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In this Supplemental Material, we first present more details about the three different schemes to

realize the mechanical mode with a two-phonon driving. Then, we show how to realize the spin

wave quantization in a magnetic microsphere. Finally, we show that the NV center, phonons, and

magnons have a tripartite coupling in this hybrid setup. Some unfavorable factors such as driving

defects, spin-rotation mode couplings, magnon-phonon interactions, and gas damping are considered

and analyzed.

A. MECHANICAL CENTER-OF-MASS VIBRATION

This section demonstrates theoretically the implementation of the mechanical center-of-mass vibration. To this end,
we introduce three different proposals, i.e., a trapped diamond nanoparticle, a diamond cantilever, and a levitated
micromagnet. We show that for all the schemes, the two phonon drive is easy to realize.

a. Trapped diamond particles

The ion trap is used in this approach to achieve the levitation of diamond particles with NV centers [Fig. S1(a)].
Here, we investigate an electrical potential with a roughly quadrupolar spatial form in the trapping zone [1]. The
potential can be written as

Φ(x, y, z, t) =
U1

2
(ax2 + by2 + cz2) +

U2

2
cos(ωrft)(a

′x2 + b′y2 + c′z2), (S1)

with the rf drive frequency ωrf . According to Maxwell equations, the potential must always satisfy the Laplace
equation, which leads to the constraint of coefficients as a + b + c = 0 and a′ + b′ + c′ = 0. Otherwise, we assume
that these coefficients are selected as −(a + b) = c > 0 and a′ = −b′, which causes static potential confinement for
positively charged particles in the z direction as well as dynamical confinement in the x − y plane. Namely, we can
treat the trapped particle as a linear oscillator along the z axis, i.e., the Paul trap [2].

For the quantum-mechanical treatment of the center of mass motion in the trap, the time-independent potential
can be written as

V̂ =
1

2
Mω2

mẑ
2, (S2)

with the frequency

ωm =

√
cqU1

M
. (S3)

Here, q is the charge and M is the mass of the diamond particle. For the linear trap, the time-dependent part along
z axis could be eliminated with c′ = 0 [1]. However, for a particle in the harmonic trap, it is possible to add an
oscillating potential UT cos(2ωpt) with a voltage amplitude UT, which results in an external tunable drive

V̂dr = −2qUT(ẑ/dT)2 cos(2ωpt)
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FIG. S1. (color online) (a) Schematic illustration of the proposal of the electrical trap for a diamond particle with single NV

spins and a nearby YIG microsphere. (b) The driving frequency as a function of the voltage amplitude UT of the oscillating

potential. Here, we assume the characteristic trap dimension dT = 100 µm.

with a characteristic trap dimension dT [3, 4]. We then obtain a harmonic Hamiltonian with tunable stiffness as

Ĥm =
p̂2
z

2M
+

1

2
Mω2

mẑ
2 − 1

2
ke(t)ẑ2, (S4)

with the time-dependent stiffness

ke(t) = −4qUT

d2
T

cos(2ωpt). (S5)

Employing the transformation b̂ = ẑ/(2zzpf) + izzpf p̂z/~ with zzpf =
√

~/(2Mωm), the Hamiltonian of the mechanical
mode can be written as (let ~ = 1)

Ĥm = ωmb̂
†b̂− Ωp cos(2ωpt)(b̂+ b̂†)2, (S6)

with the parametric drive strength Ωp = 2qUTz
2
zpf/~d2

T. In this scheme, the driving amplitude Ωp/2π can reach
the order of magnitudes ∼ 100 MHz with the characteristic trap dimension dT = 100 µm [see Fig. S1(b)], which is
requisite for enhancing the tripartite interaction. For the levitation of diamond nanoparticles with NV centers, the
rotation mode can be ignored, since the frequency of the rotation mode for spherical diamond is zero, which has been
demonstrated in ref. [5].

b. Diamond cantilevers

For this scheme, the NV center is embedded in a nano cantilever with the size (l, w, t) as shown in Fig. S2. The
vibration of the nano cantilever results in the relative motion between the NV center and the nearby micromagnet.
In this case, the effective mass of the mechanical mode can be described as M = ρclwt/4 with the mass density of
cantilever ρc. The fundamental frequency can be estimated as

ωm = 3.516× (t/l2)
√
E/12ρc

with Young’s modulus E.
To modulate the motion of the cantilever, a pair of eletrodes are used [6]. One of them is coated on the lower

surface of the cantilever. Another eletrode is placed just under the cantilever with a tunable time-varying voltage
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FIG. S2. (color online) Schematic of a mechanical cantilever with an NV center is coupled to a YIG sphere. The electrode

(gray cube) provides the mechanical driving to enhance the tripartite interaction.

