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Observation of polarization singularities and topological textures in sound waves
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1. /-dependent S, for Bessel vortex fields

The figure S1 shows experimental and simulated de-
pendence of the longitudinal component of the normal-
ized spin density, S, on the topological charge £ of Bessel
vortex beams, which has been previously predicted ana-
lytically in Ref. 1. According to the notation introduced
in the main text, the results refer to (N,{) = (oo, £1)

(N, 1) = (0,—1) (N,1) = (o0,1)
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FIG. S1. Experimentally retrieved (top row) and
numerically calculated (bottom row) distributions of the
longitudinal z component of the normalized spin density
S in the transverse (x,%) (at z = 2ops) for Bessel beams
with ¢ = £1. Scale bars: A.

2. Skyrmion texture in three-wave interference

Here we show that, for fixed ¢ and z, the direction of
the velocity field for a superposition of three plane waves
covers the complete sphere when the coordinates (z,y)
vary within a given area. The velocity field at this time
can then be regarded as a skyrmionic lattice.

The velocity field distribution at, say, t =0 and z =0
(where the field at the origin is maximal) corresponds to
the real part of Eq. (2), in this case with N = 3 and
®; = 0, that is, /£ = 0. Recall that, while the experi-
mental implementation used £ = —1, for N = 3 a change
in ®; corresponds to a spatial shift of the pattern and
a global phase. Figure 8(a) of the main text shows a
simulation based on Eq. (2) of the direction of the veloc-
ity field at each point, with color-encoded direction: hue
encodes the azimuthal coordinate (longitude) and light-
dark encodes the polar coordinate (latitude). The pat-
tern in Fig. 8(a) can be subdivided into cells over which
all directions appear only once. This subdivision is not
unique, but for convenience we choose aligned horizontal
rectangular sections. Note that the vertical limiting lines
can be shifted arbitrarily without changing the fact that
each direction is covered only once, while the horizontal
lines are fixed. (In fact, the vertical boundaries of the
third and fourth rows could be shifted by half a period
to better match the patterns of the first and second rows,
but such change is irrelevant to the covered velocity field
directions.) The coverage of the sphere of directions for
a Cartesian sampling of one of these cells is shown in
Fig. 8(b) and Supplementary Video 1.

The measurements follow the theoretical predictions.
Figure 8(c) shows the skyrmionic texture for the mea-
sured velocity field at ¢ = 0, using the same data over
the same area as that in the third panel in Fig. 6(a).
The top section (enclosed in a rectangle) approximately
corresponds to a cell like those in Fig. 8(a) (with the ver-
tical boundaries shifted). The coverage of directions over
the sphere for the measured points is shown in Fig. 8(d)
and Supplementary Video 2.



We now discuss how the coverage of the sphere of direc-
tions changes with time. At any given time ¢ and distance
z, the density of the mapping from the plane (z,y) to the
surface of the sphere of directions is characterized by the
Skyrme density, defined as
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The integral of the Skyrme density over a unit cell gives
the Skyrme number,
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which equals £1 if the sphere is fully covered over the cor-
responding area, the sign determining the sense in which
the coverage takes place.

As Fig. 8 shows, for ¢ = 0 and z = 0 the coverage
is fairly uniform. However, for other times (or equiva-
lently, for other propagation distances z) it can become
more irregular, and in fact the sign of the Skyrme num-
ber presents abrupt changes. The reason for this can be
appreciated from Supplementary Video 3, which shows
the evolution of the coverage over a temporal period, as
well as the skyrmionic texture. One can see that there
are topological transitions at certain times and locations
(associated with zeros of the field). The video also shows
that the even and odd rows of cells shown in Fig. 8(a) no
longer cover each the complete sphere of directions sepa-
rately; for each some sections are not covered and others
are covered twice. However, together such two contigu-
ous cells do cover the complete sphere twice. Note that
for t = mT/6, where m is an integer and T = 27 /w is
the temporal period of the acoustic wave, the coverage
of the sphere is similar to that of ¢ = 0, where each cell
covers fairly uniformly the whole sphere.

Figure S2 shows the temporal evolution of the Skyrme
number averaged over two vertically contiguous cells (see
Fig. 8), 3, both for the theoretical case (black curve) and
for the experimental data (blue curve). For the theoreti-
cal case the coverage is complete almost at any time, but
it switches sign six times per cycle. The experimental
counterpart presents similar oscillations, however with-
out exhibiting a perfect square waveform due not only
to experimental limitations but also to the coarse sam-
pling that results in a rough estimations of the spatial
derivatives and of the integral.

Finally, Fig. S3 shows en enlarged version of the panel
(c) of Fig. 8 that allows to better appreciate the details
of the velocity field direction distribution.
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FIG. S2. Skyrme number 3 averaged over two vertically
contiguous cells (see Fig. 8), as a function of time over a
wave cycle at fixed z, for the theoretical superposition
of three plane waves (black curve) and for the
experimental measurements (blue curve).
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FIG. S3. Enlarged version of Fig. 8(c). We refer to the
caption of Fig. 8.

3. Video captions

Video 1. For a theoretical model of three plane waves:
(left) coverage of the sphere of directions; (middle) color
representation of distribution of directions over the (z,y)
plane; (right) skyrmionic texture (at one third of the
sampling of the other two parts). In all parts, the color
scheme for representing velocity field directions follows
the palette at the center of Fig. 8.

Video 2. For the experiment using a triangular grat-
ing: (left) coverage of the sphere of directions, where due
to the lower sampling a grid of white lines is used to aid
visualisation; (middle) color representation of distribu-
tion of directions over the (z,y) plane; (right) skyrmionic
texture. In all parts, the color scheme for representing
velocity field directions follows the palette at the center
of Fig. 8., and the sampling corresponds to that of the



experimental data.

Video 3. Time evolution of the velocity field direc-
tions for a theoretical model of three plane waves. The
distributions of points over the spheres at the top and
bottom panels on the left column correspond, respec-
tively, to the coverage of velocity field directions of the
cells over the first and second (or equivalently third and
fourth) rows of any of the two columuns of the plane in

the top-right panel. The bottom-right panel shows the
skyrmionic texture corresponding to the two cells at the
top-left of the panel above.
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