Spontaneous Scattering of Raman Photons from Cavity-QED Systems in the Ultrastrong Coupling Regime

Vincenzo Macrì,1 Alberto Mercurio,2 Franco Nori,1,3,4 Salvatore Savasta,2,* and Carlos Sánchez Muñoz5,†

1Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
2Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università di Messina, I-98166 Messina, Italy
3Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
4Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
5Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain

(Received 25 July 2022; accepted 9 November 2022; published 29 December 2022)

We show that spontaneous Raman scattering of incident radiation can be observed in cavity-QED systems without external enhancement or coupling to any vibrational degree of freedom. Raman scattering processes can be evidenced as resonances in the emission spectrum, which become clearly visible as the cavity-QED system approaches the ultrastrong coupling regime. We provide a quantum mechanical description of the effect, and show that ultrastrong light-matter coupling is a necessary condition for the observation of Raman scattering. This effect, and its strong sensitivity to the system parameters, opens new avenues for the characterization of cavity QED setups and the generation of quantum states of light.

DOI: 10.1103/PhysRevLett.129.273602

The Raman effect describes the inelastic scattering of radiation by matter, in which scattered photons are produced with a frequency which is either lower (Stokes photons) or larger (anti-Stokes photons) than the frequency of the incident field [1–4]. In the context of quantum optics and cavity quantum electrodynamics (cQED), this scattering is usually controlled and stimulated via a second resonant drive [5–14] or a cavity [15–19], constituting the basis of many key techniques of coherent control such as coherent population trapping [5,6], electromagnetic induced transparency [8,9] or stimulated Raman adiabatic passage [11–14]. However, the standard observation of spontaneous scattering of Raman photons in the absence of any external stimulation typically arises when the illuminating radiation couples to phonons in a material [1–4]. Since this provides a fingerprint of the molecular vibrational modes of the sample, this effect serves as a valuable spectroscopic tool for material characterization [20–25]. Thanks to the plasmonic enhancement of the Raman processes in surface-enhanced Raman spectroscopy [26–28], state-of-the-art experiments have reached regimes where the quantum nature of the vibrational and electromagnetic modes need to be taken into account [29–31], which has led to the field of molecular optomechanics, where a full quantum description of Raman scattering is provided via optomechanical Hamiltonians [32–38].

Here, we demonstrate the intriguing possibility of observing spontaneous Raman scattering in coherently driven cQED systems in which, in stark contrast to molecular optomechanics, there are no vibrational degrees of freedom. An important feature of the quantum description of Raman scattering is that the underlying process does not conserve the total number of particles: for instance, in a Stokes process, a single laser photon of given energy will become a single, less energetic photon plus a vibrational excitation—a phonon. The underlying Hamiltonian must therefore not conserve the total number of excitations, which is the case in optomechanical interaction Hamiltonians of the form $\hat{V}_{OM} = g_{OM} \hat{a}^{\dagger} \hat{a} (\hat{b}^{\dagger} + \hat{b})$ (with \hat{a} and \hat{b} annihilation operators of photon and phonon modes, respectively).

In contrast, let us consider the Hamiltonian describing light-matter interaction between a cavity mode and single dipole, modeled as a two-level system (TLS) with annihilation operator $\hat{\sigma}$. Their coupling is well described by the interaction term of the quantum Rabi model (QRM), $\hat{V} = g (\hat{a}^{\dagger} + \hat{a}^\dagger) (\hat{\sigma}^\dagger + \hat{\sigma})$. The counterrotating terms in \hat{V} will play no role when the coupling rate is much smaller than the natural frequency of the modes $g \ll \omega_c, \omega_q$, in which case the interaction is well described by the Jaynes-Cummings term $\hat{V} \approx g (\hat{a} \hat{\sigma}^\dagger + \hat{a}^\dagger \hat{\sigma})$ [39,40]. This interaction term conserves the total number of excitations, and consequently—as we will show—most Raman scattering processes will be forbidden in this regime. The situation changes in the ultrastrong coupling (USC) regime, i.e., the limit where g becomes comparable to ω_c and ω_q and the counterrotating terms $g (\hat{a} \hat{\sigma} + \hat{a}^\dagger \hat{\sigma}^\dagger)$ play an important role in the dynamics [41,42]. Similarly to the optomechanical case, the full QRM that describes the dynamics in the USC...
FIG. 1. (a) Scheme of the cavity QED system considered in this Letter: a quantum emitter interacting with a single cavity mode in the ultrastrong-coupling regime and spontaneously scatters a Raman photon from an incident exciting field. (b) Top: transition energies between the first two excited eigenstates of the light-matter system and the ground state, versus the normalized coupling parameter η. Bottom: spectrum of emission for $\eta = 0.3$. $\omega_1 = 1.1\omega_c$. The red line indicates the frequency at which Stokes photons are emitted, originating from the process sketched in (c).

