows that our analytical results are reliable
for λ≫ 24.

S4. ERROR-CORRECTABLE FIDELITY

As a consequence of the finite rate of the engineered jump operator in AQEC, there is a delay between the occurrence
of an error and the onset of the recovery jump. This becomes transparent if one unravels the evolution under the
master equation (7) in terms of individual quantum trajectories. In Fig. S3(a) we demonstrate this with a random
quantum trajectory for the initial state |2⟩. Note that the fidelity drops to zero when an error occurs, and recovers to
close to unity once the delayed recovery jump occurs (Let us clarify that other initial states, specifically, superpositions
of the code words, would recover to fidelity values close to unity but lower, reflecting the approximate nature of the
AQEC). Therefore, this random delay reduces the average fidelity when averaged over many trajectories, resulting in
an initial dip as observed in Fig. S3(b) for γaτ = 0. However, the associated fidelity loss is, in principle, recoverable,
as the information, while stored in the error space, is not lost. It is therefore instructive to distill the irreversible
part of the fidelity loss, caused by the occurrence of multiple errors before correction and the imperfect state recovery
under approximate AQEC. This can be achieved by using a temporally coarse-grained redefinition of the fidelity [8]:

F ∗
τ (t) = max

t∗∈[t, t+τ ]
F (t∗). (13)

If the coarse-graining parameter τ is chosen sufficiently large, i.e., on the order of the average time delay, then
the fidelity (13) ignores the delay-induced fidelity loss, reflecting the error-correctable fidelity. In Fig. S3(b) we
demonstrate this with the RL code for different choices of τ . As expected, we find that the initial dip of the fidelity
is removed with increasing τ .

While the error-correctable fidelity provides valuable insight about the in-principle achievable performance of the
autonomously corrected RL code, the standard fidelity remains the operationally relevant one. This is because, in
the absence of monitoring, that is, if no additional information is gained about whether the state resides in the code
space or in the error space, gate operations must be conducted under the (due to the delayed-error-correction process
not necessarily correct) assumption that, at the time of the gate operation, the state resides in the code space.

S5. NAIVE ERROR CORRECTION OPERATOR

Let us consider another jump operator that may appear to counteract well the single-photon loss. When a single-
photon loss occurs, the encoded state is changed to the error state

a(cos
θ

2
|2⟩+ eiϕ sin

θ

2
|4⟩) −→ cos

θ

2

√
2|1⟩+

√
4eiϕ sin

θ

2
|3⟩. (14)
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FIG. S4. (a) Mean fidelity versus time for different λ (the red dotted line describes the analytical result); (b) Comparison of
the error correction performance of the error correction operator Eq. (15) (dashed line) and the RL error correction operator
from the main text (solid line); (c) Evolution of the mean fidelity resulting from the original master equation Eq. (8) (dashed
line) or from the modified master equation (a → a+ a1) (solid line) for different λ.

To steer the error state back to the code space undisturbed, one may tentatively use the following error correction
operator, which is different from the one in the main text:

Lo =
√
2|2⟩⟨1|+ |4⟩⟨3|, Leng =

Lo√
Tr[L†

oLo]
. (15)

This jump operator revises the error state as

Leng

(
cos

θ

2

√
2|1⟩+

√
4eiϕ sin

θ

2
|3⟩
)

−→ 2√
Tr[L†

oLo]

(
cos

θ

2
|2⟩+ eiϕ sin

θ

2
|4⟩
)
, (16)

that is, the encoded information remains undisturbed. To further investigate the efficiency of this error correction
operator, we substitute it into the master Eq. (8) and restrict the system again to the first four photons, which yields
the equations

