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In this Supplementary Material, we present the detailed results on the noise-tolerant quantum entanglement in
optomechanical networks. Specifically, this document consists of five sections: (i) the Langevin equations, the
dark mode, and its breaking in a three-mode optomechanical system; (ii) optomechanical entanglement enabled
by the dark-mode breaking, which is induced by synthetic magnetism; (iii) Dark modes and their breaking
in optomechanical networks; (iv) dark-mode-immune entanglement networks; and (v) possible experimental
realizations of the system.

I. THE LANGEVIN EQUATIONS, THE DARK MODE, AND ITS BREAKING

In this section, we derive the quantum Langevin equations of a two-vibrational-mode optomechanical system, which consists
of two vibrational modes optomechanically coupled to a common cavity-field mode. We also analyze the dark-mode effect and
its breaking in this system.

A. The Langevin equations

The Hamiltonian of the physical system considered in the main text reads (with ~ = 1):

H = ωcc†c +

2∑
j=1

[ω jd
†

j d j + g jc†c(d j + d†j )] + (ΩceiωLt + Ω∗c†e−iωLt) +Hχ, (S1a)

Hχ = χ(eiΘd†1d2 + e−iΘd†2d1), (S1b)

where c† (c) and d†j (d j) are the creation (annihilation) operators of the cavity-field mode (with resonance frequency ωc) and
the jth vibrational mode (with resonance frequency ω j), respectively. The optomechanical interactions between the optical
mode and the two vibrational modes are described by the radiation-pressure g j terms. The Ω term describes cavity-field driving
with driving frequency ωL. The term Hχ describes a phase-dependent phonon-hopping interaction between the two vibrations,
which is introduced to break the dark mode in this system. In a rotating frame, defined by the unitary transformation operator
exp(−iωLc†ct), the Hamiltonian of the system becomes

HI = ∆cc†c +

2∑
j=1

[ω jd
†

j d j + g jc†c(d j + d†j )] + (Ωc + Ω∗c†) + χ(eiΘd†1d2 + e−iΘd†2d1), (S2)

where ∆c = ωc − ωL is the cavity-field driving detuning.
By phenologically adding the dissipation and noise terms into the Heisenberg equations, the quantum Langevin equations of

this system can be obtained as:
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ċ = −
{
κ + i

[
∆c + g1(d1 + d†1) + g2(d2 + d†2)

]}
c − iΩ∗ +

√
2κcin,

ḋ1 = − (γ1 + iω1)d1 − ig1c†c − iχeiΘd2 +
√

2γ1d1,in,

ḋ2 = − (γ2 + iω2)d2 − ig2c†c − iχe−iΘd1 +
√

2γ2d2,in, (S3)

where κ (γ j=1,2) is the decay rate of the optical ( jth vibrational) mode, while cin and d j,in are, respectively, the zero-mean input
noise operators for the optical mode and the jth mechanical mode, characterized by the following correlation functions:

〈cin(t)c†in(t′)〉 = δ(t − t′), 〈c†in(t)cin(t′)〉 = 0,

〈d j,in(t)d†j,in(t′)〉 = (n̄ j + 1)δ(t − t′), 〈d†j,in(t)d j,in(t′)〉 = n̄ jδ(t − t′), (S4)

where n̄ j=1,2 =
{
exp[~ω j/(kBT j)] − 1

}−1
denotes the average thermal occupation numbers associated with the heat bath of the jth

mechanical mode, with kB being the Boltzmann constant and T j being the bath temperature of the jth mechanical mode.
By considering the strong-driving regime of the cavity, we can apply a linearization procedure to simplify the physical model.

Specifically, we express the operators in Eqs. (S3) as the sum of their steady-state mean values and quantum fluctuations, i.e.,

o = 〈o〉ss + δo (S5)

for the operators o ∈ {c, c†, d j, d†j }.
By separating the classical motion and quantum fluctuations, the equations of motion for the classical-motion variables can

be obtained as:

d
dt
〈c〉 = −

{
κ + i

[
∆c + g1(〈d1〉 + 〈d

†

1〉) + g2(〈d2〉 + 〈d
†

2〉)
]}
〈c〉 − iΩ∗,

d
dt
〈d1〉 = − iω1 〈d1〉 − ig1〈c†〉 〈c〉 − iχeiΘ 〈d2〉 − γ1 〈d1〉 ,

d
dt
〈d2〉 = − iω2 〈d2〉 − ig2〈c†〉 〈c〉 − iχe−iΘ 〈d1〉 − γ2 〈d2〉 . (S6)

In this work, we focus on the steady-state entanglement of the system. Then, the steady-state mean values of the dynamical
variables are obtained as:

〈c〉ss =
−iΩ∗

κ + i∆
, 〈d1〉ss =

−i(g1|〈c〉ss|
2 + χeiΘ〈d2〉ss)

γ1 + iω1
, 〈d2〉ss =

−i(g2|〈c〉ss|
2 + χe−iΘ〈d1〉ss)

γ2 + iω2
, (S7)

where we introduce the normalized driving detuning ∆ = ∆c + 2
∑2

j=1 g jRe[〈d j〉ss], with Re[〈d j〉ss] taking the real part of 〈d j〉ss.
The linearized equations of motion for these quantum fluctuations are given by

δċ = − (κ + i∆)δc − iG1(δd1 + δd†1) − iG2(δd2 + δd†2) +
√

2κcin,

δḋ1 = − iG∗1δc − (γ1 + iω1)δd1 − iχeiΘδd2 − iG1δc† +
√

2γ1d1,in,

δḋ2 = − iG∗2δc − iχe−iΘδd1 − (γ2 + iω2)δd2 − iG2δc† +
√

2γ2d2,in, (S8)

where δc (δc†) and δd j=1,2 (δd†j ) are the fluctuation operators of the cavity-field mode and the jth vibrational mode, respectively.
G j=1,2 = g j〈c〉ss is the linearized optomechanical-coupling strength between the cavity field and the jth vibrational mode. Note
that in the following discussions 〈c〉ss is assumed to be real, which is accessible by choosing a proper driving amplitude Ω. This
indicates that the linearized optomechanical-coupling strength G j is real too.

Based on Eq. (S8), we know that these three bosonic modes are coupled to each other through bilinear-form interactions.
Mathematically, we can infer an effective Hamiltonian to govern these bilinear interactions, which include both excitation-
exchanging (beam-splitting-type) terms and the excitation-creating (two-mode-squeezing) terms. In our optomechanical
entanglement scheme, the beam-splitting-type interactions between these bosonic modes are expected to dominate the linearized
couplings in this system, and hence we can simplify the Hamiltonian of the system by applying the rotating-wave approximation
(RWA). The linearized optomechanical Hamiltonian in the RWA takes the following form (discarding the noise terms)

HRWA = ∆δc†δc +

2∑
j=1

[ω jδd
†

jδd j + G j(δcδd
†

j + δd jδc†)] + χ(eiΘδd†1δd2 + e−iΘδd†2δd1). (S9)

Below, we analyze the dark-mode effect in this system based on the Hamiltonian HRWA in Eq. (S9).
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FIG. S1: (a) Coupling strength |G−|/ω1 versus the frequency ratio ω2/ω1 and the coupling strength ratio G2/G1 of the two vibrational modes.
(b) Coupling strengths |G+|/ω1 (dashed lines) and |G−|/ω1 (solid lines) versus the frequency ratio ω2/ω1 when G2/G1=0.5 (black lines), 1
(blue lines), and 1.5 (red lines). Here we set G1/ω1 = 0.2.

B. Dark-mode effect

To study the dark-mode effect in this three-mode optomechanical system, we first consider the case where the synthetic
magnetism ( induced by the phonon-hopping term) is absent, i.e., dark-mode-unbreaking (DMU): χ = 0, then the
Hamiltonian (S9) is reduced to

HRWA = ∆δc†δc +

2∑
j=1

[ω jδd
†

jδd j + G j(δcδd
†

j + δd jδc†)]. (S10)

In this system, the two vibrational modes δd1 and δd2 coupled to a common optical mode δc form two hybrid mechanical modes,
which are described by the two annihilation operators:

D+ =
1√

G2
1 + G2

2

(G1δd1 + G2δd2), (S11)

D− =
1√

G2
1 + G2

2

(G2δd1 −G1δd2). (S12)

It can be shown that the two hybrid vibrational modes satisfy the bosonic commutative relations [D±,D
†
±] = 1. The Hamiltonian

in Eq. (S10) can be rewritten with the hybrid vibrational modesD+ andD− as

Hhyb = ∆δc†δc + ω+D
†
+D+ + ω−D

†
−D− + G+(δcD†+ +D+δc†) + G−(D†+D− +D

†
−D+), (S13)

where we introduce the resonance frequencies ω± and the coupling strengths G± as:

ω+ =
G2

1ω1 + G2
2ω2

G2
1 + G2

2

, ω− =
G2

2ω1 + G2
1ω2

G2
1 + G2

2

, (S14a)

G+ =

√
G2

1 + G2
2, G− =

G1G2(ω1 − ω2)
G2

1 + G2
2

. (S14b)

We can see from Eqs. (S13) and (S14b) that, when ω1 = ω2, the modeD− is decoupled from the system (i.e., G− = 0), so it is a
dark mode, whileD+ is a bright mode and it always couples to the cavity field due to G+ > 0.
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FIG. S2: Polar-coordinate representations of: (a) the redefined coupling strength G̃+/ωm versus the modulation phase Θ when G j/ωm = 0.1
(blue hollow disks) and G j/ωm = 0.2 (blue solid disks) for j = 1, 2; (b) the redefined coupling strength G̃−/ωm versus the modulation phase Θ

when G j/ωm = 0.1 (red hollow rectangles) and G j/ωm = 0.2 (red solid rectangles). Here we have chosen the mechanical resonance frequency
ωm as the frequency scale and assumed χ/ωm = 0.1 and ω j/ωm = 1.