does not conserve the total number of excitations, and, as a result, this regime features a wealth of exotic nonlinear processes and applications [41–49]. We demonstrate that the observation of spontaneous Raman scattering of photons from a coherent incident field is another characteristic process of the USC regime. In particular, we show unambiguous signatures of these processes in the emission spectra of coherently driven cQED system in the USC regime [50,51]. This result establishes USC cQED as a novel scenario where Raman Stokes and anti-Stokes photons are produced spontaneously without any vibrational degree of freedom involved. Beyond exact numerical calculations demonstrating the effect, we support these results with predictions from a full quantum description of the process of Raman scattering.

Model.—We consider the cavity QED system sketched in Fig. 1(a), consisting of a single cavity mode of frequency ω_c, driven by a continuous classical field of frequency ω_L, and coupled to a point dipole described in the TLS approximation, with a transition frequency ω_d. Since we will be mostly interested in describing the emission spectrum of such a system, we will resort to the sensor method developed in [52], adding an ancillary sensor qubit of frequency ω_s, weakly coupled to the cavity, which has been shown to also produce equivalent results to the quantum-regression theorem in the USC limit [50,51,53]. The spectrum of emission at frequency ω_i will thus be proportional to the rate of emission from the sensor qubit.

The Hamiltonian of this system has the form $\hat{H} = \hat{H}_{\text{free}} + \hat{H}_I + \hat{H}_{\text{drive}}$. Setting henceforth $\hbar = 1$, the first term is simply the free Hamiltonian $\hat{H}_{\text{free}} \equiv \omega_c \hat{a}^\dagger \hat{a} + \omega_s \hat{\sigma}_s/2 + \omega_c \hat{\sigma}_s^\dagger/2$, where \hat{a} is the bosonic annihilation operator of the photon field, and $\hat{\sigma}_s$ ($\hat{\sigma}_s^\dagger$) are standard Pauli operators defined on the TLS (sensor) Hilbert space. The second term, \hat{H}_I, describes light-matter interaction. In order to write it, we define the polarization operator associated to the TLS and the sensor as $\hat{P} = (\mu_\omega \hat{P}_\omega + \mu_\sigma \hat{\sigma}_s^\dagger)\delta(r - r_0)$, where the TLS operator $\hat{\sigma}_p$ is given by $\hat{\sigma}_p \equiv \cos \theta \hat{\sigma}_+ + \sin \theta \hat{\sigma}_-$, and μ and μ_σ are the respective dipole moments of the TLS and sensor. This definition includes the possibility of a TLS with a permanent dipole moment, parametrized through the angle θ, which breaks the conservation of parity $\hat{\Gamma} = \exp[i\pi(\hat{a}^\dagger \hat{a} + \hat{\sigma}_s^\dagger \hat{\sigma}_s)]$ and could be induced, e.g., by the flux offset in a flux qubit [43]. In the dipole gauge, the interaction Hamiltonian thus takes the form [54]:

$$\hat{H}_I = i\omega_c (\hat{a}^\dagger - \hat{a}) \hat{\sigma}_s + \omega_s \eta_i (i(\hat{a}^\dagger - \hat{a}) + 2\eta \hat{\sigma}_s) \hat{\sigma}_s^\dagger,$$

where η and η_s are the dimensionless coupling parameters between cavity and TLS and sensor, respectively. This Hamiltonian is obtained following the approach in [50,55,56], which implements consistently the gauge principle and provides gauge-invariant results even in the presence of approximation such as the truncation of the Hilbert space of the matter system. Finally, the drive Hamiltonian reads $\hat{H}_{\text{drive}}(t) = \Omega [i(\hat{a} - \hat{a}^\dagger) - 2\eta \hat{\sigma}_s \cos(\omega_d t)]$ [50,51]. Further details on the derivation of this Hamiltonian are provided in Supplemental Material [57].