1

γa

dρ22
dt

=
1

2
(6ρ33 − 4ρ22 +

4

3
λρ11),

1

γa

dρ24
dt

=
1

2
(−6ρ24 +

2
√
2

3
λρ13),

1

γa

dρ44
dt

=
1

2
(−8ρ44 +

2

3
λρ33),

1

γa

dρ42
dt

=
1

2
(−6ρ42 +

2
√
2

3
λρ31),

1

γa

dρ11
dt

=
1

2
(4ρ22 − 2ρ11 −

4

3
λρ11),

1

γa

dρ13
dt

=
1

2
(2
√
8ρ24 − 4ρ13 − λρ13),

1

γa

dρ33
dt

=
1

2
(8ρ44 − 6ρ33 −

2

3
λρ33),

1

γa

dρ31
dt

=
1

2
(2
√
8ρ42 − 4ρ31 − λρ31).

(17)

In the limit λ → ∞, we obtain an approximate density matrix, which has the same form as Eq.(10), except for
that u = 1

3 . Correspondingly, the expressions for the fidelities F (|ψθϕ⟩⟨ψθϕ|, ρa(θ, ϕ, t)) and F̄ (t) remain the same,

cf. Eqs. (11) and (12): the only difference is u = 1
3 > 3 − 2

√
2. In Fig. S4(a), we show the fidelity over time

for different λ. We find that the analytical results coincide well with the numerical results for large enough λ. In
Fig. S4(b), we see that the efficiency of the RL error correction operator from the main text is higher than the error
correction operator Eq. (15). Why is this? We can provide a physical reason: although the error correction operator
Eq. (15) ensures that the information is not disturbed when the jumps occur, the time evolution in between the jumps,
captured by the non-Hermitian terms in the master equation, acts detrimentally on the encoded information (i.e.,
λ⟨1|F †

engFeng|1⟩ ≫ λ⟨3|F †
engFeng|3⟩), resulting in an overall reduced performance compared to the RL error correction

operator of the main text.

S6. ANALYSIS OF THE KNILL-LAFLAMME CONDITION

The mean fidelity of the RL code, Eq. (11) remains slightly below one because the code words have different mean
photon numbers: the Knill-Laflamme (KL) condition is only partially satisfied [9]. To understand the consequences
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of this better, let us modify the master equation by replacing the single-photon loss jump operator a by a + a1,
where a1 = (2−

√
2)|1⟩⟨2| (i.e., D[a] → D[a+ a1]). The modified jump operator now satisfies the condition ⟨0L|(a+

a1)
†(a+ a1)|0L⟩ = ⟨1L|(a+ a1)

†(a+ a1)|1L⟩ for the RL code, that is, the KL condition is satisfied. Therefore, we can

completely correct the error a + a1 under the conditions 8g2

γaγb
→ ∞, 1

λ ≪ 1, and γat
λ ≪ 1. Next, we show that the

mean fidelity can indeed reach unity under the 0-order approximation of the parameters 1
λ and γat

λ . To this end, let
us again evaluate the corresponding master equation for the system up to four photons,

1

γa

dρ22
dt

=
1

2
(6ρ33 − 8ρ22 + λρ11),

1

γa

dρ24
dt

=
1

2
(−8ρ24 + λρ13),

1

γa

dρ44
dt

=
1

2
(−8ρ44 + λρ33),

1

γa

dρ42
dt

=
1

2
(−8ρ42 + λρ31),

1

γa

dρ11
dt

=
1

2
(8ρ22 − 2ρ11 − λρ11),

1

γa

dρ13
dt

=
1

2
(8ρ24 − 4ρ13 − λρ13),

1

γa

dρ33
dt

=
1

2
(8ρ44 − 6ρ33 − λρ33),

1

γa

dρ31
dt

=
1

2
(8ρ42 − 4ρ31 − λρ31).