In Fig. S1(a), we plot the redefined coupling strength |G−|/ω1 as functions of the frequency ratio ω2/ω1 and the coupling-
strength ratio G2/G1 of the two mechanical modes. We find that when ω2 = ω1, the redefined coupling strength G− becomes
zero, which indicates that the dark mode (i.e., the mode D−) emerges in the system. Though the dark mode exists theoretically
only atω1 = ω2, the dark-mode effect actually works for a wider detuning range [as marked by the dashed-line area in Fig. S1(a)].
Physically, the width of the dashed-line area is determined by the spectral resolution in the two-vibrational-mode optomechanical
system. Here, this width is approximately determined by the cavity-field decay rate, because the decay rate of the vibrational
mode is much smaller than that of the cavity field.

Owing to the existence of the dark-mode effect [S1–S6], the generation of quantum entanglement is completely suppressed
in the three-mode optomechanical system. Physically, the two vibrational modes coupled to a common cavity-field mode can
be hybridized into a bright mode and a dark mode. Here, the dark mode is decoupled from the system. As a result, the thermal
excitations associated with the dark mode are kept in this system, and then the thermal noises associated with the dark mode
destroy quantum entanglement. Thus, it is naturally to ask the question whether we can generate quantum entanglement by
breaking the dark-mode effect in this optomechanical system.

C. Dark-mode breaking

To break the dark-mode effect in the two-vibrational-mode optomechanical system, a phase-dependent phonon-exchange
interaction is introduced into the system, i.e., dark-mode-breaking (DMB) by assuming χ , 0 and Θ , nπ. This phonon-
hopping-coupling term is used to form a phase-dependent loop-coupled configuration and to generate an effective synthetic
magnetism [S7–S15], which induces a path interference between two excitation-transport channels. Physically, the dark-mode
effect can be broken by tuning the synthetic magnetism in this phase-dependent loop-coupled three-mode optomechanical
system.

To induce the dark-mode breaking, we introduce two superposition-vibrational modes associated with the synthetic
magnetism: D̃+ and D̃−, defined by:

D̃+ = F δd1 − eiΘKδd2, D̃− = e−iΘKδd1 + F δd2, (S15)

then the Hamiltonian in Eq. (S9) becomes

HRWA = ∆δc†δc + ω̃+D̃
†
+D̃+ + ω̃−D̃

†
−D̃− + (G̃∗+δcD̃

†
+ + G̃+D̃+δc†) + (G̃∗−δcD̃

†
− + G̃−D̃−δc†), (S16)
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where the resonance frequencies ω̃± and the coupling strengths G̃± are defined as:

ω̃± =
1
2

(
ω1 + ω2 ±

√
(ω1 − ω2)2 + 4χ2

)
, (S17)

and

G̃+ = FG1 − e−iΘKG2, G̃− = eiΘKG1 + FG2, (S18)

with

F = |ω̃− − ω1|/

√
(ω̃− − ω1)2 + χ2, K = χF /(ω̃− − ω1). (S19)

In the degenerate-two-resonator case: ω1 = ω2 = ωm, the above introduced parameters become ω̃± = ωm ±χ, F = 1/
√

2, and
K = −1/

√
2. Then the coupling strengths in Eq. (S18) can be simplified to

G̃+ = (G1 + e−iΘG2)/
√

2, G̃− = (G2 − eiΘG1)/
√

2. (S20)

We proceed to analyze the dependence of the dark-mode effect on the real and positive coupling strengths G1 and G2. Here, we
consider the symmetric-coupling (G1 = G2 = G) case, and obtain the relations:

G̃+ = G(1 + e−iΘ)/
√

2, G̃− = G(1 − eiΘ)/
√

2. (S21)

It can be seen from Eq. (S21) that, when Θ = nπ for an integer n, one (i.e., the dark mode) of the two hybrid mechanical modes is
decoupled from the cavity-field mode. In Figs. S2(a) and S2(b), we plot G̃± as a function of Θ, when ω1 = ω2 and G1 = G2. We
can see that the dark mode exists only when Θ = nπ. For an odd n, we obtain G̃+ = 0 (see blue symbols), and thus D̃+ becomes
a dark mode. For an even n, we obtain G̃− = 0 (see red symbols), and thus D̃− becomes a dark mode. Tuning Θ , nπ leads to
an effective coupling of the dark mode to the optical mode, which indicates dark-mode breaking. Physically, a reconfigurable
synthetic gauge field can be realized by tuning the phase Θ, which enables flexible switching between the DMU and DMB
regimes.

Here we should highlight that we have performed the rotating-wave approximation (RWA) in the optomechanical interaction
only in the derivation of the analytical expression of the dark mode, i.e., only in analytically demonstrating the dark-mode
effect and its breaking. In other Sections of the main text and SM, we do not perform the RWA in the light-vibration coupling.
In particular, in the derivation of the entanglement measures and numerical simulations, we considered both beam-splitter-
type (rotating-wave terms) and two-mode-squeezing-type (counter-rotating terms) optomechanical interactions to study the
generation of optomechanical entanglement.

II. GENERATING BIPARTITE OPTOMECHANICAL ENTANGLEMENT AND FULL TRIPARTITE OPTOMECHANICAL
INSEPARABILITY VIA DARK-MODE BREAKING

In this section, we derive the steady-state variance matrix, and adopt the logarithmic negativity and the residual contangle to
quantify bipartite entanglement and full tripartite inseparability in this system, respectively.

A. Steady-state variance matrix

By defining the optical and mechanical quadratures and the corresponding Hermitian input noise operators:

δXo = (δo† + δo)/
√

2, δYo = i(δo† − δo)/
√

2,

Xin
o = (δo†in + δoin)/

√
2, Y in

o = i(δo†in − δoin)/
√

2, (S22)

the linearized Langevin equations in (S8) can be reexpressed as:

δẊd1 = − γ1δXd1 + ω1δYd1 + χ(sin ΘδXd2 + cos ΘδYd2 ) +
√

2γ1Xin
d,1,

δẎd1 = − ω1δXd1 − γ1δYd1 − χ(cos ΘδXd2 − sin ΘδYd2 ) − 2G1δXc +
√

2γ1Y in
d,1,

δẊd2 = − χ(sin ΘδXd1 − cos ΘδYd1 ) − γ2δXd2 + ω2δYd2 +
√

2γ2Xin
d,2,

δẎd2 = − χ(cos ΘδXd1 + sin ΘδYd1 ) − ω2δXd2 − γ2δYd2 − 2G2δXc +
√

2γ2Y in
d,2,

δẊc = − κδXc + ∆δYc +
√

2κXin
c ,

δẎc = − 2G1δXd1 − 2G2δXd2 − ∆δXc − κδYc +
√

2κY in
c . (S23)
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The Langevin equations (S23) can be reexpressed as a compact form:

u̇(t) = Au(t) + N(t), (S24)

where we introduce the fluctuation operator vector

u(t) = [δXd1 , δYd1 , δXd2 , δYd2 , δXc, δYc]T , (S25)

the noise operator vector

N(t) =
√

2[
√
γ1Xin

d1
,
√
γ1Y in

d1
,
√
γ2Xin

d2
,
√
γ2Y in

d2
,
√
κXin

c ,
√
κY in

c ]T , (S26)

and the coefficient matrix

A =



−γ1 ω1 χ+ χ− 0 0
−ω1 −γ1 −χ− χ+ −2G1 0
−χ+ χ− −γ2 ω2 0 0
−χ− −χ+ −ω2 −γ2 −2G2 0

0 0 0 0 −κ ∆

−2G1 0 −2G2 0 −∆ −κ


, (S27)

with χ+ = χ sin Θ and χ− = χ cos Θ. A formal solution of the linearized Langevin equation (S24) is given by

u(t) = M(t)u(0) +

∫ t

0
M(t − s)N(s)ds, (S28)

where M(t) = exp(At). Note that the parameters chosen for all our numerical simulations satisfy the stability conditions derived
from the Routh-Hurwitz criterion [S16]. Namely, the real parts of all the eigenvalues of A are negative.

For studying the quantum entanglement between the optical mode and the mechanical modes, we calculate the steady-state
value of the covariance matrix V, which is defined by the matrix elements

Vkl =
1
2

[〈uk(∞)ul(∞)〉 + 〈ul(∞)uk(∞)〉], (S29)

for k, l = 1-6. Under the stability condition, the steady-state covariance matrix V fulfills the Lyapunov equation,

AV + VAT = −Q, (S30)

where we introduce the matrix

Q =
1
2

(C + CT ), (S31)

with C being the noise correlation matrix, which can be defined through the matrix elements,

〈Nk(s)Nl(s′)〉 = Ck,lδ(s − s′). (S32)

In terms of Eqs. (S26), (S31), and (S32), the expression of the matrix Q can be obtained as

Q = diag{γ1(2n̄1 + 1), γ1(2n̄1 + 1), γ2(2n̄2 + 1), γ2(2n̄2 + 1), κ, κ}. (S33)

Based on Eqs. (S27), (S30), and (S33), we can obtain the steady-state variance matrix V. Then, the steady-state properties of the
three-mode optomechanical system can be achieved.

B. Bipartite entanglement and full tripartite inseparability measures

Here, we apply two entanglement measures: the logarithmic negativity and minimum residual contangle, which are used to
quantify the bipartite entanglement and full tripartite inseparability, respectively.
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1. Logarithmic negativity

The optomechanical entanglement between the optical mode and the jth vibrational mode can be quantified using the
logarithmic negativity EN , j, defined as [S17]

EN , j ≡ max
[
0,−ln

(
2ζ−j

)]
, (S34)

where

ζ−j ≡ 2−1/2{Σ(V
′

j) − [Σ(V
′

j)
2 − 4detV

′

j]
1/2}1/2, (S35)

with

Σ(V
′

j) ≡ detA j + detB − 2detC j, (S36)

being the smallest eigenvalue of the partial transpose of the reduced correlation matrix V′

j. In Eq. (S35), the reduced correlation
matrices V′

j is obtained by removing the rows and columns of the uninteresting mode in V. The matrix V′

j takes the form as

V
′

j =

(
A j C j
CT

j B

)
, (S37)

whereA j, B, and C j are 2 × 2 subblock matrices of V′

j.