Since the setup under consideration is an open quantum system, dissipation must be accounted for by describing the dynamics in terms of a quantum master equation. In the USC regime, the treatment of dissipation, input-output relationships, correlations, driving, and photodetection rates requires a proper description of the system-bath interaction in terms of the light-matter eigenstates [71–74]. Following the approach in Refs. [51,75], we write a generalized master equation, which is valid at any light-matter coupling strength (details are given in [57]). In the limit of zero temperature, the master equation reduces to the simple form $\dot{\rho} = -i[\hat{H}, \rho] + \gamma L \rho + \gamma L^\dagger \rho + \Gamma L^\dagger \rho$, where $L[\rho] \equiv O[\rho] O^\dagger - \{O^\dagger O, \rho\}/2$ denotes the standard Lindblad terms. Defining $[\hat{i}]$ as the ith eigenstate of the full QRM, including the sensor, the decay operators are given by $\hat{X}^+ = \sum_{j=-1}^{j=1} \sum_{k=1}^{k=3} \mu_\omega \hat{X}^+ [ii(\hat{a} - \hat{a}^\dagger) - 2\eta \hat{\sigma}_s] |j\rangle \langle j|$, for the cavity, $\hat{X}_s^\dagger = \sum_{j=-1}^{j=1} \sum_{k=1}^{k=3} \eta_s \hat{\sigma}_s^\dagger |j\rangle \langle k|$, $\hat{X}_s^\dagger \omega_s \hat{\sigma}_s$ for the TLS, and $\hat{X}_s^\dagger = \sum_{j=-1}^{j=1} \sum_{k=1}^{k=3} \mu_\sigma \hat{\sigma}_s^\dagger |j\rangle \langle k|$, $\omega_s \hat{\sigma}_s^\dagger \omega_s \hat{\sigma}_s$ for the sensor, where $\hat{X}_s^\dagger (\hat{\sigma}_s, \omega_s) = i(\sum_{j=-1}^{j=1} \sum_{k=1}^{k=3} |j\rangle \langle k| \hat{\sigma}_s^\dagger |k\rangle \omega_s)$ [57], and γ, γ_s, and Γ are the decay rates of the cavity, TLS, and sensor, respectively.

Since counterrotating terms in \hat{H}_{drive} cannot be straightforwardly eliminated in the USC regime, the dynamics at long times will yield a time-dependent density matrix oscillating around an average steady state $\hat{\rho}_{\text{ss}} + \delta\hat{\rho}(t)$.

273602-2
Here, we consider the limit of a very small drive $\Omega \ll \eta \omega_c$, so that these oscillations become negligible, and thus we focus on the average steady state $\hat{\rho}_s$ [57]. We consider that the stationary rate of emission from the sensor is proportional to the spectrum of emission at the sensor’s frequency, i.e., $S(\omega_s) \propto \text{Tr}[\hat{\rho}_s \hat{\Sigma}_- \hat{\Sigma}_+]$, with the sensor’s decay rate Γ corresponding to the filter linewidth.

Scattering of Raman photons.—Figure 1(b) depicts an example of the emission spectrum. Here and in the following we fix, unless stated otherwise, $\omega_q = \omega_c$, $\theta = \pi/6$, $\eta = 0.3$, $\eta_s = 10^{-5}$, $\Omega = 5 \times 10^{-3} \omega_c$, $\kappa = \gamma = 10^{-3} \omega_c$, and $\omega_L = 1.1 \omega_c$. At first glance, one can observe the presence of a resonance peak at the cavity frequency, and further peaks that match transition energies between the light-matter eigenstates, displayed in the top panel of Fig. 1(b). In addition to these, one can observe an additional peak that corresponds to the spontaneous scattering of a Stokes photon. The corresponding Raman process that gives rise to this peak is sketched in Fig. 1(c).