V = V0 + Vp cos(2ωpt). They can be regarded as a general parallel-plate capacitor with Cr = εS/(d0 + z). The
spring constant of the cantilever can be modulated by the gradient of the electrostatic force F = ∂(CrV

2)/(2∂z).
Then, the mechanical mode with the electrical drive can be described as the Hamiltonian Eq. S6 as well, while the
parametric-drive amplitude is

Ωp =
εSV0Vpz

2
zpf

~d2
0

. (S7)

In this scheme, we consider a diamond cantilever with the dimensions (l = 95, w = 0.02, t = 0.01) µm. Then the
fundamental frequency can be estimated as ωm ∼ 1 kHz. The zero-point fluctuation is estimated as zzpf ∼ 5.6×10−11

m. For the two-phonon drive, the aplitude Ωp/2π can reach the order of magnitudes ∼ 100 MHz with the parameters:
V0 = 10 V,Vp = 2 V, S = 5 µm×0.02 µm, d0 ∼ 300 µm.

c. Levitation of micromagnets

To levitate the magnets, one can place the YIG sphere above a type II superconductor [7]. The cooldown spanning
the critical temperature Tc generates a frozen dipole and an image dipole, which can supply a dynamic force to balance
the gravity [Fig. S3(a)]. The potential function of the YIG sphere can be written as

Um = −~µ · ~Beff +mgy, (S8)

with the magnetic moment vector ~µ = µm~ez, the effective field ~Beff = ~Bfrozen + ~Bimage/2, and g = 9.8 m/s2. Here,
~Bfrozen and ~Bimage denote the magnetic fields generated by the frozen dipole and the image dipole, respectively.
Expanding the potential function at the equilibrium position, and removing the constant and high order components,
the potential energy can approximate to a quadratic function of coordinates. Considering the vibration along the
z axis at the equilibrium height, the center-of-mass motion of the levitated micromagnet can be described by the
Hamiltomian

Ĥ(0)
m =

p̂2
z

2M
+

1

2
Mω2

mẑ
2, (S9)

with the momentum p̂z and coordinate ẑ. These two terms are equivalent to a harmonic oscillator with the mass of
micromagnet M and the frequency ωm. Here, the frequency can be expressed as

ωm =

√
3µ0

4πM

µm

(heq + hcool)5/2
. (S10)

Here, the magnetic moment is defined as µm = VMs, with the volume V and saturation magnetization M of the YIG
sphere. The distance from the superconductor to the YIG sphere during the cooldown process is denoted by hcool,
while the equilibrium distance is denoted by heq in the above formula.

Then we introduce the electrical current next to the levitated YIG sphere as shown in Fig. S3(a). The magnetic
field felt by the YIG sphere can be expressed as

~Be =
µ0I

2π
√
d2
e + z2

~ez −
µ0I

2π
√

(de + 2heq)2 + z2
~ez, (S11)

with the current I = I0 cos(2ωpt), the distance from the equilibrium of the YIG sphere to the electric wire de, the unit
vector ~ez parallel to the static external field, and the displacement of the micromagnet z. Note that the first term
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in the above equation describes the field generated by the original electrical current, while the second term describes
the field generated by the image current. Here, we assume the original current is much closer than the image current
(de � de + 2heq). The second term in Eq. S11, therefore, can be safely ignored, and the field can be simplified as

~Be '
µ0I

2π
√
d2
e + z2

~ez. (S12)

Then the magnetic interaction can be Udrive = −~m · ~Be = U0f(z) including the spatially invariant part U0 =
−µ0VMsI/(2πde) and the space-dependent function f(z) = de/(d

