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While the squeezing of a propagating field can, in principle, be made arbitrarily strong, the cavity-field
squeezing is subject to the well-known 3 dB limit, and thus has limited applications. Here, we propose the
use of a fully quantum degenerate parametric amplifier (DPA) to beat this squeezing limit. Specifically, we
show that by simply applying a two-tone driving to the signal mode, the pump mode can, counterintuitively,
be driven by the photon loss of the signal mode into a squeezed steady state with, in principle, an arbitrarily
high degree of squeezing. Furthermore, we demonstrate that this intracavity squeezing can increase the
signal-to-noise ratio of longitudinal qubit readout exponentially with the degree of squeezing. Corre-
spondingly, an improvement of the measurement error by many orders of magnitude can be achieved even
for modest parameters. In stark contrast, using intracavity squeezing of the semiclassical DPA cannot
practically increase the signal-to-noise ratio and thus improve the measurement error. Our results extend the
range of applications of DPAs and open up new opportunities for modern quantum technologies.
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Introduction.—Squeezed states of light [1] form a
fundamental building block in modern quantum technol-
ogies ranging from quantum metrology [2,3] to quantum
information processing [4,5]. In particular, squeezing of a
propagating field can, in principle, be made arbitrarily
strong, due to destructive interference between the reflected
input field and the transmitted cavity field; e.g., the
squeezing of up to 15 dB has been experimentally achieved
[6]. Such a propagating-field squeezing has been widely
used for, e.g., gravitational-wave detection [7–9], mechani-
cal cooling [10,11], nondemolition qubit readout [12–15],
and even demonstrating quantum supremacy [16,17].
However, these applications inherently suffer from trans-
mission and injection losses, which are a major obstacle to
using extremely fragile squeezed states. To address this
problem, exploiting intracavity squeezing (i.e., squeezing
of a cavity field) offers a promising route.
To date, intracavity squeezing has been applied, e.g., to

cool mechanical resonators [18–20], to enhance light-
matter interactions [21–28], to improve high-precision
measurements [29–31], and to generate nonclassical states
[32–36]. Despite such developments, the range and quality
of applications of intracavity squeezing are still largely
limited by the fact that quantum noise of a cavity field
cannot be reduced below one-half of the zero-point
fluctuations in the steady state [37–39], i.e., the 3 dB limit.
However, how to beat this limit has so far remained
challenging, although for more complicated mechanical
oscillators, the steady-state squeezing beyond 3 dB has

been widely demonstrated both theoretically [40–42] and
experimentally [43,44]. The reason for the 3 dB limit of
intracavity squeezing is the cavity photon loss, which is
always present, destroys the essence of squeezing, i.e., two-
photon correlations. In this Letter, we show that, if such a
photon loss is exploited as a resource, a strong steady-state
intracavity squeezing can be achieved.
In our approach, we consider a fully quantum DPA,

where both pump and signal modes are quantized. We show
that a strong photon loss of the signal mode can steer the
pump mode into a squeezed steady state, with a noise level
reduced far beyond 3 dB. In this way, an arbitrarily strong
steady-state squeezing of the pump mode can, in principle,
be achieved. Note that optical experiments performed in the
1990s (see, e.g., Refs. [45,46]) demonstrated bright squeez-
ing of the pump mode (i.e., the second-harmonic mode) by
driving the signal mode (i.e., the fundamental mode).
However, it was achieved for output squeezing only, not
for intracavity squeezing.
To beat the 3 dB limit of intracavity squeezing, a