2. Minimum residual contangle

To study the full tripartite optomechanical inseparability in the three-mode optomechanical system, we apply a quantitative
measure of the residual contangle Ēr|s|t

τ [S18–S21], which is given by

Ēr|s|t
τ ≡ Er|(st)

τ − Er|s
τ − Er|t

τ , r, s, t ∈ {d1, d2, c}, (S38)

where Eu|v
τ denotes the contangle of subsystems of u (u contains only one mode) and v (v contains one or two modes), and (r, s, t)

denotes all the permutations of the three mode indexes [S18]. Eu|v
τ is a proper entanglement monotone, and it can be defined as

the squared logarithmic negativity [S18]

Eu|v
τ ≡

[
EN

]2
≡

{
max[0,−ln(2ν̃−)]

}2
, (S39)

where ν̃− is the minimum symplectic eigenvalue of the covariance matrix.
(i) When v contains only one mode, ν̃− in Eq. (S39) is given by

ν̃− = min
[
eig|iΩ2Ṽ4|

]
, (S40)

where

Ω2 =

2⊕
j=1

iσy, (S41)

with σy being the y-direction Pauli matrix. The matrix V4 in Eq. (S40) is defined by

Ṽ4 = P0V4P0, (S42)

where V4 is the 4 × 4 covariance matrix of two subsystems, obtained by removing the rows and columns of the uninteresting
mode in V, and

P0 = diag(1,−1, 1, 1) (S43)

denotes the matrix that realizes the partial transposition at the level of the covariance matrixes.
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(ii) When v contains two modes, ν̃− in Eq. (S39) is given by

ν̃− = min
[
eig|iΩ3Ṽ|

]
, (S44)

where

Ω3 =

3⊕
j=1

iσy, (S45)

and

Ṽ = Pr|(st)VPr|(st). (S46)

Here, V is the 6 × 6 covariance matrix of the system, and we introduce the partial transposition matrices

Pd1 |(d2c) = diag(1,−1, 1, 1, 1, 1),
Pd2 |(d1c) = diag(1, 1, 1,−1, 1, 1),
Pc|(d1d2) = diag(1, 1, 1, 1, 1,−1). (S47)

The residual contangle satisfies the monogamy of quantum entanglement, i.e.,

Er|(st)
τ ≥ Er|s

τ + Er|t
τ . (S48)

This inequality is similar to the Coffman-Kundu-Wootters monogamy inequality, which holds for three qubits [S20].
A quantification of the continuous-variable tripartite inseparability is provided by the minimum residual contangle [S18]

Er|s|t
τ ≡ min

(r,s,t)
[Er|(st)

τ − Er|s
τ − Er|t

τ ], (S49)

where (r, s, t ∈ {d1, d2, c}) denotes all the permutations of the three mode indexes [S18]. The nonzero minimum residual contangle
Er|s|t
τ > 0 means that the full tripartite inseparability is generated.

C. Optomechanical entanglement

When the two mechanical modes are coupled to a common optical mode, the two mechanical modes can form two hybrid
mechanical modes: a dark mode and a bright mode. The dark mode is decoupled from both the bright mode and the cavity-field
mode. As a result, the quantum entanglement of light and motion is generally destroyed by thermal noise concealed in the dark
mode. To break the dark-mode effect, we introduce a phase-dependent phonon-exchange interaction between the two vibrational
modes to build a loop-coupled configuration, and thus an effective synthetic magnetism can be induced in this phase-dependent
loop-coupled system. In this section, we study the optomechanical entanglement in the three-mode optomechanical system.
Concretely, we consider both the degenerate and non-degenerate mechanical mode cases. We focus on quantum entanglement
in both the dark-mode-breaking and dark-mode-unbreaking regimes. By analyzing the optomechanical entanglement in the
cases of both the presence and the absence of the dark modes, we can confirm the action of the dark-mode breaking on the
enhancement of the entanglement.

1. Degenerate-mechanical-mode case

We first study optomechanical entanglement in the degenerate-mechanical-mode case. The introduced synthetic magnetism
plays a critical role in the creation of light-vibration entanglement. Below, we study how synthetic magnetism affects the
generation of light-vibration entanglement, i.e., we study the dependence of the light-vibration entanglement on the parameters
Θ and χ of the phase-dependent phonon-exchange coupling.

In Figs. S3(a) and S3(b), we plot the light-vibration entanglement measure EN , j as functions of the modulation phase Θ

and the effective driving detuning ∆ when the system operates in the DMB regime. We can see that there exist two red holes
in each figure around ∆ = ωm, which indicate that the photon-phonon entanglement can be created around the red-sideband
resonance. In particular, the optomechanical entanglement EN ,1 (EN ,2) is much larger than EN ,2 (EN ,1) in the region 0 < Θ < π
(π < Θ < 2π). This is because the synthetic magnetism enabled in the loop-coupled system can be modulated by tuning Θ.
The maximal entanglement emerges at Θ = π/2 and 3π/2, corresponding to a strong path interference between two excitation-
transport channels.
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FIG. S3: (a,b) Logarithmic negativity EN , j, quantifying quantum entanglement between the optical mode and the jth vibrational mode, versus
the modulation phase Θ and the effective driving detuning ∆ in the DMB regime, when the phonon-hopping coupling strength χ/ωm = 0.1. (c)
EN ,1 (blue curve) and EN ,2 (red curve) versus Θ when χ/ωm = 0.1. Logarithmic negativities (d) EN ,1 and (e) EN ,2 versus the effective driving
detuning ∆ and the phonon-exchange coupling strength χ, when the modulation phase Θ = π/2. (f) EN ,1 (blue curve) and EN ,2 (red curve)
versus χ when Θ = π/2. In our simulations, we have chosen the mechanical resonance frequency ωm as the frequency scale and assumed the
experimentally feasible parameters: ω j/ωm = 1, γ j/ωm = 10−5, G j/ωm = 0.2, κ/ωm = 0.2, and n̄ j = 100 for j = 1, 2.

We can also see from Figs. S3(a) and S3(b) that, at proper values of the modulation phase Θ (Θ , nπ), the optimal photon-
phonon entanglement locates around the red-sideband resonance, i.e., ∆ = ωm. Additionally, the optomechanical entanglement
is completely destroyed, i.e., EN ,1 = EN ,2 = 0 at Θ = nπ for an integer n, which corresponds to the emergence of the dark mode.
Hence, it is possible to switch the device between separable and entangled states by tuning the synthetic magnetism (i.e., the
modulation phase Θ).

In Figs. S3(d), S3(e), and S3(f), we find that, in the absence of the synthetic magnetism (i.e., χ = 0), there is no optomechanical
entanglement completely. This is because the system possesses the dark mode and the thermal noise stored in this dark mode
destroys quantum entanglement. In contrast to this, when we introduce a proper synthetic magnetism (χ , 0 and Θ , nπ),
light and multiple vibrations become entangled owing to the breaking of the dark mode. Moreover, the maximal optomechanical
entanglement can be observed at χ ≈ 0.15ωm and the red-sideband resonance ∆ = ωm.

Though the dark mode exists theoretically only in the two-degenerate-resonator case (ω1 = ω2), the dark-mode effect is
observed within a finite parameter range for ω1 , ω2 (i.e., the detuning window). Next, we show the dependence of the
detuning-window width of the dark-mode effect on the thermal phonon numbers n̄ of the vibrational modes.

In Fig. S4, we plot EN ,1 and EN ,2 as functions of the frequency ratio ω2/ω1 and the thermal excitation numbers n̄ of the
two mechanical modes in both the DMU [χ = 0, see Figs. S4(a), S4(b), and S4(c)] and DMB [χ/ω1 = 0.1 and Θ = π/2, see
Figs. S4(d), S4(e), and S4(f)] regimes. In the DMU regime, the optomechanical entanglement is suppressed in a wide frequency-
detuning range, and the suppression range of quantum entanglement becomes much wider for a larger value of thermal phonon
number n̄, as marked by the dark blue area in Figs. S4(a) and S4(b). For example, Fig. S4(c) shows that the dark-mode effect
is observed for a finite frequency-detuning range, and that the range for n̄ = 300 is wider than that for n̄ = 100. In the DMB
regime, we can see that the light and vibrations are entangled irrespective of the value of the ratio ω2/ω1 for a wide range of n̄,
as shown in Figs. S4(d) and S4(e). These results confirm that light and vibrations can be entangled via the DMB mechanism
even when light-vibration entanglement is fully destroyed in the DMU regime. By breaking the dark-mode effect with the
synthetic magnetism, EN ,1 and EN ,2 can be switched from significantly suppressed, or even fully destroyed, to fully entangled
[see Fig. S4(f)]. These results indicate that the introduced synthetic magnetism can be used for enhancing the optomechanical
entanglement for both degenerate and nondegenerate mechanical resonators, and especially, the work window of the synthetic
magnetism becomes wider for a larger value of the thermal phonon number of the mechanical resonator.

In addition, we find that in the nondegenerate-resonator case (i.e., ω1 , ω2), the optomechanical entanglement may be slightly
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of the two mechanical modes in the DMU regime (χ = 0). (c) EN ,1 and EN ,2 versus ω2/ω1 when n̄ = 100 (solid curves) and n̄ = 300 (dashed
curves) in the DMU regime. (d) EN ,1 and (e) EN ,2 versus n̄ and ω2/ω1 in the DMB regime (χ/ω1 = 0.1 and Θ = π/2). (f) EN ,1 andEN ,2 versus
ω2/ω1 when n̄ = 100 (solid curves) and n̄ = 300 (dashed curves) in the DMB regime. Other parameters used are the same as those in Fig. S3.

degraded by the introduced synthetic magnetism, as shown in Figs. S4(c) and S4(f). We explain this entanglement-degradation
phenomenon based on two points: (i) The dark-mode effect exists within a frequency-detuning window, and therefore, within
this window, the breaking of the dark-mode effect is the dominating factor for the entanglement-generation performance; (ii)
Out of this window, the combination effect of the original optomechanical couplings and the introduced phase-dependent
phonon-hopping interactions governs the entanglement generation, and hence the quantum interference effect induced by the
two coupling channels can change the optomechanical entanglement through both constructive and destructive interferences.

Thermal noises in practical devices destroy fragile quantum resources. To protect quantum resources from environmental
thermal perturbations, we introduce the synthetic magnetism which can significantly develop the noise tolerance of the quantum
entanglement. To investigate the influence of the synthetic magnetism on the noise-tolerant quantum entanglement, we plot the
logarithmic negativity EN , j as a function of the modulation phase Θ and the thermal excitations n̄ in the mechanical resonators,
as shown in Fig. S5. We can see that, in the DMU regime, quantum entanglement emerges only when n̄ j � 1; while in the DMB
regime, it can persist to an extremely high thermal phonon numbers. In additional, we also have confirmed that the stronger
synthetic magnetism leads to a larger noise-tolerant entanglement, which is generated via the DMB mechanism. This means
that the DMB mechanism provides a feasible way to create and protect fragile quantum resources against dark modes, and build
noise-tolerant quantum devices and entanglement switches.