2
e + z2)1/2. Expanding this function at the equilib-

rium position (z = 0) by Taylor series, we can rewrite the interaction potential as

Udrive = U0[f(0) + f ′(0)z +
1

2
f ′′(0)z2 +O(z)], (S13)

where O(z) denotes the sum of higher-order terms. Since the first term is constant, its effect on the dynamics of the
system can be neglected. Note that the second term obviously vanishes for f ′(0) = 0. Consider the small vibration
situation, we can safely ignore the higher-order terms O(z). Then the magnetic interaction can be approximated as

Udrive ' 1
2U0f

′′(0)z2. Thus, we can obtain the driving Hamiltonian as Ĥ
(1)
m = 1

2ke(t)ẑ2. The effective time-dependent
tunable stiffness coefficient is expressed as

ke(t) = −µ0VMsI0
2πd3

e

cos(2ωpt), (S14)

with intensity I0 and frequency ωp. This term can supply the approach to modulate and drive the center-of-mass

vibration via classical electrical current. Employing the destruction operator b̂ = ẑ/(2zzpf)+izzpf p̂z/~, the Hamiltonian
of the mechanical mode can be written as

Ĥm = Ĥ(0)
m + Ĥ(1)

m = ωmb̂
†b̂− Ωp cos(2ωpt)(b̂+ b̂†)2, (S15)

with the driving amplitude Ωp = µ0VMsI0z
2
zpf/(4π~d3

e). In this work, the driving amplitude Ωp/2π can reach ∼ 100
MHz with proper parameters as shown in Fig. S3(a). Here, we can neglect the rotation mode of the levitated YIG
sphere, when the large external magnetic field Bz,K is parallel to the initial magnetization direction of magnet. The
conservation of total angular momentum restrains the mechanical rotation under the circumstances.

In practice, when the large external magnetic field Bz,K is not strictly parallel to the initial magnetization direction
of the magnet, the rotation mode can appear with a frequency ωr =

√
ωKωI. Here, ωK = |γ|Bz,K, being the magnon

frequency on the order of magnitudes of 10 GHz. The Einsteinde Haas frequency is defined as ωI = ρspinVYIG/(I0γ),
where ρspin is the spin density, VYIG is volume of magnet, and I0 = 2ρYIGVYIGR

2/5 the moment of inertia with the
mass density ρYIG and radius R of the spherical magnet. In this work, the Einsteinde Haas frequency can be estimated
as ωI/2π ∼ 1.7 kHz for the large spin density and the nanoscale of the YIG sphere. Then the frequency of rotation
mode can be estimated as ωr/2π ∼ 4 MHz, which results in a large detuning between the NV spin (ωNV/2π ∼ 10
GHz) and the rotation mode. Therefore, the coupling between the NV spin and the rotation mode can be safely
neglected since they are far-off resonance in this scheme.

d. The driving generated by imperfect current direction

For the levitation of magnets, we discuss the situation where the external current direction and the saturation
magnetization are not strictly perpendicular in this section.

We assume that there is a small angle’s deviation (θ) between the external current direction and the saturation
magnetization. Then the transverse component of magnetic field can be written as

~Btr = | ~Be| tan θ(cosφ~ex + sinφ~ey), (S16)

with an arbitrary angle φ in the plane xOy. For simplicity we let φ = 0. Taking Utr = −V ~M · ~Btr and ~ = 1, this
transverse field results in a driving of magnon as

Ĥtr = −Ωtr cos(2ωpt)(â+ â†), (S17)
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FIG. S3. (color online) (a) The driving frequency as a function of the distance from the equilibrium of the YIG sphere to the

electric wire. Here, we assume the amplitude of the classical electricity I0 = 0.2 mA. (b) Schematic of a YIG sphere attached

to a mechanical cantilever is coupled to a NV center. The electrode (gray cube) provides the mechanical driving to enhance

the tripartite interaction.

with the driving rate

Ωtr =
µ0I0 tan θ

2πd

√
|γ|VMs

2~
. (S18)

Besides, we consider the direct effect on Zeeman shift of the NV center caused by the current. Here, the current
near the magnet generates the external magnetic induction, which results in the two-phonon drive of the mechanical
mode. For the effect of NV spin, we assume that rNV denotes the distance between the spin and the current.
Applying ÛZeeman = −geµBBe,zσ̂z/2 and Be,z = µ0I0d/r

2
NV, the Zeeman shift of the NV center can be obtained as

∆ω = geµBµ0I0d/(2~r2
NV). The shift then can be estimated as ∆ω ∼ 10 MHz, which is far less than the frequency

of the NV spin (∼ 10 GHz). Therefore, the direct effect on Zeeman shift of the NV center can be neglected in this
scheme.