theoretical approach, which requires a fast modulation of
the coupling between the cavity and its environment, has
been proposed [47]; and very recently, an experimental
demonstration with three microwave modes coupled via a
specific Josephson ring modulator was reported in
Ref. [48]. In contrast, our approach relies only on common
degenerate parametric amplification processes, and there-
fore is more compatible with current quantum technologies
based on parametric amplification. More remarkably, we
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show that only a two-tone driving, if applied to the signal
mode, can result in a strong steady-state squeezing for
the pump mode. This is rather counterintuitive; indeed,
common sense suggests that, as mentioned above, the
steady-state intracavity squeezing of a DPA is usually
limited to 3 dB. We note that quantum intracavity noise
reduction can also be realized via squeezing of photon-
number fluctuations, corresponding to the sub-Poissonian
photon-number statistics or photon antibunching (see, e.g.,
the early predictions [49,50] and very recent demonstra-
tions of 3 dB squeezing like in [51]).
Fast and high-fidelity nondemolition qubit readout is a

prerequisite for quantum error correction [52,53] and fault-
tolerant quantum computation [54,55]. Using squeezed
light to improve such a readout is a long-standing goal
[12–14,56]. However, the simplest strategy, i.e., dispersive
qubit readout [56,57], induces a qubit-state-dependent
rotation of squeezing, such that the amplified noise in
the antisqueezed quadrature is introduced into the signal
quadrature, ultimately limiting the improvement of the
signal-to-noise ratio (SNR). Thus, related experimental
demonstrations in this context have remained elusive.
Until recently, an improvement, enabled by injecting
squeezed light into a cavity, was realized [58] for longi-
tudinal qubit readout [14,56,59–61], which can enable
much shorter measurement times than the dispersive read-
out. However, due to transmission and injection losses,
more than half of the amount of squeezing is lost, and
consequently the reported SNR is increased only by ≃25%.
Here, we propose to apply our strong intracavity squeez-

ing to longitudinal qubit readout, thus avoiding trans-
mission and injection losses. We demonstrate that the
SNR can be increased exponentially, and the measurement
error is improved by many orders of magnitude for modest
parameters. In sharp contrast, intracavity squeezing of the
semiclassical DPA cannot significantly improve the SNR
during a practically feasible measurement time, even

though squeezing of the output field is very strong. Our
main results are summarized in Table I in [62].
Physical model.—A fully quantum DPA, as shown in

Fig. 1(a), consists of a pump mode âp and a signal mode âs,
which are coupled through a single-photon parametric
coupling of strength g. We assume that the pump mode
is driven by a tone of frequency ωd and amplitude Ed, and,
additionally, the signal mode is subject to a two-tone
driving of frequencies ωd

� and amplitudes E�. The corre-
sponding Hamiltonian in a frame rotating at ωd is
Ĥ ¼ Ĥ0 þ Ĥ2td, with

Ĥ0 ¼ Δpâ
†
pâp þ Δsâ

†
s âs

þ gðâ2s â†p þ H:c:Þ þ ðEdâ
†
p þ H:c:Þ; ð1Þ

Ĥ2td ¼ Ω2tdðtÞâ†s þ H:c:; ð2Þ
where Δp ¼ ωp − ωd, Δs ¼ ωs − ωd=2, and Ω2tdðtÞ ¼
E− exp ð−iω−tÞ þ Eþ exp ð−iωþtÞ. Here, ωp, ωs are the
resonance frequencies of the pump and signal modes, and
ω� ¼ ωd

� − ωd=2. We describe photon losses with the
Lindblad dissipator LðôÞρ̂ ¼ ô ρ̂ ô† − 1

2
ðô†ô ρ̂þρ̂ô†ôÞ, so

that the system dynamics is determined by the master
equation _̂ρ ¼ −i½Ĥ; ρ̂� þ κpLðâpÞρ̂þ κsLðâsÞρ̂, where κp
and κs are the photon-loss rates. Upon introducing the
displacement transformation âp → âp þ αdp, where
αdp ¼ Ed=ðiκp=2 − ΔpÞ, the Hamiltonian Ĥ0 becomes
Ĥ0 ¼ Δpâ

