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I. HAMILTONIAN IN THE DIPOLE GAUGE

In the dipole gauge, the field conjugate momentum corresponds to the displacement operator Π̂(r) = −D̂(r) = −iϵ0E0(r)(â−
â†), where E0(r) =

√
ωc

2ϵ0
f0(r), with f0(r) the mode function of the cavity mode under consideration. In this gauge, the electric

field operator is not described only by photon operators; taking into account that ϵ0Ê = D̂− P̂, respectively, one can prove [1]
that Ê adopts the form Ê ≈ E0(r)[i(â − â†) − 2ησ̂p], where η ≡ µ · E0(r0)/ωc is the dimensionless coupling parameter
between cavity and TLS, and we have neglected the small contribution of the polarizability of the ancilla sensor. In the dipole
gauge, the interaction Hamiltonian thus takes the form [1, 2] (ℏ = 1),

ĤI = iηωc(â
† − â)σ̂p + ωcηs[i(â

† − â) + 2ησ̂p]σ̂
s
x. (S1)

This Hamiltonian ensures a proper gauge invariance under the TLS approximation [2–4]. Here, ηs ≡ µs · E0(r0)/ωc is the
coupling parameter between sensor and cavity.

In this work we will focus on phenomenology emerging on the ultrastrong coupling regime, where η ∼ 0.1, and fix ηs ≪ 1
so that the sensor qubit only probes the dynamics of the TLS-cavity system, without altering it. We observe that the sensor-atom
coupling term in Eq. (S1) origins from the matter self-interaction term which is present in the dipole gauge and ensures gauge
invariance.

From now on, we consider that the problem is confined to a single polarization, i.e., all vector quantities are aligned along the
same unit vector ux, and substitute vector field operators Ê by scalar operators, so that Ê = Êux. Finally, the drive Hamiltonian
reads Ĥdrive(t) = Ω[i(â− â†)− 2ησ̂x] cos(ωLt), so that Ĥdrive ∝ Ê cos(ωLt).

II. DRESSED OPERATORS: PHOTON DETECTION AND DISSIPATION IN THE DIPOLE GAUGE

When the normalized coupling strength become significantly large, the peculiar relevance of the counter-rotating light-matter
interaction terms has dramatic consequences on nearly all aspects of the theory, both in open and closed systems. As a result,
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the ground-state and all excited-states are dressed and contain different number of virtual bare excitations [5, 6]. This implies
that the treatment of [7–11] dissipation, input-output relationships, correlations, driving, and photon detection rate is not the
trivial extension of standard quantum optics procedures, but requires to correctly take into account that virtual excitations cannot
escape the system.

In doing this, one has to introduce the so called dressed basis {|j⟩}, obtained by diagonalizing the undriven system Hamilto-
nian [see eq. (1) in the main text] Ĥ = Ĥfree + ĤI =

∑
j ωj |j⟩⟨j|. Each operators will be rotate with respect to the dressed

basis and then separate in its positive and negative frequency components obtaining two new operators able to describe correctly
the ultrastrong coupling physics,

Ô+ =
∑
j=1

∑
k>j

⟨j|Ô|k⟩|j⟩⟨k| (S2)

Ô− = [Ô+]† ,

where k > j for ωk > ωj .
The emitted-photon rate (at given time), which can be measured by a broadband point-like detector in the resonator [10], is

proportional to the expectation value ∼ ⟨X̂−X̂+⟩t ≡ Tr[X̂−X̂+ρ̂(t)], where ρ̂(t) is the density operator of the light-matter
system. For cavity resonators ultrastrongly coupled to a two-level system X̂+ is the positive-frequency electric field operator in
the dipole gauge, which destroys a physical cavity excitation,

X̂+ =
∑
j=1

∑
k>j

⟨j|[iωc(â− â†)− 2ωcησ̂x]|k⟩|j⟩⟨k| , (S3)

X̂− = [X̂+]† .