B. QUANTIZATION OF THE SPIN WAVE

In this section, we demonstrate the quantization of the spin wave in a ferromagnetic microsphere. Then the
magnon, the quanta of the SWs (spin waves), can be described with a theoretical model. First, we start from the
general Landau-Lifshitz equation and simplify it under several physical approximations. Then, we show the Walker
mode in a ferrite sphere in the second part. Finally, we obtain the bare Hamiltonian and quantization of the magnon
modes, especially the Kittel mode.

a. Spin wave equations in a magnetic sphere

Considering a continuous magnetization field ~M(~r, t) with the corresponding eletromagnetic field intensity ~E(~r, t)

and ~H(~r, t), the spin wave dynamics generally follows the Maxwell’s equations with the relationship between the
induced magnetization and the applied field. Then the dynamics of the magnetization satisfies the phenomenological
Landau-Lifshitz equation as [8–10]

d

dt
~M(~r, t) = −|γ|µ0

~M(~r, t)× ~Heff( ~M,~r, t). (S19)
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Here, the effective field ~Heff( ~M,~r, t) includes the Maxwellian field ~H(~r, t), the extra field ~Hex, ~Han, and ~Hdm [8]. Here,

the latter three parts depend on ~M,~r and t. They are the effective fields on account of exchange, anisotropy, and
dipole-dipole-interaction induced demagnetization, respectively. It indicates the inhomogeneity of this equation S19.

First, we suppose that the magnet is maximally magnetized along the z axis (~ez) by a collinear field. Compared
with the saturated magnetization, the fluctuation deviating from the equilibrium is very small [11]. Thus, they can be

defined as ~M(~r, t) = MS~ez + ~m(~r, t) and ~H(~r, t) = H0~ez + ~h(~r, t). Here, the dynamical variables satisfying ~m�MS

and ~h� H0 are to be solved. Associated with the domain wall interaction, the exchange field is less than the dipole-
dipole interaction when the micromagnet size is much larger than the domain wall length. For a cubic material, the
magnetocrystalline anisotropy can also be ignored [8, 9, 12]. As for the demagnetizing field in a spherical magnet,

we reasonably suppose the expression ~Hdm = −(MS/3)~ez [9, 13]. Combining the above settings with Eq. (S19) and

neglecting the high order terms of variables ~m/MS and ~h/H0, we can obtain the linearized Landau-Lifshitz equations
as [8] [

ṁx(~r, t)
ṁy(~r, t)

]
=

[
−ω0my(~r, t) + ωMhy(~r, t)
ω0mx(~r, t)− ωMhx(~r, t)

]
, (S20)

where mx and my denote the space components of ~m, and the two relevant system frequencies are ωM = |γ|µ0MS

and ω0 = |γ|µ0(H0 −MS/3).

In the end, we consider the magnetostatic approximation ∇×~h(~r, t) ' 0. Under this circumstance, the electric field

of the spin wave is decoupled to ~h according to the Maxwell equations. Then we can safely introduce the magnetostatic
potential through ~h(~r, t) = −∇ψ(~r, t) due to the approximation. The zero-divergence condition ∇ ·~b = 0 in Maxwell

equations and the relation ~b = µ0(~h+ ~m) make one to obtain the following equation [8]

∇2ψ(~r, t) = ∂xmx(~r, t) + ∂ymy(~r, t), (S21)

which describes the situation inside the micromagnet with three acalar fileds (ψ,mx,my). For the case outside the
micromagnet, the potential is limited ∇2ψ = 0. Therefore, the spin wave can be completely described by the linear
scalar equations Eq. (S20) and Eq. (S21) with the continuity of the normal direction components of ~h and ~b. The
spin-wave eigenmodes, solutions of the above scalar equations, are the magnetostatic dipolar spin waves which are
called Walker modes as well [8, 9].

b. Walker modes and Kittel modes

This section reveals the process of calculating the Walker modes. Introducing the eigenmodes, we can express the
magnetization and magnetic fields as

~m(~r, t) =
∑
β

[
sβ ~mβ(~r)e−iωβt + c.c.