†
pâp þ Ĥ2pd þ V̂. Here,

Ĥ2pd ¼ Δsâ
†
s âs þ Ω2pdðâ2s þ H:c:Þ; ð3Þ

V̂ ¼ gðâ2s â†p þ H:c:Þ; ð4Þ
where Ω2pd ¼ gαdp can be viewed as the strength of a two-
photon driving of the mode âs. We have assumed, for
simplicity, that αdp is real.
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FIG. 1. (a) Schematic of our proposal with a fully quantum DPA. We use two cavities to represent the pump mode âp (frequency ωp,
loss rate κp) and the signal mode âs (frequency ωs, loss rate κs). The single-photon parametric coupling between them has a strength g. A
driving tone at frequency ωd is applied to the pump mode and, simultaneously, the signal mode is driven by the other two tones at
frequencies ωd

�. (b) Time evolution of the squeezing parameter ξ2p forGþ=G− ¼ 0.5 and 0.7. We assumed that Δs ¼ 100g, Δp ¼ 0.1Δs,
Ω2pd ¼ 0.05Δs, κs ¼ 100κp ¼ 0.4g, and G− ¼ g0. Curves are the effective predictions, while symbols are the exact results. (c) Steady-
state squeezing parameter ðξ2pÞss versus the cooperativity C for κs ¼ 100κp, and for Gþ=G− ¼ 0.8, 0.9, and 0.99. In (b) and (c), the gray
shaded areas refer to the regime below the 3 dB limit.
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Since the single-photon coupling g is usually weak, the
most studied regime of the DPA is for αdp ≫ 1. It is then
standard to drop V̂, leaving only Ĥ2pd. In this case, the
pump mode is treated as a classical field, and the DPA is
referred to as semiclassical. For such a semiclassical
DPA, the signal mode cannot be squeezed above 3 dB,
even with nonlinear corrections arising from the coupling V̂
[38,62,78]. The reason for this moderate squeezing is the
photon loss of the signal mode. That is, the leakage of
single photons of some correlated photon pairs injected by
the two-photon driving Ω2pd causes a partial loss of two-
photon correlations, and thus of intracavity squeezing.
However, as demonstrated below, the photon loss of the
signal mode, when turned from a noise source into a
resource via reservoir engineering, can steer a quantized
pump mode into a squeezed steady state. More importantly,
this photon loss can strongly suppress the detrimental
effect of the photon loss of the pump mode on squeezing,
ultimately leading to a strong steady-state intracavity
squeezing.
Squeezing far beyond 3 dB.—Recently, it has been

shown experimentally that the available single-photon
coupling g can range from tens of kHz to tens of MHz
[79–87]. These advances allow one to consider the effect
of the coupling V̂, e.g., two-photon loss [79–81,88–91].
We here focus on the case of Δs ≠ 0, and introduce a
signal Bogoliubov mode, β̂s ¼ âs coshðrsÞ þ â†s sinhðrsÞ,
with tanh ð2rsÞ ¼ 2Ω2pd=Δs. The Hamiltonian Ĥ2pd is then

diagonalized, yielding Ĥ2pd ¼ Λsβ̂
†
s β̂s, where Λs ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Δ2
s − 4Ω2

2pd

q
. Likewise, the coupling V̂ and the two-tone

driving Ĥ2td become

V̂ ¼ g0β̂
†
s β̂sðâp þ â†pÞ þ R̂1 þ R̂†

1; ð5Þ

Ĥ2td ¼ Ω2tdðtÞ coshðrsÞβ̂†s þ R̂2 þ H:c:; ð6Þ

where R̂1 ¼ g½cosh2ðrsÞβ̂2s þ sinh2ðrsÞβ̂†2s �â†p, R̂2 ¼
−Ω2tdðtÞ sinhðrsÞβ̂s, and g0 ¼ −g sinh ð2rsÞ. We further
assume the limit fg;Ω2pd;Δpg ≪ Δs, such that rs ≪ 1,
and both R̂1 and R̂2 can be dropped as high-frequency
components (see Ref. [62]), yielding