By using the input-output theory, analogous results can be obtained for the output-rate of emitted photons detected by a detector
placed outside the cavity [8]. However, the output field operators can display a different dependence on ωkj = ωk − ωj , arising
from the output-modes density of states and from the frequency dependence of the coupling coefficient (which depends on the
mirror reflectivity in a standard microcavity). The output field operator in the dipole gauge, encoding into the model-dependent
function α(ω) such a dependence, reads as,

Ê+
out = i

∑
j=1

∑
k>j

α(ωkj)⟨j|(â+ â†)|k⟩|j⟩⟨k| . (S4)

Starting from the relation D̂ = − ˙̂
A and using the generalized TRK sum rule for electromagnetic fields [12] (which is valid

even in the presence of very strong light-matter interactions and/or optical nonlinearities), it is possible to demonstrate that,

ωc⟨j|(â− â† + i2ησ̂x)|k⟩ = ωkj⟨j|â+ â†|k⟩ . (S5)

Therefore, if we assume αc(ωkj) = ωkj to be linearly dependent on the transition frequencies, one gets Ê+
out = X̂+. A different

choice will give rise to similar spectra with different relative heights of the spectral lines. Notice that photodetection is an energy
absorption process, thus it is reasonable to assume photodetection rates which tend to zero with frequencies ω → 0.

Analogously, it is possible to define the field operators describing the qubit emission ∼ ⟨Σ̂−Σ̂+⟩t ≡ Tr[Σ̂−Σ̂+ρ̂(t)]. By using
input-output theory, in a similar manner one can get same result for the qubit part,

Σ̂+
out = Σ̂+ = i

∑
j=1

∑
k>j

ωkj

ωq
⟨j|σ̂x|k⟩|j⟩⟨k| (S6)

Σ̂− = [Σ̂+]† .

We observe that σ̂x is the only gauge-invariant Pauli matrix.
The generalized master equation (GME) [9] for strongly interacting hybrid quantum systems is developed using the dressed

basis of the undriven system Hamiltonian, without applying post-trace approximation. The latter assumption makes the dissipa-
tion processes suitable for systems which display also harmonic or quasi-harmonic spectra. It goes beyond the dressed master
equation in Ref. [7], suitable only for anharmonic systems. This feature is essential to describe the system dynamics and the
resulting spectra [13] both at small and at very large (deep strong) values of the normalized coupling strength η. The GME in
the dipole gauge for the Rabi model can be written as,

˙̂ρ = −i
[
Ĥd, ρ̂

]
+ Lρ̂ . (S7)
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The Liouvillian superoperator L contains two contributions L = Lc + Lq, arising from the cavity-bath and the qubit-bath
interaction,

Lc(q)[ρ̂] =
1

2

∑
j>k
l>m

{ Γ
c(q)
lm nml(Tc(q))[P̂lmρ̂P̂kj − P̂kjP̂lmρ̂]

+ Γ
c(q)
kj njk(Tc(q))[P̂lmρ̂P̂kj − ρ̂P̂kjP̂lm]

+ Γ
c(q)
lm [nml(Tc(q)) + 1][P̂kj ρ̂P̂lm − ρ̂P̂lmP̂kj ]

+ Γ
c(q)
kj [njk(Tc(q)) + 1][P̂kj ρ̂P̂lm − P̂lmP̂kj ρ̂]} . (S8)

The P̂kj = |k⟩⟨j| are the projection operators , and nkj(Tc(q)) = [exp(ωkj/(ωc(q)Tc(q))) − 1]−1 are the thermal populations
of the cavity (c) and qubit (q) reservoirs calculated at the transition frequencies. The cavity-bath and qubit-bath coupling rates
determine both the losses and the incoherent pumping of the system, depending on the specific interaction Hamiltonian and on
the baths density of states. From the general derivation and using Eq. (S5) one obtains,

Γc
kj = κ

ωkj

ωc
|⟨j|(â+ â†)|k⟩|2 , Γq

kj = γ
ωkj

ωq
|⟨j|σ̂x|k⟩|2 . (S9)

For systems interacting with an environment at temperature T = 0, the Liouvillian superoperator L gets a simpler form which
can be expressed in terms of dressed operators X̂+(−) in Eq. (S3), and Σ̂+(−) in Eq. (S6) being the cavity and qubit dissipator

LX̂+ [ρ̂] = X̂+ρ̂X̂− − 1

2
{X̂−X̂+, ρ̂} ,

LΣ̂+ [ρ̂] = Σ̂+ρ̂Σ̂− − 1

2
{Σ̂−Σ̂+, ρ̂}. (S10)

The presence of an auxiliary qubit sensor σ̂s
z of frequency ωs coupled to the cavity mode, makes a new dissipator necessary.