]
, (S22a)

~h(~r, t) =
∑
β

[
sβ~hβ(~r)e−iωβt + c.c.

]
. (S22b)

Here, the eigenmode fields ~mβ(~r) and ~hβ(~r) = −∇ψβ(~r) are characterized by a series of mode indices {β}, an
eigenfrequency ωβ and a complex amplitude sβ [14, 15]. Then the linearized Landau-Lifshitz equations turn to
iωmx(~r) = ωM∂yψ(~r) + ω0my(~r) and iωmy(~r) = −ωM∂xψ(~r) − ω0mx(~r), which are time-independent. We can
eliminate the scalar field mx(~r) and my(~r) through these equations and Eq. (S21). The formula merely contains the
magnetostatic potential as

∇2ψout(~r) = 0, (S23a)

(1 + χp)

(
∂2

∂x2
+

∂2

∂y2

)
ψin(~r) +

∂2

∂z2
ψin(~r) = 0, (S23b)

where ψin and ψout denote the magnetostatic potentials inside and outside the micromagnet, respectively. In this
situation, we define the diagonal element of the Polder susceptibility tensor as χp(ω) ≡ ωMω0/(ω

2
0 − ω2) [8].
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For the outside part, the general solution in the spherical coordinates can be written as

ψout(~r) =
∑
lm

[
Alm
rl+1

+Blmr
l

]
Y ml (θ, φ). (S24)

Here, the boundary conditions determine the coefficients Alm and Blm. Note that Y ml (θ, φ) is the spherical
harmonics. To solve the potential, a set of nonorthogonal coordinates {ξ, η, φ} is introduced. They fulfill x =
√
χpR

√
ξ2 − 1 sin η cosφ, y =

√
χpR

√
ξ2 − 1 sin η sinφ, and z =

√
χp/(1 + χp)Rξ cos η. Thus, the solution of

Eq. (S23b) becomes available, which can be written as [14, 15]

ψin(~r) =
∑
lm

ClmP
m
l (ξ)Y ml (η, φ), (S25)

Each term of the above summation is a product of the boundary-conditions-dependent coefficient Clm, Legendre
polynomials, and spherical harmonics.

We then determine all the coefficients by the boundary conditions. First, to make the potential ψ regular, the term
corresponding to Blm should be removed since it is not convergent at infinity. That indicates the first condition,
Blm = 0. Considering the potential on the surface of the sphere, the coordinates are ξ → ξ0 =

√
(1 + χp)/χp and

{η, φ} → {θ, φ}. Applying these coordinates to the two solution expressions Eq. (S24) and Eq. (S25), one can combine

the normal-direction-component continuity of ~h (~b) and obtain the other two conditions

Alm = ClmP
m
l (ξ0)Rl+1. (S26)

∂ψout

∂r

∣∣∣∣
r=R

=
ξ0
R

∂ψin

∂ξ

∣∣∣∣
r=R

− i
κp
R

∂ψin

∂φ

∣∣∣∣
r=R

. (S27)

Here, κp(ω) = ωMω/(ω
2
0 − ω2) is the off-diagonal element of the Polder susceptibility tensor [8]. Applying the above

formulas, the Walker mode eigenfrequency fulfills the equation as [14, 15]

ξ0(ω)
P ′ml (ξ0(ω))

Pml (ξ0(ω))
+mκp(ω) + l + 1 = 0. (S28)

There are two results we can obtain from this equation: (i) The frequency ω is independent R; (ii) Not all the
solutions {l,m} are positive and physical (l = 0, for example). One can use three indices {l,m, n} to denote the nth
eigenmodes of the spin waves. Several mode functions have been demonstrated in Fig. S4. In this work, the Kittel
mode is the mode with the index (100). Note that some of the values of l and m are not included, since the solutions
of corresponding equation are not positive and physical.