V̂ ≃ g0β̂
†
s β̂sðâp þ â†pÞ; ð7Þ

Ĥ2td ≃ coshðrsÞΩ2tdðtÞβ̂†s þ H:c: ð8Þ

Equations (7) and (8) are reminiscent of the two-tone
driven radiation-pressure interaction in cavity optome-
chanics [92]. With such an interaction, the cavity photon
loss can stabilize a strong squeezing of mechanical motion
[40,41,44,93–95]. Here, we harness a similar mechanism,
and assume that ω� ¼ Λs � Δp, so that the mode β̂s is

coupled to a pump Bogoliubov mode, β̂p ¼ âp coshðrpÞþ
â†p sinhðrpÞ, through the effective Hamiltonian [62],

Ĥeff ¼ Gðβ̂pβ̂†s þ β̂†pβ̂sÞ: ð9Þ

Here, tanhðrpÞ ¼ Gþ=G− and G ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

− −G2þ
p

. We have
defined G� ¼ g0α�s , where α�s (given in [62]) are the field
amplitudes of the mode β̂s induced by the two-tone driving
Ω2td, and for simplicity both have been assumed to be real.
Furthermore, we have LðâsÞρ̂ ≃ Lðβ̂sÞρ̂ for rs ≪ 1, and

the system dynamics can thus be described with the
effective master equation

_̂ρ ¼ −i½Ĥeff ; ρ̂� þ κpLðâpÞρ̂þ κsLðβ̂sÞρ̂: ð10Þ

It is seen that for a large κs, the photon loss of the mode β̂s
can cool the mode β̂p into the ground state, corresponding
to the squeezed vacuum state of the mode âp, which can
theoretically have an arbitrary degree of squeezing. Such a
squeezed steady state is unique, and can be reached from
any state of the mode âp. The reason is that any state of the
mode âp can be expressed in terms of the ground and
excited states of the mode β̂p, but of these, all the excited

states are depopulated by the photon loss of the mode β̂s in
the steady state. This initial-state independence enables the
detrimental effect of the photon loss of the mode âp on
squeezing to be strongly suppressed as long as κs ≫ κp (see
Ref. [62] for more details), consequently, forming a strong
steady-state squeezing for the mode âp. During the for-
mation of this squeezing, any odd photon-number state of
the mode âp is reached by two different transitions, which
are induced by the two-tone driving Ω2td. Achieving a
desired steady-state squeezing, i.e., a superposition of only
even photon-number states, requires destructive interfer-
ence between these two transitions to cancel out the
population of all the odd photon-number states.
To quantify the degree of squeezing, we use the

squeezing parameter [96],

ξ2p ¼ 1þ 2ðhâ†pâpi − jhâpâpijÞ: ð11Þ

Its time evolution is plotted in Fig. 1(b). Specifically, we
compare the effective and exact results, and show an
excellent agreement between them. Therefore, the effective
master equation in Eq. (10) can be used to predict some
larger squeezing by deriving the steady-state squeezing
parameter,

ðξ2pÞss ¼
1þ 4C exp ð−2rpÞ

1þ 4C
; ð12Þ

where C ¼ G2=ðκsκpÞ is the cooperativity of the DPA. In
Fig. 1(c), ðξ2pÞss is plotted versus C. For realistic parameters
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of κs ¼ 100κp, we find that a modest ratioGþ=G− can keep
ðξ2pÞss above 3 dB even for C ≃ 0.4. Moreover, ðξ2pÞss
increases as C, and ultimately reaches its maximum value,