In particular, quantum entanglement between light and multiple mechanical modes can be switched on and off on demand by
engineering the synthetic magnetism. For example, when 0.5 < n̄ j < 400, both two entanglement channels are cut off due to the
absence of the synthetic magnetism, while by inducing the synthetic magnetism, these channels are turned on simultaneously.
The maximal synthetic magnetism (i.e., Θ = π/2 and 3π/2) leads to a strong entanglement. Additionally, we find that when
400 < n̄ j < 700, there exists only one entanglement channel, i.e., for Θ = π/2 (3π/2), an optomechanical entanglement EN ,1
(EN ,2) is created, while no entanglement occurs for the other one. This indicates that a selective entanglement switch can be
achieved.

We also study the influence of the cavity-field decay rate κ on the light-vibration entanglement when the system works in both
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DMB and DMU regimes. In Figs. S6(a) and S6(b), we plot the logarithmic negativity EN , j as a function of the rescaled cavity-
field decay rate κ/ω1 when the system works in both the DMU and DMB regimes. Here, we can see that, in the DMU regime,
the light and vibration are separable, i.e., EN , j = 0 (see the solid lines). When switching to the DMB regime, optomechanical
entanglement can be realized when the system is in the resolved-sideband regime, i.e., κ � ωm. The optimal working parameter
of the cavity-field decay rate κ (corresponding to the maximum value of the logarithmic negativity EN , j) is around κ/ωm ≈ 0.2.

The vibrational modes are thermalized by their thermal baths through the mechanical dissipation channels, and thermal
noises can destroy fragile quantum correlations in practical devices. Below, we study the dependence of the optomechanical
entanglement on the mechanical decay rate γm.

In Figs. S6(c) and S6(d), we show the logarithmic negativity EN , j as a function of the mechanical decay rate γm, when the
system operates in both the DMB (dashed lines) and DMU (solid lines) regimes. We can see that the values of the logarithmic
negativity EN , j increase with the decrease of the mechanical decay rate γm. This is because the thermal-noise-exchange rates
between the mechanical resonators and their heat baths are much slower for a smaller value of the decay rate γm, and it is good
for protecting quantum resources from environmental thermal perturbations. This indicates that a high Q-factor resonator can be
useful for generating a robust quantum entanglement. In Figs. S6(c) and S6(d), we have EN ,1 > EN ,2 because the phase angle
Θ = π/2 is set, then quantum entanglement between the first mechanical mode and the cavity-field mode is stronger than that
between the second mechanical mode and the optical mode. However, an opposite entanglement phenomenon, compared with
the case of Θ = π/2, emerges when Θ = 3π/2, as shown in Figs. S6(c) and S6(d).
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2. Nondegenerate-vibrational-mode case

In the degenerate-vibrational-mode case, i.e., ω1 = ω2, the introduced phase-dependent phonon-hopping interaction is used
to induce a synthetic magnetism and then control the dark-mode effect.

In the nondegenerate-vibrational-mode case, i.e., ω1 , ω2, though there is no dark mode, the synthetic magnetism can
also be used for modulating the optomechanical entanglement. In this section, we study the dependence of the light-vibration
entanglement on the synthetic magnetism in the nondegenerate-mechanical-mode case.

As an example, in a nondegenerate-mechanical-mode case of ω2 = 1.1ω1, we plot the logarithmic negativity EN , j of the
optical mode and the jth mechanical mode as a function of the driving detuning ∆ in the absence (χ = 0, solid curves) and
presence (χ = 0.1ωm and Θ = π/2, dashed curves) of the synthetic magnetism, as shown in Fig. S7(a). It shows that light and
vibrations are correlated in both cases: without the synthetic magnetism (EN ,1 = EN ,2 = 0.07, see the lower solid curves) and
with the synthetic magnetism (EN ,1 = 0.15, EN ,2 = 0.12, see the upper dashed curves). In particular, the peak entanglement
appears around the red-sideband resonance, i.e., ∆ ≈ ω1. In principle, when the two mechanical resonators are far-off-resonant
with each other, there is no dark mode, then quantum entanglement can be generated under a proper driving condition (the
red-sideband resonance).

Since the phase-dependent phonon-hopping interaction (synthetic magnetism) plays a critical role in the enhancement of
light-vibration entanglement, we investigate the dependence of the optomechanical entanglement on the parameters χ and Θ of
the phase-dependent phonon-hopping coupling. In Fig. S7 (a), we plot the logarithmic negativity EN , j versus the parameters χ
and Θ in the nondegenerate-vibrational-mode case. The plots show that the light-vibration entanglement in the nondegenerate-
mechanical-resonator case can be controlled via the phase-dependent phonon-hopping interaction (i.e., the phase in a loop
coupling leads to a synthetic magnetism). In particular, the optomechanical entanglement EN ,1 (EN ,2) is much larger than EN ,2
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(EN ,1) in the region 0 < Θ < π (π < Θ < 2π). Maximal entanglement emerges at Θ = π/2 and 3π/2, which corresponds to the
maximal synthetic magnetism. In particular, all the studied types of optomechanical entanglement become much weaker near
Θ = nπ for an integer n, corresponding to the absence of the synthetic magnetism in the system.

Below, we study how to protect fragile quantum resources from environmental thermal noise by introducing the synthetic
magnetism in the nondegenerete-mechanical-mode case. We plot the logarithmic negativity EN , j as functions of the modulation
phase Θ and the thermal excitations n̄ of the mechanical modes, as shown in Fig. S8. We can see from Figs. S8(a) and S8(b) that,
for a given value of n̄, the logarithmic negativities EN ,1 and EN ,2 depend on the phase angle Θ. In particular, we have confirmed
that, corresponding to a stronger synthetic magnetism, a larger noise tolerance of the quantum entanglement can be obtained [see
Figs. S8(a) and S8(b)]. Namely, the maximal synthetic magnetism (i.e., Θ = π/2 and 3π/2) leads to the maximal entanglement.
These results indicate that, the phase-dependent phonon-hopping interaction (synthetic magnetism) provides a feasible way to
protect fragile quantum resources and build noise-tolerant quantum devices. For example, we can see from Fig. S8(c) that the
threshold of the quantum entanglement EN , j=1,2 can be increased by introducing the phase-dependent phonon-hopping coupling
(i.e., the phase in a loop coupling leads to a synthetic magnetism).

3. Entanglement in the blue-detuning regime

In the above subsections, the effect of the synthetic magnetism on the light-vibration entanglement in the red-detuning regime
has been studied in detail. Now, we study the dependence of the optomechanical entanglement on the synthetic magnetism in
the blue-detuning regime, when the synthetic magnetism is either off or on.

To this end, we plot in Fig. S9 the bipartite entanglement measures EN , j=1,2 of the jth vibrational mode with the cavity-
field mode as functions of the driving detuning ∆, with and without the synthetic magnetism. We find that when the synthetic
magnetism is off, there exists a valley (see lower solid curves) around the blue-sideband resonance (i.e., ∆ ≈ −ωm). However,
when turning on the synthetic magnetism, the valley is changed to two peaks around ∆ ≈ −ωm (see the dashed curves). This
means that around the blue-sideband resonance, the light-vibration entanglement is suppressed in the absence of the synthetic
magnetism. When the synthetic magnetism is present, the light-vibration entanglement is enhanced around the blue-sideband
resonance. Physically, the introducing synthetic magnetism leads to the breaking of the dark-mode effect, and then it enhances the
light-vibration entanglement. Our findings indicate that by introducing the synthetic magnetism, fragile quantum entanglement
can be effectively engineered and protected in the blue-detuning regime.

III. DARK MODES AND THEIR BREAKING IN AN OPTOMECHANICAL NETWORK

In this section, we study the dark-mode effect in an optomechanical network, which consists of an optical mode coupled to
N (N ≥ 3) vibrational modes. The nearest-neighboring vibrational modes are coupled to each other through phase-dependent
phonon-exchange interactions. For convenience, we here consider the case where there is no interaction between the first



14

and last mechanical modes. In a rotating frame defined by the transformation operator exp(−iωLa†at), the Hamiltonian of the
optomechanical network reads

HI = ∆cc†c +

N∑
j=1

ω jd
†

j d j +

N∑
j=1

g jc†c(d j + d†j ) + (Ωc + Ω∗c†) +

N−1∑
j=1

χ j(eiΘ j d†j d j+1 + H.c.), (S50)

where ∆c = ωc−ωL is the driving detuning of the cavity-field resonance frequency ωc with respect to the driving-laser frequency
ωL. The operators c (c†) and d j (d†j ) are, respectively, the annihilation (creation) operators of the cavity-field mode and the
jth vibrational mode (with resonance frequency ω j). The optomechanical interactions between the cavity mode and the jth
vibrational mode are described by the g j terms (with g j being the single-photon optomechanical-coupling strength). The cavity-
field driving is denoted by the Ω term (with Ω being the driving-laser amplitude). To induce synthetic gauge fields in this system,
we introduce the phase-dependent phonon-exchange interactions between the nearest-neighboring vibrational modes, with the
coupling strength χ j and the phase Θ j.

By phenomenologically adding the damping and noise terms into the Heisenberg equations obtained based on the Hamiltonian
in Eq. (S50), the quantum Langevin equations for the operators of the optical and mechanical modes are obtained as:

ċ = −ic[∆c +

N∑
j=1

g j(d j + d†j )] − iΩ − κc +
√

2κcin,

ḋ1 = −(γ1 + iω1)d1 − ig1c†c − iχ1eiΘ1 d2 +
√

2γ1d1,in,

ḋ j∈[2,N−1] = −(γ j + iω j)d j − ig jc†c − iχ j−1e−iΘ j−1 d j−1 − iχ jeiΘ j d j+1 +

√
2γ jd j,in,

ḋN = −(γN + iωN)dN − igNc†c − iχN−1e−iΘN−1 dN−1 +
√

2γNdN,in. (S51)

We also consider the strong-driving regime of the cavity field such that the average photon number in the cavity is sufficiently
large. Then the linearization procedure can be used to simplify the physical model. To this end, we express the operators in
Eq. (S51) as the sum of their steady-state mean values and quantum fluctuations, namely o = 〈o〉ss + δo for operators c, c†,
d j∈[1,N], and d†j .