(18)

We approximately solve this equation by expanding to first order in the parameters λ≫ 1 and λ≫ γat,

ρ00(t) ≈1−
(
3

λ
+

3

2

)
ρ44(0)

{
exp

[
−8γat

λ
+O

(
γat

λ

)2
]
− exp

[
−24γat

λ
+O

(
γat

λ

)2
]}

− ρ44(0) exp

[
−24γat

λ
+O

(
γat

λ

)2
]
− ρ22(0) exp

[
−8γat

λ
+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ11(t) ≈
12

λ
ρ44(0)

{
exp

[
−8γat

λ
+O

(
γat

λ

)2
]
− exp

[
−24γat

λ
+O

(
γat

λ

)2
]}

+
8

λ
ρ22(0) exp

[
−8γat

λ
+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ22(t) ≈
(
3

2
− 9

λ

)
ρ44(0)

{
exp

[
−8γat

λ
+O

(
γat

λ

)2
]
− exp

[
−24γat

λ
+O

(
γat

λ

)2
]}

+

(
1− 8γat

λ

)
ρ22(0) exp

[
−8γat

λ
+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ33(t) ≈
8

λ
ρ44(0) exp

[
−24γat

λ
+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ44(t) ≈
(
1− 8

λ

)
ρ44(0) exp

[
−24γat

λ
+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ13(t) ≈
8

λ
ρ24(0) exp

[
−16

λ
γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

,

ρ24(t) ≈
(
1− 8

λ

)
ρ24(0) exp

[
−16

λ
γat+O

(
γat

λ

)2
]
+O

(
1

λ

)2

. (19)

The density matrix is approximately equal to the initial state ρa(0) for λ→ ∞, so the mean fidelity is approximately
equal to unity. This implies that we can fully correct the single-photon loss by adding the small correction term a1.
In Fig. S4(c), we compare the error correction performance of the modified master equation (a → a + a1) and the
original master equation (8) for different values of λ. With increasing λ, the modified master equation displays a
better error correction ability. When λ is small, the mean fidelity is lower due to ⟨2|(a+ a1)

†(a+ a1)|2⟩ > ⟨2|a†a|2⟩.
Finally, let us discuss the optimality of the RL code compared to codewords that are shifted in Fock space, i.e.,

have the general form |m⟩, |m + 2⟩ (for example, |1⟩, |3⟩ or |8⟩, |10⟩). While the code space better satisfies the KL
condition with increasing m, the mean probability of single-photon jumps also increases,

P̄er ∝
1

4π

∫
Ω

⟨ψθϕ|γaa†a|ψθϕ⟩ dΩ = (m+ 1)γa. (20)
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FIG. S5. Simulating the mean fidelity at t = 150 µs for different m with the master equation (5) of the main text. Other
parameters are γa = 0.02 MHz, g = 8 MHz, and γb/g = 2.5.

Therefore, high excitation numbers require large g/γa for the jump probability of Leng to be sufficiently large, which
increases the difficulty of the experiment. Here we limit the range of the cooperativity C ≤ 160 to ensure experiment-
friendly AQEC. Under this parameter condition, we simulate the mean fidelity for the code word |m⟩, |m + 2⟩ in
Fig. S5. We find that the mean fidelity of the RL code is optimal compared to its shifted versions. It is worth noting
that m = 0 is an invalid code space due to F (π2 , ϕ, t) < F̄be.

S7. SETTING THE COUPLING BETWEEN THE QUBIT & THE ENCODING MODE PLUS THE
AUXILIARY MODE

Here we discuss in more detail how to realize our approximate AQEC scheme in an actual physical system. We
consider a quantum system consisting of an encoding mode, an auxiliary qubit, and an auxiliary mode. The system
Hamiltonian is given by

H = ωaa
†a+

ωb

2
σz + ωcc

†c+
χ

2
a†aσz + f(t)(a+ a†)σx + gc(t)(c

† + c)σx, (21)

where χ is the dissipative coupling coefficient, g(t) and f(t) are two time-dependent control fields, and ωa, ωb, ωc are
the resonant frequencies of the encoding mode, the qubit, and the auxiliary mode, respectively. The system dynamics
are then described by the master equation

dρ

dt
= −i[H, ρ] + γa1

2
D[a] +

γb1
2

D[σ−] +
γc1
2

D[c], (22)

where γi1 (i = a, b, c) are the corresponding decay rates. The Hamiltonian (21) can be expanded with the eigenstates
|EN,M,±⟩ of the Hamiltonian H0 = ωaa