ðξ2pÞmax
ss ¼ exp ð−2rpÞ ¼

1 −Gþ=G−

1þ Gþ=G−
: ð13Þ

For example, with Gþ=G− ¼ 0.99, we predict a maximum
squeezing of ðξ2pÞmax

ss ≃ 23 dB. Thus by increasing the ratio
Gþ=G− to ≲1, we can, in principle, make intracavity
squeezing arbitrarily strong. This is a counterintuitive result
from the usually accepted point of view: the steady-state
intracavity squeezing of a DPA is fundamentally limited
to 3 dB.
Enhanced longitudinal qubit readout.—As an applica-

tion, we below show that our intracavity squeezing in a
fully quantum DPA can exponentially improve the SNR of
longitudinal qubit readout. In [62], we also analyze the
longitudinal readout using intracavity squeezing of a semi-
classical DPA. However, we demonstrate that this semi-
classical-DPA intracavity squeezing cannot enable a
practically useful increase in the SNR, even with a strong
squeezing of the output field.
To begin, we consider the Hamiltonian

Ĥfq
z ¼ Ĥeff þ χzσ̂zðâpe−iϕz þ â†peiϕzÞ; ð14Þ

where σ̂z is the Pauli matrix of the qubit. The first term is
used to generate intracavity squeezing, while the second
term accounts for the longitudinal qubit-field coupling of
strength χz and phase ϕz. Possible experimental imple-
mentations of Ĥfq

z are discussed in [62]. Since the photon
loss of the mode β̂s is strong, we adiabatically eliminate the
mode β̂s to obtain the following equation of motion for the
mode âp,

_̂ap ¼ −ieiϕzχzσ̂z −
κ

2
âp −

ffiffiffi
κ

p
ÂinðtÞ; ð15Þ

where κ ¼ κadp þ κp is the overall photon loss rate. Here,
κadp ¼ 4G2=κs is the rate of the adiabatic photon loss.
Moreover, we have defined the overall input noise as

ÂinðtÞ ¼ ½
ffiffiffiffiffiffi
κadp

q
âadp;inðtÞ þ ffiffiffiffiffi

κp
p âp;inðtÞ�=

ffiffiffi
κ

p
. It involves

two uncorrelated noise operators, âadp;inðtÞ and âp;inðtÞ.
The former represents the adiabatic noise arising from
the photon loss of the mode β̂s, and is given by
iâadp;inðtÞ¼ β̂s;inðtÞcoshðrpÞþβ̂†s;inðtÞsinhðrpÞ, where β̂s;inðtÞ
is the noise operator of the mode β̂s. As seen in Eq. (10),
β̂s;inðtÞ can be considered as the vacuum noise, and there-
fore âadp;inðtÞ corresponds to the squeezed vacuum noise of
the mode âp. Moreover, the operator âp;inðtÞ represents the
vacuum noise inducing the natural photon loss of the mode
âp. Note that âp in Eq. (15) is a field operator displaced by

an amount αdp, but the side effect of this displacement on the
qubit readout is negligible as a high-frequency effect [62].
The longitudinal coupling maps the qubit state onto the

output quadrature, ẐoutðtÞ ¼ ÂoutðtÞe−iϕh þ Â†
outðtÞeiϕh ,

which is measured by a homodyne setup with a detection
angle ϕh. Here, ÂoutðtÞ ¼ ÂinðtÞ þ

ffiffiffi
κ

p
âpðtÞ is the overall

output field. An essential parameter quantifying the homo-
dyne detection is the SNR, which is evaluated using the
operator M̂ ¼ ffiffiffi

κ
p R

τ
0 dt ẐoutðtÞ, with τ the measurement

time, and is defined as

SNR ¼ jhM̂i↑ − hM̂i↓jðhM̂2
Ni↑ þ hM̂2

Ni↓Þ−1=2; ð16Þ

where M̂N ¼ M̂ − hM̂i characterizes the measurement
noise, and f↑;↓g refers to the qubit state. The SNR of
the readout using our fully quantum-DPA intracavity
squeezing is then given by