By separating the classical motion of the system from its quantum fluctuations, the classical motion equations take the form
as:

d
dt
〈c〉 = −

κ + i

∆c +

N∑
j=1

g j(〈d j〉 + 〈d
†

j 〉)


 〈c〉 − iΩ,

d
dt
〈d1〉 = −(γ1 + iω1)〈d1〉 − ig1〈c†〉〈c〉 − iχ1eiΘ1〈d2〉,

d
dt
〈d j∈[2,N−1]〉 = −(γ j + iω j)〈d j〉 − ig j〈c†〉〈c〉 − iχ j−1e−iΘ j−1〈d j−1〉 − iχ jeiΘ j〈d j+1〉,

d
dt
〈dN〉 = −(γN + iωN)〈dN〉 − igN〈c†〉〈c〉 − iχN−1e−iΘN−1〈dN−1〉. (S52)

The steady-state mean values of the dynamical variables are obtained as:

〈c〉ss =
−iΩ

κ + i
[
∆c +

∑N
j=1 g j(〈d j〉ss + 〈d†j 〉ss)

] ,
〈d1〉ss =

−ig1〈c†〉ss〈c〉ss − iχ1eiΘ1〈d2〉ss

γ1 + iω1
,

〈d j∈[2,N−1]〉ss =
−ig j〈c†〉ss〈c〉ss − iχ j−1e−iΘ j−1〈d j−1〉ss − iχ jeiΘ j〈d j+1〉ss

γ j + iω j
,

〈dN〉ss =
−igN〈c†〉ss〈c〉ss − iχN−1e−iΘN−1〈dN−1〉ss

(γN + iωN)
. (S53)
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The linearized equations of motion for the quantum fluctuations are given by:

δċ = −(κ + i∆)δc − i〈c〉ss

N∑
j=1

g j(δd j + δd†j ) +
√

2κcin,

δḋ1 = −(γ1 + iω1)δd1 − ig1〈c†〉ssδc − ig1〈c〉ssδc† − iχ1eiΘ1δd2 +
√

2γ1d1,in,

δḋ j∈[2,N−1] = −(γ j + iω j)δd j − ig j〈c†〉ssδc − ig j〈c〉ssδc† − iχ j−1e−iΘ j−1δd j−1 − iχ jeiΘ jδd j+1 +

√
2γ jd j,in,

δḋN = −(γN + iωN)δdN − igN〈c†〉ssδc − igN〈c〉ssδc† − iχN−1e−iΘN−1δdN−1 +
√

2γNdN,in. (S54)

Based on Eqs. (S54), we apply a procedure similar to that used in the two-mechanical-mode case to infer a linearized
optomechanical Hamiltonian governing the evolution of the quantum fluctuations. In the N-mechanical-mode case, the linearized
optomechanical Hamiltonian takes the form

HI = ∆δc†δc + ω j
∑N

j=1 δd
†

jδd j +
∑N

j=1 G j(δc†δd j + δd†jδc) + Hmrc, (S55)

where ∆ = ∆c +
∑N

j=1 g j(〈d j〉ss + 〈d†j 〉ss) is the normalized driving detuning after the linearization procedure, and G j = g j〈c〉ss is
the linearized optomechanical-coupling strength between the jth mechanical mode and the cavity-field mode. The last term in
Eq. (S55) is given by

Hmrc =
∑N−1

j=1 H j, (S56)

where the subscript “mrc” stands for the mechanical-resonator coupling of the Hamiltonian, and

H j = χ j(e−iΘ jδd jδd
†

j+1 + eiΘ jδd j+1δd
†

j ), (S57)

describes the phonon-exchange interaction between the jth and ( j + 1)th mechanical modes.
In order to investigate the dark-mode effect in the N-mechanical-mode optomechanical system, we first consider the case

where the phase-dependent phonon-exchange interaction is absent, i.e., Hmrc = 0. For convenience, we assume that all the
mechanical modes have the same resonance frequencies (ω j = ωm) and optomechanical-coupling strengths (G j = G).

In this system, there exists a single bright mode

B =
1
√

N

N∑
j=1

δd j, (S58)

and N − 1 dark modes, which decouple from both the bright mode and the cavity-field mode, with the lth dark mode expressed
as

Dl∈[1,N−1] =
1
√

N

N∑
j=1

δd je2πi( j− N+1
2 )l/N . (S59)

To break the dark-mode effect in the N-mechanical-mode optomechanical system, we introduce the phase-dependent phonon-
exchange interaction Hmrc, which, in combination with optomechanical couplings, is used to form a loop-coupled configuration
and induce the synthetic magnetism. Without loss of generality, we assume that all the coupling strengths of the phonon-
exchange interactions are the same, χ j = χ. Thus, we diagonalize the Hamiltonian of these coupled mechanical resonators to
get

Hmrt = ωm

N∑
j=1

δd†jδd j + χ

N−1∑
j=1

(e−iΘ jδd jδd
†

j+1 + eiΘ jδd j+1δd
†

j ) =

N∑
k=1

ΩkD†k Dk, (S60)

where the subscript “mrt” stands for the mechanical-resonator terms of the Hamiltonian, and Dk is the kth mechanical normal
mode with the resonance frequency

Ωk = ωm + 2χ cos
(

kπ
N + 1

)
, k = 1, 2, 3, · · · ,N. (S61)

The mechanical modes δd j and the normal modes Dk are related by

δd j =

{ 1
A
∑N

k=1 sin
(

kπ
N+1

)
Dk, j = 1,

1
A e−i

∑ j−1
ν=1 Θν

∑N
k=1 sin

(
jkπ

N+1

)
Dk, j ≥ 2,

(S62)
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where we introduce the parameter A =
√

(N + 1)/2. The Hamiltonian in Eq. (S55) can be rewritten with these mechanical
normal modes as

HI = ∆δc†δc +
∑N

k=1 ΩkD†k Dk + Hom, (S63)

where the optomechanical-coupling Hamiltonian Hom reads

Hom =

N∑
k=1

G
A

sin
(

kπ
N + 1

)
+

N∑
j=2

ei
∑ j−1
ν=1 Θν sin

(
jkπ

N + 1

) cD†k + H.c. (S64)

It can be seen from Eq. (S64) that the total effect of these phases in the optomechanical interactions is simply determined by
the sum

∑ j−1
ν=1 Θν. Hence, we can apply a single phase to induce the DMB mechanism. For simplicity, we assume Θ j = 0 for

j = 2, · · · ,N − 1 in the following discussions.
As a special case, we first analyze the case of N = 2, where the multiple-mechanical-mode optomechanical system is reduced

to the two-mechanical-mode optomechanical system, which has been analyzed before. Here, the optomechanical-interaction
Hamiltonian Eq. (S64) becomes

Hom =

√
2G
2

(1 + eiΘ1 )cD†1 +

√
2G
2

(1 − eiΘ1 )cD†2 + H.c.. (S65)

It is obvious that when Θ = nπ for an integer n, the cavity field is decoupled from one of the two hybrid mechanical modes:
either D1 or D2. This hybrid mechanical mode, decoupled from the cavity mode, is a dark mode. However, in a general case
Θ , nπ, the dark-mode effect is broken, and then the dark-mode-immune optomechanical entanglement becomes accessible
under proper parameter conditions.

For the case of N ≥ 3, the coupling Hamiltonian Hck between the cavity-field mode c and the kth normal mode Dk can be
expressed based on Eq. (S64) as

Hck = G(k)
eff

(N)cD†k + H.c., (S66)

where the effective coupling coefficient G(k)
eff

(N) in Eq. (S66), between the cavity-field mode c and the kth normal mode Dk, can
be expressed as

G(k)
eff

(N) =
G
A

sin
(

kπ
N + 1

)
+

N∑
j=2

ei
∑ j−1
ν=1 Θν sin

(
jkπ

N + 1

) . (S67)

For convenience, we consider the case of Θ j = 0 for j = 2, · · · , (N − 1), then Eq. (S67) is reduced to

G(k=odd)
eff

(N = odd) =
G
A

[
(1 + eiΘ1 ) sin

(
kπ

N + 1

)
+ 2eiΘ1 sin

(
2kπ

N + 1

)
+ 2eiΘ1 sin

(
3kπ

N + 1

)
+ · · · + 2eiΘ1 sin

(
(N − 1)kπ
2(N + 1)

)
+ eiΘ1 sin

(
kπ
2

) ]
, (S68)

G(k=even)
eff

(N = odd) =
G
A

(
1 − eiΘ1

)
sin

(
kπ

N + 1

)
, (S69)

G(k=odd)
eff

(N = even) =
G
A

[
(1 + eiΘ1 ) sin

(
kπ

N + 1

)
+ 2eiΘ1 sin

(
2kπ

N + 1

)
+ 2eiΘ1 sin

(
3kπ

N + 1

)
+ · · · + 2eiΘ1 sin

(
Nkπ

2(N + 1)

) ]
, (S70)

G(k=even)
eff

(N = even) =G(k=even)
eff

(N = odd). (S71)

According to Eqs. (S68)- (S71), we can see that for odd numbers k, the effective coupling strength, between the cavity-field
mode c and the kth normal mode Dk, is nonzero, i.e.,

G(k=odd)
eff

(N) , 0. (S72)

However, for even numbers k, the coupling strength can be expressed as

G(k=even)
eff

(N) =
G
A

(
1 − eiΘ1

)
sin

(
kπ

N + 1

)
. (S73)
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TABLE I: Correspondence of the effective coupling coefficient G(k)
eff

(N) [see Eq. (S67)] between the cavity-field mode c and the kth normal
mode Dk in various cases when Θ j = 0 for j ∈ {2, 3, 4, · · · ,N − 1}. We also present the parameter conditions for the dark-mode breaking and
the entanglement generation.