Via a second-order process, an input laser photon of frequency ω_1 is converted into a lower-energy Raman photon of energy ω_R and a light-matter excitation of energy ω_1. Since energy must be conserved in the whole process, the energy of the Stokes photon is expected to be $\omega_R = \omega_L - \omega_1$, and thus it depends linearly with the laser excitation. We note that, in the different context of scattering of propagating single photons in waveguide QED in the USC, evidences of Stokes scattering have also been observed [76].

In order to understand the emergence of Raman peaks and its dependence on system parameters such as g or θ, we develop here a full quantum description of the Raman scattering process. To do this, we consider that the cavity is coupled to a broad quasicontinuum of modes with $\hat{H}_b = \sum_q \omega_q \hat{b}_q \hat{b}_q$, which will contain the incident radiation field and the scattered Raman photons. The total system Hamiltonian is $\hat{H}_\text{total} = \hat{H}_R + \hat{H}_b + \hat{V}_b$, where \hat{H}_R is the quantum Rabi Hamiltonian (\hat{H} above, without the sensor and the drive terms) and $\hat{V}_b = \sum_q g_q (\hat{b} \hat{b}^\dagger) X$, with $X \equiv \hat{a} + \hat{a}^\dagger$. Notice that, in the USC regime, one cannot straightforwardly drop in \hat{V}_b the counterrotating terms of the form $\hat{b} \hat{a}$. A rotating wave approximation can only be done with respect to the positive and negative-frequency parts of \hat{X} in the eigenbasis of the QRM; however, for our current analysis, this approximation is not necessary, and we do not carry it out. In the following, we consider $\hat{H}_R + \hat{H}_b$ as the unperturbed, bare Hamiltonian, and we express \hat{H}_R in diagonal form as $\hat{H}_R = \sum_j \omega_j |j \rangle \langle j |$, where we chose the labeling of the states such that $\omega_k > \omega_j$ for $k > j$. The Raman scattering process can be described by second-order perturbation theory under the constant perturbation \hat{V}_b. Let us consider an initial state $|I_i \rangle = |i, n_L, n_R \rangle$, where the first entry labels the eigenstates of \hat{H}_R, n_L labels the photon number in the input mode—the laser drive—with frequency ω_L, and n_R indicates the photon number in the output mode of frequency ω_R, where Raman photons are being emitted. We are considering here only the two modes involved in the scattering process; all the other modes of the quasicontinuum are assumed to be in the zero-photon states throughout the process. The energy of the initial state is $\omega_{1,i} = \omega_1 + \omega_{k,i} n_L + \omega_{R,i} n_R$. Then, we consider a final state $|F_j \rangle = |f, n_L - 1, n_R + 1 \rangle$, with energy $\omega_{F,i} = \omega_f + \omega_s (n_L - 1) + \omega_R (n_R + 1)$. Energy conservation implies $\omega_{F,i} = \omega_{1,i}$, and, therefore, for a particular choice of initial and final states i and f, the energy of the corresponding Raman photons is

$$\omega_R = \omega_{1,f} - \omega_{1,i}.$$

We stress that this dependence of ω_R with the eigenvalues of the QRM allows us to unambiguously identify the origin of these Raman peaks as a pure cQED effect, in contrast to the case of Raman scattering due to coupling to phonons, in which the position of the peaks would be defined by the phonon energy, and therefore would depend on parameters external to the QRM [32], as we discuss further in [57]. In this process, $|F_j \rangle$ is connected to the initial state $|I_i \rangle$ by a second-order process involving an intermediate virtual state. It is possible to identify two kinds of intermediate states, $|T_1 \rangle$ and $|T_2 \rangle$, describing, respectively, the process (i) where a photon is first absorbed from the input state: $|T_1 \rangle = |j, n_L - 1, n_R \rangle$, with energy $\omega_{T_1} = \omega_f + \omega_s (n_L - 1) + \omega_R n_R$; and the process (ii) where a photon is first emitted into the output mode: $|T_2 \rangle = |j, n_L, n_R + 1 \rangle$, with energy $\omega_{T_2} = \omega_f + \omega_s n_L + \omega_R (n_R + 1)$.