The dissipator for the qubit sensor can be constructed in the same manner, following our previous discussion, as

LΣ̂+
s
[ρ̂] = Σ̂+

s ρ̂Σ̂
−
s − 1

2
{Σ̂−

s Σ̂
+
s , ρ̂}. (S11)

III. AVERAGED STATIONARY STATE OF A TIME-DEPENDENT PROBLEM: FLOQUET THEORY

Due to the presence of counter-rotating terms in the Hamiltonian

Ĥ = iηωc(â
† − â)σ̂p + ωcηs[i(â

† − â) + 2ησ̂p]σ̂
s
x +Ω[i(â− â†)− 2ησ̂x] cos(ωLt), (S12)

one cannot perform the standard unitary transformation to the rotating frame of the drive that leads to a time-independent Hamil-
tonian, and thus we are left with the explicitly time-dependent terms. The Liouvillian superoperator (defined as the generator of
the master equation ρ̇ = Lρ) can then be cast as L = L0+L+e

iωLt+L−e
−iωLt. As a consequence, there is not a fully stationary

state in the long-time limit, but a time-dependent state whose form we can postulate as ρ(t → ∞) =
∑∞

n=−∞ ρne
inωLt, which

allows us to solve the problem using Floquet theory [14–16]. The time-averaged steady-state matrix is ρss = ρ0, and can be
found as the nullspace of L0 + L−S1 + L+S−1, where the Sn operators are obtained recursively as

S±n = −[L0 − (z + inωL) + L∓S±(n+1)]
−1L±, (S13)

which is solved assuming that S±nmax
= 0 for a sufficiently large nmax.

Once a time-averaged steady state is obtained, we consider that the stationary rate of emission from the sensor is proportional
to the spectrum of emission at the sensor’s frequency, i.e. S(ωs) ∝ Tr[ρssΣ̂−

s Σ̂
+
s ], with the sensor’s decay rate Γ correspond-

ing to the filter linewidth. One is thus able to compute the spectrum by scanning the sensor’s frequency and computing the
corresponding time-averaged steady state.

IV. IMPLICATIONS OF RAMAN PEAKS FOR SPECTROSCOPY: FISHER INFORMATION

The identification of methods to improve the characterization of cavity QED systems is an important task, given that these
are an integral part of many architectures in quantum technologies. The description and understanding of Raman scattering
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FIG. S1. Estimation of cavity QED parameters with Raman peaks. Spectrum around the frequency of the Stokes transition ω
(10)
S (a) and the

direct |1⟩ → |0⟩ transition (b) at η = 0.3 (dashed lines) and η = 0.3 + 0.01 (solid lines). (c) Intensity (integrated spectrum) of Stokes and
direct peak. (d) Fisher information of the Stokes and direct peak. Parameters: ωL = 1.1ωc

processes that we introduce in this work has important implications for the spectroscopic characterization of cavity QED systems
via the analysis of excitation-emission spectra, contributing substantially to the amount of information that these measurements
provide about the internal parameters of the system. In other words, we can significantly increase the precision by which internal
parameters are estimated by making sure that not only the spectral features related to direct transitions between eigenstates are
correctly fitted by our cavity-QED model, but that also Raman scattering peaks are.

In order to give a quantitative support to these claims, we analyze this question from the perspective of quantum parameter
estimation [17–24]. As a relevant example, we consider the problem in which, assuming that our system is described by the
quantum Rabi model Hamiltonian described in the main text, we have the task of estimating the light-matter coupling parameter
η from the measurement of a emission spectrum.

Any given measurement strategy is described by a positive operator-valued mesaurement (POVM) Λ, i.e., a set of operators
{Λ̂µ}, where µ ∈ {1, 2, . . . ,M} labels different possible measurement outcomes, and

∑
µ Λ̂µ = 1. For a given value of our

unknown parameter η, the probability for each of the different measurement outcomes follows a distribution P (µ|η) = Tr[ρηΛ̂µ],
where ρη is the η-dependent density matrix of the system at the time of the measurement. The uncertainty in the estimation of
η from this measurement, ∆2η, is bounded by means of the Cramér-Rao bound by the Fisher information of the probability
distribution, ∆2η ≥ 1/F , which is defined as

F = E

[(
d logP (µ|η)

dη

)2
]
. (S14)

In Ref. [25], an expression for the Fisher information associated to measurements of emission spectra was derived. This
was done by describing the measurement of the emission spectrum S(ω) as a collection of independent measurements over
a discretized set of N frequency points ω⃗ = [ω1, ω2, . . . , ωN ], which can be arbitrarily close and that would span over the
measured frequency range, each point corresponding to the value measured through a different frequency filter. Assuming that,
for each frequency point ωi the probability distribution of the measurement of the spectrum is a Poissonian distribution with
mean value S(ωi), the Fisher information thus reads