Odd N Even N

Θ ≠2n

Θ =2n

Odd k Even k Odd k Even k

≠0G
(k)

eff ≠0G
(k)

eff ≠0G
(k)

eff ≠0G
(k)

eff

≠0G
(k)

eff ≠0G
(k)

eff=0G
(k)

eff =0G
(k)

eff

[Eq. (S73)] [Eq. (S74)] [Eq. (S75)] [Eq. (S76)]

Dark-mode 
breaking

Yes

No

Entanglement
generation

Yes

No

[Figs. S10-S11]

1

1

We can simply see from Eqs. (S66) and (S73) that, when

Θ1 = 2nπ, (S74)

the effective coupling strength between the even mechanical normal mode Dk=even and the cavity mode c is equal to zero, i.e.,

G(k=even)
eff

(N) = 0. (S75)

In this case, all the even normal modes are decoupled from the cavity field (see Table I). Then optomechanical entanglement
cannot be generated in this system due to the dark-mode effect. Thus, these (N−1) dark modes in such optomechanical networks
can be broken by tuning the modulation phase (see Table I)

Θ1 , 2nπ. (S76)

This provides the possibility of switching a bosonic-network device between the DMB and DMU regimes.

IV. GENERATION OF QUANTUM ENTANGLEMENT IN OPTOMECHANICAL NETWORKS VIA SYNTHETIC
MAGNETISM

In this section, we generalize the DMB mechanism induced by the synthetic magnetism to generate entangled optomechanical
networks, which consists of a single cavity field cptomechanically coupled to N degenerate vibrational modes.

A. Logarithmic negativity

We introduce the optical and mechanical quadratures and the corresponding Hermitian input noise operators:

δXo = (δo† + δo)/
√

2, δYo = i(δo† − δo)/
√

2,

Xin
o = (δo†in + δoin)/

√
2, Y in

o = i(δo†in − δoin)/
√

2, (S77)
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for o = c, d1, · · · , dN , then the linearized Langevin equations given in (S54) for N = 5 can be rewritten as:

δẊc = − κδXc + ∆δYc +
√

2κXin
c ,

δẎc = − ∆δXc − κδYc − 2G1δXd1 − 2G2δXd2 − 2G3δXd3 − 2G4δXd4 − 2G5δXd5 +
√

2κY in
c ,

δẊd1 = − γ1δXd1 + ω1δYd1 + χ1 sin Θ1δXd2 + χ1 cos Θ1δYd2 +
√

2γ1Xin
d,1,

δẎd1 = − ω1δXd1 − γ1δYd1 − 2G1δXc − χ1 cos Θ1δXd2 + χ1 sin Θ1δYd2 +
√

2γ1Y in
d,1,

δẊd2 = − γ2δXd2 + ω2δYd2 − χ1 sin Θ1δXd1 + χ1 cos Θ1δYd1 + χ2 sin Θ2δXd3 + χ2 cos Θ2δYd3 +
√

2γ2Xin
d,2,

δẎd2 = − ω2δXd2 − γ2δYd2 − 2G2δXc − χ1 cos Θ1δXd1 − χ1 sin Θ1δYd1 − χ2 cos Θ2δXd3 + χ2 sin Θ2δYd3 +
√

2γ2Y in
d,2,

δẊd3 = − γ3δXd3 + ω3δYd3 − χ2 sin Θ2δXd2 + χ2 cos Θ2δYd2 + χ3 sin Θ3δXd4 + χ3 cos Θ3δYd4 +
√

2γ3Xin
d,3,

δẎd3 = − ω3δXd3 − γ3δYd3 − 2G3δXc − χ2 cos Θ2δXd2 − χ2 sin Θ2δYd2 − χ3 cos Θ3δXd4 + χ3 sin Θ jδYd4 +
√

2γ3Y in
d,3,

δẊd4 = − γ4δXd4 + ω4δYd4 − χ3 sin Θ3δXd3 + χ3 cos Θ3δYd3 + χ4 sin Θ4δXd5 + χ4 cos Θ4δYd5 +
√

2γ4Xin
d,4,

δẎd4 = − ω4δXd4 − γ4δYd4 − 2G4δXc − χ3 cos Θ3δXd3 − χ3 sin Θ3δYd3 − χ4 cos Θ4δXd5 + χ4 sin Θ4δYd5 +
√

2γ4Y in
d,4,

δẊd5 = − γ5δXd5 + ω5δYd5 − χ4 sin Θ4δXd4 + χ4 cos Θ4δYd4 +
√

2γ5Xin
d,5,

δẎd5 = − ω5δXd5 − γ5δYd5 − 2G5δXc − χ4 cos Θ4δXd4 − χ4 sin Θ4δYd4 +
√

2γ5Y in
d,5. (S78)

We proceed to rewrite all the equations in (S78) as the following compact form

˙̃u(t) = Ãũ(t) + Ñ(t), (S79)

where we induce the fluctuation operator vector

ũ(t) = [δXc, δYc, δXd1 , δYd1 , δXd2 , δYd2 , δXd3 , δYd3 , δXd4 , δYd4 , δXd5 , δYd5 ]T , (S80)

the noise operator vector

Ñ(t) =
√

2[
√
κXin

c ,
√
κY in

c ,
√
γ1Xin

d,1,
√
γ1Y in

d,1,
√
γ2Xin

d,2,
√
γ2Y in

d,2,
√
γ3Xin

d,3,
√
γ3Y in

d,3,
√
γ4Xin

d,4,
√
γ4Y in

d,4,
√
γ5Xin

d,5,
√
γ5Y in

d,5]T ,

(S81)

and the coefficient matrix

Ã =



−κ ∆ 0 0 0 0 0 0 0 0 0 0
−∆ −κ −2G1 0 −2G2 0 −2G3 0 −2G4 0 −2G5 0
0 0 −γ1 ω1 χ1+ χ1− 0 0 0 0 0 0
−2G1 0 −ω1 −γ1 −χ1− χ1+ 0 0 0 0 0 0

0 0 −χ1+ χ1− −γ2 ω2 χ2+ χ2− 0 0 0 0
−2G2 0 −χ1− −χ1+ −ω2 −γ2 −χ2− χ2+ 0 0 0 0

0 0 0 0 −χ2+ χ2− −γ3 ω3 χ3+ χ3− 0 0
−2G3 0 0 0 −χ2− −χ2+ −ω3 −γ3 −χ3− χ3+ 0 0

0 0 0 0 0 0 −χ3+ χ3− −γ4 ω4 χ4+ χ4−
−2G4 0 0 0 0 0 −χ3− −χ3+ −ω4 −γ4 −χ4− χ4+

0 0 0 0 0 0 0 0 −χ4+ χ4− −γ5 ω5
−2G5 0 0 0 0 0 0 0 −χ4− −χ4+ −ω5 −γ5



, (S82)

with χ j+ = χ j sin Θ j and χ j− = χ j cos Θ j for j = 1, · · · , 5. The formal solution of the linearized Langevin equation (S79) is
given by

ũ(t) = M̃(t)ũ(0) +

∫ t

0
M̃(t − s)Ñ(s)ds, (S83)

where M̃(t) = exp(Ãt). In the following calculations, we set all the parameters to satisfy the stability conditions, which are
derived based on the Routh-Hurwitz criterion [S16], i.e., the real parts of all the eigenvalues of Ã are negative.

For studying the quantum entanglement between the optical mode and the vibrational modes in the optomechanical networks,
we focus on calculating the steady-state value of the covariance matrix Ṽ, which is defined by the matrix elements

Ṽkl =
1
2

[〈ũk(∞)ũl(∞)〉 + 〈ũl(∞)ũk(∞)〉], (S84)
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FIG. S10: Optomechanical entanglement EN , j between the cavity-field mode c and the jth mechanical mode d j versus the effective driving
detuning ∆ in the DMU (χ j = 0, solid curves) and DMB (χ j/ωm = 0.1 and Θ1 = π, Θ j∈[2,N−1] = 0, marked by symbols) regimes for (a) N = 4
and (b) N = 5. Other parameters are the same as those in Fig. S3.

for k, l = 1, 2, · · · , 12. Under the stability condition, the covariance matrix Ṽ fulfills the Lyapunov equation

ÃṼ + ṼÃT = −Q̃, (S85)

where

Q̃ = diag{κ, κ, γ1(2n̄1 + 1), γ1(2n̄1 + 1), γ2(2n̄2 + 1), γ2(2n̄2 + 1), · · · , γ5(2n̄5 + 1), γ5(2n̄5 + 1)}, (S86)

which is defined by

Q̃ = (C̃ + C̃T )/2, (S87)

where C̃ is the noise correlation matrix, defined by the matrix elements

〈Ñk(s)Ñl(s′)〉 = C̃k,lδ(s − s′). (S88)

By using the logarithmic negativity EN , j, as shown in Eq. (S34), we can quantify the optomechanical entanglement between the
optical mode c and the jth mechanical mode d j.

B. Optomechanical entanglement networks

We generalize our approach to generate the light-vibration entanglement in an optomechanical-network system, where an
optical mode couples to N ≥ 3 mechanical resonators (MRs) via the optomechanical interactions, and the nearest-neighbour
mechanical modes are coupled through the phase-dependent phonon-exchange couplings. We have confirmed that the function of
these phases is governed by the term

∑ j−1
ν=1 Θν ( j = 2, · · · ,N), and hence, for convenience, we assume Θ1 = π and Θ j∈[2,(N−1)] = 0

in our simulations.
We demonstrate that, when the synthetic magnetism is absent (i.e., Hpec = 0), there only a single bright mode B+ =∑N
j=1 δd j/

√
N is induced and (N−1) dark modes are decoupled from the optical mode, and that owing to the synthetic magnetism

(the DMB mechanism), all the dark modes can be broken by tuning
In this Section, we study the generation of optomechanical entanglement in the optomechanical networks for the cases of

N = 4 and 5. For convenience, we assume that all the mechanical modes have the same resonance frequencies (ω j = ωm for
j = 1, · · · ,N), the optomechanical-coupling strengths (G j = G for j = 1, · · · ,N), and the mechanical-coupling strengths [χ j = χ
for j = 1, · · · , (N − 1)].