The rate of the process $|I_i \rangle \rightarrow |F_j \rangle$ given by the Fermi golden rule, for a given ω_L, i, and f, is

$$W_{f,i}(\omega_L, \omega_R) = \frac{2\pi}{\hbar} g_R^2 g_L n_L (n_R + 1) |M_{f,i}|^2 \delta(\omega_R - \omega_{1,f}'),$$

which $\omega_{f,i} = \omega_f - \omega_i$ and

$$M_{f,i}(\omega_L, \omega_R) = \sum_j \left(\frac{X_{f,i} X_{j,i}}{\omega_{f,i} - \omega_i} + \frac{X_{f,i} X_{j,i}}{\omega_{T_2} - \omega_i} \right),$$

with $X_{f,i} = \langle f | (\hat{a} + \hat{a}^\dagger) | j \rangle$. Notice that $\omega_{T_1} - \omega_{1,i} = \omega_{f,i} - \omega_i$ and $\omega_{T_2} - \omega_{1,i} = \omega_{f,i} + \omega_R (\omega_{f,i})$. The total scattering rate for the process is obtained by summing over all possible initial and final states, which will be constrained by the energy-conservation condition in Eq. (3), giving

$$W(\omega_L, \omega_R) = \sum_{f,i} W_{f,i}(\omega_L, \omega_R) \rho_s^i (1 - \rho_s^f),$$

where ρ_s^k is the steady-state occupation probability of the eigenstate $|k \rangle$ of \hat{H}_R. For a system at very low temperatures...
and low driving which is mostly in the ground state, so that $\rho_0^{ij} \approx 1$, we obtain $W(\omega_i, \omega_R) = \sum_f W_{f,0}(\omega_i, \omega_R)$. Therefore, if Raman spectroscopy is performed by probing cQED systems that are close to the ground state, only the family of Raman processes that start from $|0\rangle$ are expected to be observed.

Visibility of Raman processes.—The quantum scattering process outlined above manifests as resonances in the spectrum of emission, centered at the frequencies $\omega_R^{(f,i)}$, and they are clearly identified when this spectrum is represented versus the excitation frequency in the form of an excitation-emission spectrum. Numerical calculations of excitation-emission spectra at two different temperatures are shown in Figs. 2(a) and 2(b). Raman peaks have a characteristic feature that distinguishes them from peaks arising from standard radiative transitions: their central frequency $\omega_R^{(f,i)}$ depends linearly on the laser frequency ω_L, manifesting as diagonal lines in the excitation-emission spectrum. The Raman peaks that are most clearly identified in Figs. 2(a) and 2(b) are labeled in Fig. 2(c). At low temperatures, the most visible ones are Stokes processes that start at the ground state of the light-matter system and end at some excited state $|f\rangle$ (we label these Stokes processes as $\omega_S^{(f0)}$). In agreement to what is expected from Eq. (5), at small temperatures, Stokes processes that start in an excited state are hardly visible or not visible at all; in Fig. 2(c) we highlight the process $\omega_S^{(21)}$—starting in $|1\rangle$ and finishing in $|2\rangle$—which is the one that can be recognized in certain regions of the spectra shown. Likewise, the emission of anti-Stokes photons with frequencies larger than the drive frequency is only clearly visible at finite temperatures: these processes require the energy of the final state of the cQED system to be lower than the initial one, and therefore, the initial state needs to be an excited state with a non-negligible stationary occupation probability. These calculations also show that higher-order, hyper-Raman processes are faintly visible as well in the excitation emission spectra. These processes scatter two incident laser photons into a Raman photon, and therefore conservation of energy establishes that the frequency of the hyper-Raman photons must be $\omega_R^{(fj)} = 2\omega_L - (\omega_f - \omega_i)$. Such processes are then identified in the excitation-emission spectra as straight lines with twice the slope of standard Raman processes.

All the features just outlined are clearer when one approaches the ultrastrong coupling regime of light-matter interaction, $\eta \sim 0.1$, so that the matrix elements $X_{k,j}$ in Eq. (3) acquire sizable values. Indeed, Fig. 3(a) shows the calculation of the scattering rate W versus η computed through Eq. (5) for the Stokes process $|0\rangle \rightarrow |1\rangle$, which is the most visible one in a system close to the ground state, compared to the intensity of the corresponding Raman peak computed in the excitation emission spectra. Beyond the good agreement between both results, which supports our description of the underlying quantum process, we highlight the exponential increase of the intensity of the peak with η. Way below the USC regime, the small values of the scattering rate would make observing Raman processes in cavity QED systems very challenging, as shown in Fig. 3(c), where for $\eta = 0.01$ the first Stokes peak is extremely hard to notice.