F =

N∑
i=1

1

S(ωi, η)

[
∂S(ωi, η)

∂η

]2
, (S15)

By applying the Cramér-Rao bound, this quantity allows us to evaluate the metrological potential of spectrum measurements
for the estimation of an unknown η. Also, since F is given by a sum of independent terms, we can isolate the contribution
to the Fisher information from different regions of the spectrum. Here, we will do so, separating the contributions to the
Fisher information from the spectrum measured in two different frequency ranges; one centered around the frequency of a
direct transition from the eigenstate |1⟩ to the ground state |0⟩, and one centered around the frequency of the Raman peak
corresponding to the Stokes process |0⟩ → |1⟩, whose frequency we label as ω(10)

S in the main text. The spectral peaks measured
in both frequency ranges are displayed in Fig. S1(a-b), where we used the same parameters for the calculation of the spectrum of
Fig. 1(b) in the main text (η = 0.3. ωL = 1.1ωc). A small change in η imprints a change in these spectral forms (see difference
between solid and dashed lines in Fig. S1(a-b). Our calculation shows that the total intensity of the Raman peak (spectrum
integrated over the considered frequency range) is 20% the intensity of the direct peak. In contrast, its Fisher information is 44%
the contribution of the direct peak.

This example illustrates how the Raman peaks emerging in the ultra strong coupling regime of cavity QED contain a significant
amount of information about the internal parameters of the system. Therefore, their correct description and understanding is of
paramount importance for a correct characterization of cavity QED setups via spectroscopic measurements.
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The example also highlights a major difference between Raman photons spontaneously scattered by cavity QED systems
and Raman photons scattered via the coupling to phononic degrees of freedom. In the case without phonons, the process is
completely described by a quantum Rabi Hamiltonian, and all the features in the spectrum can be fitted by such a model (e.g.,
the central frequency is completely determined by the transition energies between different eigenstates of the quantum Rabi
Hamiltonian). However, in the case of Raman scattering due to coupling to phonons, the frequency of i.e., a scattered Stokes
photon, ωS, would be shifted from the laser frequency ωL by an amount given by the frequency ωm of the phonon mode:

ωS = ωL − ωm, (S16)

which is a parameter independent of the cavity QED system. This means that it would not be possible to fit such a peak with
a quantum Rabi model alone. This important different between both cases allows us to determine the origin of the observed
Raman peaks, and unambiguously identify the situations in which these originate from the purely cavity QED effect that we
report in this work.
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I. Prieto, P. A. Postigo, and J. M. Calleja, “Bichromatic dressing of a quantum dot detected by a remote second quantum dot,” Physical
Review B 88, 075309 (2013).

[17] Matteo G.A. Paris, “Quantum estimation for quantum technology,” International Journal of Quantum Information 7, 125–137 (2009),
arXiv:0804.2981.

[18] Howard M. Wiseman and Gerard J. Milburn, Quantum Measurement and Control (Cambridge University Press, Cambridge, 2009).
[19] Jonathan P. Dowling and Kaushik P. Seshadreesan, “Quantum Optical Technologies for Metrology, Sensing, and Imaging,” Journal of

Lightwave Technology 33, 2359–2370 (2015).
[20] C. Ghinea, “Introduction To Quantum Fisher Information,” in Quantum Probability and Related Topics (World Scientific, 2011) pp.

261–281.
[21] Alfredo Luis, “Fisher information as a generalized measure of coherence in classical and quantum optics,” Optics Express 20, 24686

(2012).
[22] Jerry Chao, E. Sally Ward, and Raimund J. Ober, “Fisher information theory for parameter estimation in single molecule microscopy:

tutorial,” Journal of the Optical Society of America A 33, B36 (2016).
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[25] Alejandro Vivas-Viaña and Carlos Sánchez Muñoz, “Two-photon resonance fluorescence of two interacting nonidentical quantum emit-
ters,” Physical Review Research 3, 033136 (2021).

http://dx.doi.org/ 10.1088/1751-8121/ab5d4d
http://dx.doi.org/ 10.1103/PhysRevResearch.3.033136

	Supplemental Material for ''Spontaneous Scattering of Raman Photons from Cavity-QED Systems in the Ultrastrong Coupling Regime''
	Contents
	Hamiltonian in the dipole gauge
	Dressed Operators: photon detection and dissipation in the dipole gauge
	Averaged stationary state of a time-dependent problem: Floquet theory
	Implications of Raman peaks for spectroscopy: Fisher Information
	References