To study the dependence of the light-vibration entanglement on the parameters of the system, we show in Figs. S10(a)
and S10(b) the optomechanical entanglement measure EN , j of the optical mode with the jth MR as functions of the driving
detuning ∆, when the system works in both the DMU and DMB regimes. We reveal that light and all the MRs are separable
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FIG. S11: (a,b) Optomechanical entanglement measure EN , j versus (a) the phonon-hopping coupling strength χ j when the modulation phase
Θ1 = π, and (b) Θ1 when χ j/ωm = 0.1, for N = 4. (c,d) EN , j versus (c) χ j when Θ1 = π, and (d) Θ1 when χ j/ωm = 0.1, for N = 5. Here we set
n̄ j = 10, and other parameters are the same as those in Fig. S3.

(EN , j = 0, see the lower horizontal solid lines) in the DMU regime, but entangled (EN , j > 0, see the upper dashed curves) in
the DMB regime. This is because in the DMU regime, the thermal excitaions concealed in the dark modes cannot be extracted
by the optomechanical cooling channel, and it destroys all the quantum entanglement. However, in the DMB regime, quantum
entanglement can be achieved around the red-sideband resonance (∆ ≈ ωm), corresponding to the optimal cooling. Physically,
the resulting synthetic magnetism leads to the breaking of all the dark modes, and makes the light-vibration entangled networks
feasible. This indicates that dark-mode-immune entangled networks can be realized by applying the DMB mechanism to the
optomechanical networks.

Since the synthetic magnetism (DMB mechanism) plays a critical role in the generation of the dark-mode-immune
entanglement networks, the dependence of the entanglement networks on the parameters χ and Θ1 of the synthetic magnetism
should be studied in detail. In Fig. S11, we plot the logarithmic negativities EN , j as functions of the mechanical-coupling
strength χ and the modulation phase Θ1 when the system works in the DMB regime. We can see from Figs. S11(a) and S11(c)
that the light-vibration entanglement can be generated by tuning the mechanical coupling χ when Θ1 = π, and that the number
of the entanglement channels is equal to the number of the mechanical modes. This indicates that the entangled light-vibration
networks can be prepared by breaking the dark-mode effect.

In addition, we find from Figs. S11(a) and S11(c) that, in the absence of the synthetic magnetism (i.e., χ = 0), there is no
optomechanical entanglement because the system possesses the dark modes and the thermal noise in these dark modes destroys
all the quantum correlations. In contrast to this, when we introduce the synthetic magnetism, light and all the vibrational modes
become strongly entangled owing to the breaking of the dark modes. Moreover, the maximal optomechanical entanglement can
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be observed for χ ≈ 0.15ωm when Θ1 = π. Physically, the application of the synthetic magnetism provides the physical origin for
breaking the dark-mode effect and generating optomechanical entanglement. These results show a clear perspective for creating
quantum resources against the dark-mode effect.

Moreover, we find from Figs. S11(b) and S11(d) that the optomechanical entanglement is generated in the region 0 < Θ1 < 2π,
and that the maximal entanglement emerges around Θ1 ≈ π. Additionally, light and all the vibrations are disentangled (i.e.,
EN , j = 0) around Θ1 ≈ 2nπ for an integer n, which corresponds to the emergence of the dark-mode effect. Hence it is possible
to flexibly switch the dark-mode immune entanglement on and off on demand by tuning the modulation phase Θ1. These
results indicate that dark-mode-immune entangled optomechanical networks can be realized by using the DMB mechanism
to optomechanical networks. Our findings enable constructing large-scale entangled networks and switches with dark-mode
immunity and noise tolerance, and open up a range of exciting opportunities for quantum information processing and quantum
metrology with tolerance against the dark modes.

V. DISCUSSIONS ON THE EXPERIMENTAL REALIZATIONS OF OUR PHYSICAL MODEL

The proposed physical model is general and hence it can be implemented using optomechanical platforms in which the
involved interactions can be realized. To generate both the dark-mode-immune and noise-tolerant entanglement, our model
relies on two kinds of interactions: one is the in-parallel optomechanical interactions between the optical mode and multiple
vibrational modes, and the other type is a phase-dependent phonon-hopping interaction (i.e., the phase in a loop coupling leads
to an effective synthetic magnetism) between a pair of nearest-neighboring vibrational modes. Therefore, the two kinds of
interactions could be implemented in our candidate experimental systems. It should be pointed out that, though until now the
two kinds of couplings have been realized in separate experiments, the implementation of these two kinds of couplings in the
same experimental setup has not been reported yet. Nevertheless, we are positive that the two kinds of interactions can be
implemented in our system under current or near-future experimental conditions. Note that experimental capabilities in this field
have improved enormously over the past decade and will continue to improve enormously over the next decade, allowing vastly
improved experimental possibilities.

Currently, the in-parallel optomechanical couplings have been experimentally implemented in both optical [S23–S25] and
microwave [S2, S5, S26–S29] domains. In the optical domain, the in-parallel optomechanical couplings can be experimentally
implemented using either the “membrane-in-the-middle” optomechanical systems [S23, S24] or the multi-membrane Fabry-
Pérot-cavity optomechanical configurations [S25]. In the microwave domain, one can use a microwave-frequency realization
of cavity optomechanical systems involving multiple micromechanical drum oscillators and a superconducting on-chip circuit
acting as an electromagnetic cavity [S2, S5, S26–S29]. The vibration of the mechanical resonators affect the total capacitance
and thus modulate the frequency of the cavity. This creates the in-parallel optomechanical interactions similar to those between
a cavity mode and multiple resonators in an optical cavity [S2, S5, S26–S29].

The phase-dependent phonon-hopping coupling between the nearest-neighboring mechanical resonators could be
implemented by using either photonic-crystal optomechanical-cavity systems [S10] or circuit electromechanical systems [S2,
S5, S26–S29]. In the photonic-crystal optomechanical-cavity setup, this phonon-hopping coupling can be induced by using two
auxiliary cavity fields (see Sec. V A). In the circuit electromechanical system, this phonon-hopping coupling can be indirectly
induced by coupling the two mechanical resonators to a superconducting charge qubit (see Sec. V B).

Based on the above-mentioned experimental advances in both the in-parallel optomechanical couplings and phase-dependent
phonon-hopping interactions, we propose to implement our physical model using either a photonic-crystal optomechanical-
cavity system [S10] (as shown in Fig. S12) or a circuit electromechanical system (as shown in Fig. S15). Below, we present
detailed discussions on the experimental implementations of our scheme in the above-mentioned two setups. In particular, we
present some parameter analyses and numerical simulations to demonstrate that the proposed phenomena are relevant for the
state-of-the-art experiments based on these two platforms.

A. Experimental realization of the proposed model based on the photonic-crystal optomechanical system

Recently, the synthetic magnetism has been reported in a photonic-crystal optomechanical-cavity setup with both optical and
mechanical couplings between two optomechanical cavities [S10]. Motivated by this experimental advance, we propose to
implement our physical model using this photonic-crystal optomechanical system. Specifically, we present a detailed derivation
of an effective Hamiltonian from the original Hamiltonian based on the photonic-crystal optomechanical-cavity platform. Note
that the validity of the effective Hamiltonian has been confirmed by checking the consistence of the induced physical effects.
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FIG. S12: (a) A proposed implementation of our model and the effective synthetic magnetic field based on a photonic-crystal optomechanical
circuit, which could be fabricated from a silicon-on-insulator microchip, consisting of left and right nanobeam optomechanical-crystal cavities
with a central unpatterned nanobeam waveguide connecting two optomechanical cavities. The left and right optical couplers are each fed by an
adiabatic fiber-to-chip coupler, and they are used for evanescently coupling light into either of the two optical cavities. (b) This optomechanical
circuit can be reduced to a four-mode optomechanical system, where the two optical modes (c and a) are coupled to each other through a
photon-hopping coupling J, and the two vibrational modes (d1 and d2) are coupled to each other via a phonon-hopping at a rate V , with J and
V set to be real for an appropriate choice of gauge. (c) By adiabatically eliminating the auxiliary cavity-field mode a in the large-detuning
regime, the model in (b) can be reduced to a three-mode loop-coupled optomechanical system consisting of two coupled mechanical modes (d1

and d2) coupled to a single cavity-field mode (c). Pumping of the optomechanical cavities with phase-correlated lasers results in an effective
synthetic magnetic field.

1. Detailed derivation of the effective Hamiltonian Heff

Based on a four-mode photonic-crystal optomechanical-cavity system, our physical model can be effectively derived
by adiabatically eliminating a single cavity-field mode in the large-detuning regime. Thus, we first consider an original
physical system, where both the optical and mechanical interactions are induced between the two optomechanical cavities [see
Fig. S12(a)], and the Hamiltonian of the system reads

H = ωcc†c + ωaa†a + ω1d†1d1 + ω2d†2d2 + gcc†c(d†1 + d1) + gaa†a(d†2 + d2) + J(c†a + a†c)

+V(d†1d2 + d†2d1) + (ΩcceiωL,ct + Ω∗cc†e−iωL,ct) + (ΩaaeiωL,at + Ω∗aa†e−iωL,at), (S89)

where c† (c), a† (a), and d†j (d j) are the creation (annihilation) operators of the two optical modes (with resonance frequencies ωc

and ωa) and the jth vibrational mode (with resonance frequency ω j), respectively. The gc and ga terms describe optomechanical
interactions between the cavity-field mode and the vibratinal modes, with gc and ga being the single-photon optomechanical-
coupling strengths. The J and V terms are, respectively, the photon-hopping and phonon-hopping interactions, while the Ωc and
Ωa terms describe the cavity-field drivings for the two cavities.