c. The intrinsic Hamiltonian and quantization of the magnetostatic dipolar magnon modes

We now show the quantization of the Walker modes from a phenomenological micromagnetic energy functional [11]

Em({~m}, {~h}) =
µ0

2

∫
dV ~m(~r, t) ·

[
HI

MS
~m(~r, t)− ~h(~r, t)

]
. (S29)

For convenience, we apply Eq. (S20) to the above expression. Then the energy becomes Em({~m}) = 1/(2|γ|MS) ×∫
dV (mx∂tmy −my∂tmx). Combining Eq. (S23a), one can transform the energy expression to Em = 1/(2~|γ|MS)×∑
β ~ωβΛβ(sβs

∗
β + s∗βsβ) with Λβ = 2Im

∫
dV mβym

∗
βx [16, 17]. Compared with the Hamiltonian of the harmonic os-

cillator, we can choose adequate eigenmode normalization to fulfill Λβ = MS |γ|~. Replacing the expansion coefficients

with the bosonic magnon operators, i.e., {sβ , s∗β} → {ŝβ , ŝ
†
β} with the commutation relation [ŝβ , ŝ

†
β ] = 1, the quantized

Hamiltonian can be written as Ĥm =
∑
β ~ωβ [ŝ†β ŝβ + 1/2]. Here, the constant term is the analogue of the zero-point

energy. For simplicity, one can define a zero-point magnetization M0β =
√
~|γ|MS/Λ̃β and the normalization con-

stant Λ̃β = 2Im
∫
dV m̃∗xm̃y. The mode functions, then, are replaced as {~mβ ,~hβ} →M0β{ ~̃mβ , ~̃hβ}. In the Schrdinger

picture, the corresponding magnetization and magnetic field operators can be expressed as ~̂m =
∑
βM0β( ~̃mβ ŝβ+H.c.)

and ~̂h =
∑
βM0β(~̃hβ ŝβ + H.c.).
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FIG. S4. (color online) The mode frequency as a function of the external magnetic field H0. The number in legend indicate

the indices {l,m, n}. The color of lines distinguishes the different index l.

As for the Kittel mode, the zero-point magnetization is MK =
√
~|γ|MS/2V with the saturation magnetization

MS and the volume V . The mode function, m̃K = ~ex + i~ey, depends on the coordinate vectors ~ex and ~ey. The
corresponding magnetization operator is

~̂M = MK

(
m̃Kâ+ m̃∗Kâ

†) . (S30)

Here, we employ the annihilation (creation) operator of Kittel modes â (â†). The Hamiltonian of Kittel modes can
be written as

ĤK = ωKâ
†â, (S31)

with the frequency ωK = |γ|Bz depending on the external static field.

C. INTERACTION BETWEEN THE MAGNON AND THE CENTER OF MASS MOTION

In this section, we show the coupling between the magnon and the center of mass motion due to the magnetic
field levitating the YIG magnet. The specific expression of the coupling rate are obtained with relevant theoretical
derivation.

We start from the effective field levitating the YIG sphere in Eq. (S8). The field’s component parallel to the z axis
cannot interact with Kittel mode, since its mode function in Eq. (S30) is transverse. We extract the left components
of the effective field and obtain the effective magnetic field as

~Btr = −3µ0µm
4πr5

f

(heq + hcool)z~ex, (S32)

where we define that rf = ((heq + hcool)
2 + z2)1/2. Up to first order on the quantized coordinate ẑ = zzpf(b̂+ b̂†), we

apply Ĥm-p = −~̂µM · ~̂Btr with ~̂µM = V ~̂M to obtain the interaction Hamiltonian as

Ĥm-p = gm-p(b̂+ b̂†)(â† + â), (S33)

where the coupling rate is

gm-p =
µ0µmVMKzzpf

4π~(heq + hcool)4
. (S34)
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D. TRIPARTITE INTERACTION

In this section, we show the tripartite interaction in this hybrid quantum system. We start from the classical
electromagnetism result that the field of a magnetic sphere with magnetization ~M can be described by