†a+ ωb

2 σz + ωcc
†c+ χ

2 a
†aσz. Therefore, the Hamiltonian H can be rewritten

as

H=
∑
N,M

EN,M |EN,M,±⟩⟨EN,M,±|+ f(t)
√
N + 1(|EN+1,M,+⟩⟨EN,M,−|+ |EN+1,M,−⟩⟨EN,M,+|+ h.c.)

+ gc(t)
√
M + 1(|EN,M+1,+⟩⟨EN,M,−|+ |EN,M+1,−⟩⟨EN,M,+|+ h.c.),

(23)

where EN,M,± = Nωa +Mωc ± (ωb

2 + Nχ
2 ) is the eigenvalue of the Hamiltonian H0. After switching to a rotating

frame by applying the unitary operator U = exp(−iH0t), the Hamiltonian can be written as

HI =
∑
N,M

f(t)
√
N + 1(|EN+1,M,+⟩⟨EN,M,−|ei(EN+1,M,+−EN,M,−)t + |EN+1,M,−⟩⟨EN,M,+|ei(EN+1,M,−−EN,M,+)t)

+gc(t)
√
M + 1(|EN,M+1,+⟩⟨EN,M,−|ei(EN,M+1,+−EN,M,−)t+|EN,M+1,−⟩⟨EN,M,+|ei(EN,M+1,−−EN,M,+)t) + h.c. .

(24)

Here we assume for simplicity that the mode c and the qubit are resonant, ωb = ωc = ω, and that the frequencies
satisfy |ωa + ω|, |ωa − ω| ≫ χ≫ gc(t), |f(t)|. We can then use the control fields

f(t) =
2α0√
2
cos [(E2,M,+ − E1,M,−) t] +

2α0√
4
cos [(E4,M,+ − E3,M,−) t] ,

g(t) = 2α1 cos [(E2,M,+ − E2,M+1,−)t] + 2α1 cos [(E4,M,+ − E4,M+1,−)t] ,

(25)
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FIG. S6. Evolution of the mean fidelity up to t = 3 ms for the effective Hamiltonians Heff,0 and Heff,1, with the parameters
α0/2π = 0.05 MHz, α1/2π = 0.07 MHz, γa1/2π = 0.2 kHz, γb1/2π = 2 kHz, and γc1/2π = 0.12 MHz.

to select effective transitions. The control fields must satisfy the condition |f(t)| ≤ |g(t)| to rapidly transfer the
energy from the auxiliary qubit to the auxiliary mode. After performing a rotating-wave approximation, we obtain
the following effective Hamiltonian

Heff,0 ≈ α0(Loσ+ + L†
oσ−) +

∑
N=2,4

α1|N⟩⟨N |(c†σ− + cσ+), (26)

which can be further approximated to obtain the simpler expression

Heff,1 ≈ α0(Loσ+ + L†
oσ−) + α1(c

†σ− + cσ+), (27)

due to the fast energy exchange mainly appearing in the code space rather than the error space for the approximate
AQEC.

We numerically evaluate the mean fidelity under the two Hamiltonians Heff,0 and Heff,1 in Fig. (S6), which demon-
strates that the above approximation is appropriate. The frame rotation does not affect the decay D[σ−] of the
auxiliary mode. Although D[a] and D[σ−] are modified in the rotating frame, the effects of D[a] and D[σ−] remain
approximately the same as in the original frame. Finally, we obtain the effective Hamiltonian

Heff ∝ Lengσ+ + L†
engσ−, (28)

(i.e., the QEC Hamiltonian of the main text) by adiabatically eliminating the high-decay mode c [10]. Therefore, the
dynamics described by Eq.(22) are effectively equivalent to the master Eq. (5) of the main text.
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