It is illustrative to consider the possibility of Raman processes in a cQED system with $\eta \ll 1$, therefore well described by a Jaynes-Cummings Hamiltonian. The eigenstates of this system are organized in doublets $|j_{\pm}\rangle$ that are also eigenstates of the total number of excitations $\hat{N} = \hat{a}^\dagger \hat{a} + \sigma^\dagger \sigma$, i.e., $\hat{N}|j_{\pm}\rangle = j|j_{\pm}\rangle$. This means that the only Raman processes allowed are those that conserve the total number of excitations, i.e., those whose initial and final states are within the same doublet. Since processes
that start and end in the ground state yield $\omega_R = \omega_L$ and therefore do not produce energy-shifted photons, the observation of the most relevant Raman processes that involve the ground state is not possible in the Jaynes-Cummings system. Peaks that may be observed in this limit, such as $\omega_S^{(1)}$ and $\omega_A^{(1)}$, are only vaguely visible even in the ultrastrong-coupling regime, as can be seen in Figs. 2(a) and 2(b), and would require a stationary population of excited states, whose origin can imply extra sources of dephasing. We therefore conclude that emission of Raman photons from coherently driven cavity QED systems is essentially a characteristic effect of the USC regime, as can be seen in Fig. 2(c). The use of the quantum description of the process based on perturbation theory. This example highlights that, in some cases—such as for $\omega_R^{(10)}$—the breaking of parity symmetry ($\theta \neq 0$) is necessary to observe the corresponding Raman peak. For $\theta = 0$, eigenstates of the QRM are also parity eigenstates, and thus only Raman processes that conserve parity, such as $|0\rangle \rightarrow |3\rangle$, will have a nonzero scattering rate.

Finally, Fig. 3(d) shows that our quantum model provides a good qualitative prediction for the different dependence of Stokes and anti-Stokes peaks on temperature, showing that the intensity Stokes peaks is just slightly reduced, while the intensity of anti-Stokes peaks can be increased by orders of magnitude, explained by the corresponding increase of the stationary population of excited states.

Conclusions.—We have demonstrated that spontaneous scattering of Raman photons from coherently driven cQED systems can be visible in the USC regime without involving any vibrational degree of freedom. This result introduces new fingerprints of strong light-matter interaction that will allow us to leverage the potential of Raman spectroscopy for system characterization in the field of cQED. The findings that we describe should be readily observable in superconducting circuits platforms, where couplings between single qubits and microwave resonators exceeding $\eta > 0.1$ have been reported [77–80]. The study of quantum correlations in Raman photons can also offer new routes for the generation of nonclassical light [71,81–84].

The authors thank D. Martin-Cano and S. Hughes for useful feedback. C. S. M. acknowledges that the project that gave rise to these results received the support of a fellowship from “la Caixa” Foundation (ID 100010434) and from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 847648, with fellowship code LCF/BQ/P120/11760026, and financial support from the Proyecto Sinérgico CAM 2020 Y2020/TCS-6545 (NanoQuCo-CM). F. N. is supported in part by Nippon Telegraph and Telephone Corporation (NTT) Research, the Japan Science and Technology Agency (JST) [via the Quantum Leap Flagship Program (Q-LEAP) program, and the Moonshot R&D Grant No. JPJMS2061], the Japan Society for the Promotion of Science (JSPS) [via the Grants-in-Aid for Scientific Research (KAKENHI) Grant No. JP20H00134], the Army Research Office (ARO) (Grant No. W911NF-18-1-0358), the Asian Office of Aerospace Research and Development (AOARD) (via Grant No. FA2386-20-1-4069), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06. S. S. acknowledges the Army Research Office (ARO) (Grant No. W911NF1910065).

References

A. Settineri, O. Di Stefano, D. Zueco, S. Hughes, S. Savasta, and F. Nori, Gauge-independent observables in the ultrastrong coupling regime of cavity QED, doctoral dissertation, Queen’s University (Canada), 2021.

W. Salmon, Master equations for computing gauge-invariant observables in the ultrastrong coupling regime of cavity-QED, doctoral dissertation, Queen’s University (Canada), 2021.