~B(~r) =
µ0

3

R3

r3

[
3( ~M · ~r)~r

r2
− ~M

]
. (S35)

Here, ~B(~r) is the magnetic field at ~r = rx~ex + ry~ey + rz~ez. In this work, we locate the NV center along the z axis,
which leads to ~r = r~ez. After introducing the quantized magnetization operator from Eq. (S30), we can obtain

~̂M = MK

[(
â+ â†

)
~ex + i

(
â− â†

)
~ey
]
. (S36)

Applying the above expression to Eq. (S35), the magnetic field can be described by the operator expression

~B(~r) = −µ0

3

MKR
3

r3

[(
â+ â†

)
~ex + i

(
â− â†

)
~ey
]
. (S37)

The interaction between the single NV center as a magnetic dipole and the magnetic field of the YIG sphere can

naturally be described as Ĥint = −(geµB/~) ~̂B · ~̂S, with the Landé factor ge, the Bohr magneton µB and the spin

operator ~̂S = (Ŝx, Ŝy, Ŝz). In this work, the spin-operator components are defined as Ŝi = ~σ̂i/2 with i = x, y, z, and
the Pauli operators σ̂i are defined in the basis {|g〉, |e〉}. Then, considering the center-of-mass relative motion between
the NV center and the YIG sphere, the distance between them can be expressed as r = r0 + z with r0 denoting
the equilibrium part of the distance. Up to the first order of the coordinate z, we can quantize the center-of-mass
vibration to obtain the interaction Hamiltonian as

Ĥint = λ(b̂+ b̂†)(â†σ̂− + âσ̂+) + g0(â†σ̂− + âσ̂+), (S38)

with the tripartite coupling strength

λ =
3geµ0µB

8πr4
0

√
|γ|MsV

Mωm
, (S39)

Here, µ0 is the permeability of vacuum, Ms is the saturation magnetization, and V is the volume of YIG sphere.
Otherwise, the pairwise coupling can be expressed as g0 = r0λ/(3zzpf). Then the total Hamiltonian can be written as

Ĥ = ĤK + Ĥm + ĤNV + Ĥint + Ĥm-p

= ωKâ
†â+ ωmb̂

†b̂+
ωNV

2
σ̂z − Ωp cos(2ωpt)(b̂

†2 + b̂2) + λ(b̂+ b̂†)(â†σ̂− + âσ̂+) + ĤJC + Ĥm-p, (S40)

Here, we denote the spin-magnon interaction with ĤJC = g0(â†σ̂−+âσ̂+). For the driving due to the imperfect current
direction in Eq. S17, the magnon frequency (∼ 10 GHz) is far from the frequency of it (∼ 200 MHz). Therefore, we can

safely ignore it in the equation above. Using the rotating transformation Û0(t) = e−iH0t with H0 = ωp(â†â+b̂†b̂+σ̂z/2)
and dropping the the high frequency oscillation and the constant items, the above Hamiltonian can be simplified as

ĤTotal = δKâ
†â+ δmb̂

†b̂+
δNV

2
σ̂z −

Ωp

2
(b̂†2 + b̂2) + λ(b̂+ b̂†)(â†σ̂− + âσ̂+) + ĤJC + Ĥm-p, (S41)

The coefficients are defined as δK = ωK − ωp, δm = ωm − ωp, and δNV = ωNV − ωp. We then take the unitary

transformation ÛS(r) = exp[r(b̂2 − b̂†2)/2] to diagonalize the center-of-mass mechanical mode. Here, the squeezing
parameter r is defined as tanh 2r = Ωp/δm. Therefore, we can obtain the total Hamiltonian as

ĤS
Total = δKâ

†â+ ∆mb̂
†b̂+

δNV

2
σ̂z + λeff(b̂+ b̂†)(â†σ̂− + âσ̂+) + g0(â†σ̂− + âσ̂+), (S42)

where ∆m = δm/ cosh 2r and λeff = λer. Due to the amplification of the mechanical fluctuation caused by phonon
squeezing, the tripartite coupling rate will be exponentially increased, while the bipartite coupling strength g0 will
remain unchanged. the tripartite interaction could be maintained at the same magnitude as the bipartite interaction.
As shown in last section, the center of mass motion causes a change in the magnetic field, which causes the coupling
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FIG. S5. (color online) The occupation of (a) magnon, (b) phonon, and (c) NV spin as function of time with Hamiltonian

including the magnon-phonon parts Ĥm-p or not. (d) The time evolution of occupation of tripartite parts with initial state

|1, 0, 0〉 under ideal conditions.