SNRfq
z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4C

1þ 4C exp ð−2rpÞ

s
SNRstd

z ; ð17Þ

where SNRstd
z ¼ 8χzτ½1 − 2ð1 − e−κτ=2Þ=κτ�= ffiffiffiffiffiffiffi

2κτ
p

refers
to the SNR of the standard longitudinal readout with no
squeezing. Equation (17) shows a distinct improvement in
the SNR, as in Fig. 2(a). Such an improvement increases as
the cooperativity C, which can, in principle, be made arbi-
trarily large. Furthermore, as long as C ≫ exp ð2rpÞ=4, we
have

SNRfq
z ≃ expðrpÞSNRstd

z ; ð18Þ

an exponential improvement in the SNR.
More importantly, the SNR improvement in Eqs. (17)

and (18) holds for anymeasurement time. The reason is that
the degree of squeezing of the measurement noise equals
the degree of intracavity squeezing, i.e., hM̂2

Ni=κτ ¼ ðξ2pÞss,
and is independent of the measurement time. This is in stark
contrast to the case of using the semiclassical-DPA intra-
cavity squeezing, where, as discussed in [62], the degree of
squeezing of the measurement noise increases from the
initial value zero, as the measurement time increases, and
consequently a large increase in the SNR needs an
extremely long measurement time. Assuming realistic
parameters of rp ¼ 2 (≃17 dB) and C ¼ 5, our approach
gives an approximately fourfold improvement for any
measurement time, as illustrated in Fig. 2(a). However,
when using the semiclassical-DPA intracavity squeezing,
there is almost no improvement for the short-time meas-
urement of most interest in experiments, even though the
output-field squeezing, characterized by the parameter
rscout ¼ ln ½ðκs þ 4Ω2pdÞ=ðκs − 4Ω2pdÞ�, is strong [62].
In Figs. 2(b) and 2(c), we plot the SNR and the

measurement error, ϵm ¼ 1 − Fm, for the longitudinal

PHYSICAL REVIEW LETTERS 129, 123602 (2022)

123602-4



readout using the fully quantum- and semiclassical-
DPA intracavity squeezing, and also for the standard
longitudinal readout with no squeezing. Here, Fm ¼
1
2
½1þ erfðSNR=2Þ� is the measurement fidelity. Choosing

rp ¼ 2, and χz ¼ κ ¼ 2π × 3 MHz for our approach, a

short measurement time of τ ¼ 1=κ ≃ 53 ns gives SNRfq
z ≃

4.7 for C ¼ 5. This corresponds to a measurement error of
ϵm ≃ 4.4 × 10−4. When C increases, as in Fig. 2(d), SNRfq

z

can further increase to a maximum of ≃8.9, and the
measurement error rapidly decreases, reaching a minimum
of ≃1.5 × 10−10. However, at the same measurement time,
both the standard longitudinal readout with no squeezing
and the case of using the semiclassical-DPA intracavity
squeezing enable a much lower SNR, i.e., SNRstd

z ≃
SNRsc

z ≃ 1.1, and, correspondingly, a measurement error
of ≃0.22, which is many orders of magnitude larger.
Conclusions.—We have introduced a method of how to

exploit a fully quantum DPA to beat the 3 dB limit of
intracavity squeezing. We have demonstrated that an
arbitrary steady-state squeezing can, in principle, be
achieved for the pump mode, by simply applying a two-
tone driving to the signal mode. This counterintuitive
intracavity squeezing can exponentially increase the SNR
of longitudinal qubit readout, and improve the measure-
ment error by many orders of magnitude. In contrast, the
semiclassical-DPA intracavity squeezing cannot enable a
useful increase in the SNR, due to the impractical require-
ment of a long measurement time. Our proposal is valid for
both microwave and optical cavities, but we believe that it
is easier to implement it with microwaves in quantum
circuits. The resulting intracavity squeezing is equivalent to
an externally generated and injected squeezing but without
transmission and injection losses. Thus, this intracavity
squeezing, as a powerful alternative to that external

squeezing, could find many quantum applications in
addition to the qubit readout, and further excite more
interest to exploit the potential of DPAs for modern
quantum technologies.
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