between the Kittel mode and mechanical mode. However, given the detuning between them (δK − ∆m ∼ 10 GHz)
that is much larger than effective coupling rate (ergm-p ∼ 10 MHz), the interaction Ĥm-p can be disregarded. We
show time evolution of occupations of the three subsystems in Fig. S5(a)-(c) to testify this approximation. For the
tripartite interaction, there are two patterns of interaction depending on different resonance conditions. In this work,
g (e) denotes the |0〉 (|+ 1〉) state of the NV spin. The particle numbers of the phonons and magnons are denoted by

{m,m±1} and {k, k−1}. The condition with the red detuning, δK ' δNV−∆m, allows for the interaction âb̂σ̂+ +H.c.
in the Hamiltonian (S42), which describes the spin and phonon annihilation upon magnon excitation and the inverse

process. The other condition with the blue detuning, δK ' δNV + ∆m, allows for the interaction â†b̂σ̂− + H.c.,
describing the spin annihilation with magnon and phonon excitation and the inverse process. We demonstrate the
dynamical evolution of the spin, magnons, and phonons with the initial state |1, 0, 0〉 in Fig. S5(d).

We now consider the resonance condition with the blue detuned magnon in Hamiltonian (S42). Removing the

off-resonance parts, the Hamiltonian is written as Ĥb = δKâ
†â+ ∆mb̂

†b̂+ (δNV/2)σ̂z +λeff(â†b̂σ̂−+ âb̂†σ̂+). Using the

operator transformation Ĵ− = âb̂†, Ĵ+ = â†b̂ and Ĵz = (â†â− b̂†b̂)/2 [18], the above Hamiltonian can be rewritten as

ĤJ-s ' ω̃Ĵz +
δNV

2
σ̂z + λeff(Ĵ+σ̂

− + Ĵ−σ̂
+), (S43)

where we define ω̃ = δK−∆m, and ignore the constant part (δK + ∆m)N̂/2 with the magnon-phonon particle number

operator N̂ = â†â+ b̂†b̂. This Hamiltonian can be equivalent to the interaction between a 1/2 spin qubit and a N-spin
ensemble with the total angular momentum Ĵ2 = (N̂/2)(N̂/2 + 1). The eigenstates of {Ĵ2, Ĵz} can be described as
{|N/2, js〉} with the particle number operator eigenvalue N and js = −N/2,−N/2 + 1, ..., N/2. Therefore, quantum
applications based on the coupling between single spin and spin-ensemble can be realized with this tripartite system.

E. GAS DAMPING

For the levitated nano particle, the gas damping should be considered as the main thermal decoherence of the
mechanical mode. The collisions of gas molecules results in the effect, which can be described as [19]

γgas

2π
= 3η

a

m

0.619

0.619 +Kn
(1 + cK), (S44)
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FIG. S6. (color online) The gas damping versus the pressure from 10−10 to 10−7 mBar. Here, the levitated diamond particle

satisfies Rs ∼ 10 nm.

with cK = 0.31Kn/(0.785 + 1.152Kn +K2
n), the Knudsen number Kn = l̄/a, the free mean path l̄ ∝ Tgas/Pgas. Here,

Tgas and Pgas are the temperature and the gas pressure. The gas damping is be proportional to the gas pressure in
high vacuum as

γgas

2π
= 0.354

√
mgas

kBTgas

Pgas

aρ
. (S45)

Here, the characteristic size a is the levitated particle’s size, while ρ is its mass density. Namely, a = Rs for the scheme
of levitated diamond particle. Taking levitated diamond scheme as an example, we show that the gas damping can
reach the order of magnitudes ∼ 10−5 Hz to obtain a high Q-factor of 108 with ωm ' 1 kHz. The ultra-low pressure
have been involved in ref. [20].
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