In the rotating frame defined by the unitary transformation operator exp[−i(ωL,aa†a + ωL,cc†c)t] under ωL,a = ωL,c, the
Hamiltonian in Eq. (S89) becomes

HI = ∆cc†c + ∆aa†a + ω1d†1d1 + ω2d†2d2 + gc,1c†c(d†1 + d1) + gaa†a(d†2 + d2)

+J(c†a + a†c) + V(d†1d2 + d†2d1) + (Ωcc + Ω∗cc†) + (Ωaa + Ω∗aa†), (S90)

where ∆k=a,c = ωk −ωL,k denotes the cavity-field driving detuning of the kth cavity. By phenomenologically adding the damping
and noise terms into the Heisenberg equations, obtained using the Hamiltonian in Eq. (S90), we obtain the quantum Langevin
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equations for the operators of the optical and mechanical modes:

ċ = −i∆cc − igcc(d†1 + d1) − iJa − iΩ∗c − κcc +
√

2κccin,

ȧ = −i∆aa − igaa(d†2 + d2) − iJc − iΩ∗a − κaa +
√

2κaain,

ḋ1 = −iω1d1 − igcc†c − iVd2 − γ1d1 +
√

2γ1d1,in,

ḋ2 = −iω2d2 − igaa†a − iVd1 − γ2d2 +
√

2γ2d2,in, (S91)

where the operators cin and d j=1,2,in are introduced in Eq. S3, and operator ain is input noise operator for the optical mode a.We
consider the strong-driving regime of the cavity fields, then the average photon number in the cavities can be sufficiently large.
In this case, we can use the linearization procedure to simplify the physical model. To this end, we express the operators in
Eq. (S91) as the sum of their steady-state mean values and quantum fluctuations, namely o = 〈o〉ss + δo for operators o = a, a†,
c, c†, d j=1,2, and d†j=1,2. We can separate the classical motions from the quantum fluctuations, and then the equations take the
form as:

d
dt
〈c〉 = −(κc + i∆

′

c) 〈c〉 − iJ 〈a〉 − iΩ∗c,

d
dt
〈a〉 = −(κa + i∆

′

a) 〈a〉 − iJ 〈c〉 − iΩ∗a,

d
dt
〈d1〉 = − (γ1 + iω1) 〈d1〉 − igc〈c†〉 〈c〉 − iV 〈d2〉 ,

d
dt
〈d2〉 = − (γ2 + iω2) 〈d2〉 − iga〈a†〉 〈a〉 − iV 〈d1〉 . (S92)

Based on Eq. (S92), the steady-state mean values of the dynamical variables are:

〈c〉ss =
iJ 〈a〉ss + iΩ∗c
−

(
κc + i∆′c

) , 〈a〉ss =
iJ 〈c〉ss + iΩ∗a
−

(
κa + i∆′a

) ,
〈d1〉ss =

igc〈c†〉ss 〈c〉ss + iV 〈d2〉ss

− (γ1 + iω1)
, 〈d2〉ss =

iga〈a†〉ss 〈a〉ss + iV 〈d1〉ss

− (γ2 + iω2)
, (S93)

where we introduce the effective driving detuning of the two cavity fields ∆
′

c = ∆c +gc(〈d†1〉+ 〈d1〉) and ∆
′

a = ∆a +ga(〈d†2〉+ 〈d2〉).
The linearized equations of motion for the quantum fluctuations are given by:

δċ = −(κc + i∆
′

c)δc − iGc(δd†1 + δd1) − iJδa +
√

2κccin,

δȧ = −(κa + i∆
′

a)δa − iGa(δd†2 + δd2) − iJδc +
√

2κaain,

δḋ1 = − (γ1 + iω1) δd1 − iGcδc† − iG∗cδc − iVδd2 +
√

2γ1d1,in,

δḋ2 = − (γ2 + iω2) δd2 − iGaδa† − iG∗aδa − iVδd1 +
√

2γ2d2,in, (S94)

where the effective optomechanical-coupling strengths between the first (second) mechanical resonator and the cavity-field mode
c (a) are, respectively, defined as: Gc = gc 〈c〉 and Ga = ga 〈a〉. Based on Eq. (S94), we obtain the linearized Hamiltonian

Hlin = ∆
′

cδc
†δc + ∆

′

aδa
†δa + ω1δd

†

1δd1 + ω2δd
†

2δd2 + J(δc†δa + δa†δc) + V(δd†1δd2 + δd†2δd1)

+(Gc,1δc† + G∗c,1δc)(δd†1 + δd1) + (Gaδa† + G∗aδa)(δd†2 + δd2). (S95)

In the rotating frame with respect to H0 = ∆
′

cδc
†δc + ∆

′

aδa
†δa + ω1δd

†

1δd1 + ω2δd
†

2δd2, the Hamiltonian becomes

H
′

I = J[δc†δaei(∆
′

c−∆
′

a)t + δa†δcei(∆
′

a−∆
′

c)t] + V[δd†1δd2ei(ω1−ω2)t + δd†2δd1ei(ω2−ω1)t]

+Gcδc†δd
†

1ei(∆
′

c+ω1)t + Gcδc†δd1ei(∆
′

c−ω1)t + G∗cδcδd
†

1e−i(∆
′

c−ω1)t

+G∗cδcδd1e−i(∆
′

c+ω1)t + Gaδa†δd
†

2ei(∆
′

a+ω2)t + Gaδa†δd2ei(∆
′

a−ω2)t

+G∗aδaδd
†

2e−i(∆
′

a−ω2)t + G∗aδaδd2e−i(∆
′

a+ω2)t. (S96)

To obtain the effective Hamiltonian describing our physical model, we consider the case of ∆
′

c = ω j=1,2, and then the Hamiltonian
in Eq. (S96) can be expressed as

H
′

I = H
′

0 +

3∑
n=1

(
hne−iω̃nt + h.c.

)
, (S97)
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where

H
′

0 = V(δd†1δd2 + δd†2δd1) + (Gcδc†δd1 + G∗cδcδd
†

1), (S98)

and

h1 = Jδc†δa + G∗aδaδd
†

2 , h2 = G∗cδcδd1, h3 = G∗aδaδd2,

ω̃1 = ∆
′

a − ω2, ω̃2 = ∆
′

c + ω1, ω̃3 = ∆
′

a + ω2. (S99)

In the large-detuning regime of the cavity-field mode a, we can adiabatically eliminate the cavity mode a and then obtain the
effective Hamiltonian [S33]

H
′

eff = H
′

0 +

3∑
n,m

1
ω̃+

n,m

[
h†m, hn

]
ei(ω̃m−ω̃n)t

= H
′

0 +
1
ω̃+

1,1

[
h†1, h1

]
ei(ω̃1−ω̃1)t +

1
ω̃+

2,1

[
h†1, h2

]
ei(ω̃1−ω̃2)t +

1
ω̃+

3,1

[
h†1, h3

]
ei(ω̃1−ω̃3)t

+
1
ω̃+

1,2

[
h†2, h1

]
ei(ω̃2−ω̃1)t +

1
ω̃+

2,2

[
h†2, h2

]
ei(ω̃2−ω̃2)t +

1
ω̃+

3,2

[
h†2, h3

]
ei(ω̃2−ω̃3)t

+
1
ω̃+

1,3

[
h†3, h1

]
ei(ω̃3−ω̃1)t +

1
ω̃+

2,3

[
h†3, h2

]
ei(ω̃3−ω̃2)t +

1
ω̃+

3,3

[
h†3, h3

]
ei(ω̃3−ω̃3)t, (S100)

By considering the resonance case (i.e., n = m), and dropping high-frequency components, the Hamiltonian in Eq. (S100)
becomes

H
′

eff ≈ H
′

0 +
1
ω̃+

1,1

[
h†1, h1

]
+

1
ω̃+

2,2

[
h†2, h2

]
+

1
ω̃+

3,3

[
h†3, h3

]
, (S101)

where

1
ω̃+

n,m
=

1
2

(
1
ω̃n

+
1
ω̃m

)
. (S102)

By pumping the optomechanical cavities with phase-correlated lasers, the linearized optomechanical-coupling strengths, with
the modulation phases, can be defined as

Gc = Gc,1eiΘ1 , for Gc,1 = gc|〈c〉ss|,

Ga = ga|〈a〉ss|eiΘ2 . (S103)

We consider the case of Θ1 = Θ and Θ2 = 0, then the effective Hamiltonian given in Eq. (S101) becomes

H
′

eff ≈ δωcδc†δc + δω1δd
†

1δd1 + δω2δd
†

2δd2 + V(δd†1δd2 + δd†2δd1)

+(Gc,1eiΘδc†δd1 + Gc,1e−iΘδcδd†1) + (Gc,2δc†δd2 + G∗c,2δcδd
†

2), (S104)

where δωc = − |Gc|
2 /(∆

′

c +ω1)− J2/(∆
′

a−ω2), δω1 = − |Gc|
2 /(∆

′

c +ω1), δω2 = −2 |Ga|
2 ∆

′

a/(∆
′2
a −ω

2
2), and Gc,2 = JGa/(ω2−∆

′

a).
By introducing a rotating operator R(Θ) = eiΘd†1d1 , the effective Hamiltonian present in Eq. (S104) becomes

H
′

eff ≈ δωcδc†δc + δω1δd
†

1δd1 + δω2δd
†

2δd2 + V(eiΘδd†1δd2 + e−iΘδd†2δd1)

+(Gc,1δc†δd1 + Gc,1δcδd
†

1) + (Gc,2δc†δd2 + G∗c,2δcδd
†

2). (S105)

In the original frame, it is seen that H
′

eff
is transformed to

Heff ≈ ∆̃
′

cδc
†δc + ω

′

1δd
†

1δd1 + ω
′

2δd
†

2δd2 + V(eiΘδd†1δd2 + e−iΘδd†2δd1)

+(Gc,1δc†δd1 + Gc,1δcδd
†

1) + (Gc,2δc†δd2 + G∗c,2δcδd
†

2), (S106)

where the effective driving detuning of the cavity mode c and the effective mechanical frequency of the jth mechanical resonator
are defined, respectively, as ∆̃

′

c = ∆
′

c+δωc andω
′

j = ω j+δω j. It is shown in Eq. (S106) that the proposed scheme and the synthetic
magnetism can be effectively realized by using current experimental conditions in the photonic-crystal optomechanical-cavity
systems, as shown in Fig. S12.
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2. Optomechanical entanglement in the photonic-crystal optomechanical system

In this section, we calculate optomechanical entanglement in the photonic-crystal optomechanical-cavity system (with it
making the approximations). We also compare these entanglement results with the supposed results (i.e., the entanglement
discussed in our three-mode case). The motivation for this comparison is to confirm that our supposed results can be obtained
in the photonic-crystal optomechanical setup. Specifically, we derive the steady-state variance matrix and adopt the logarithmic
negativity to quantify the optomechanical entanglement in the photonic-crystal optomechanical system. For the present system,
the linearized Langevin equations given in (S94) can be rewritten with the quadrature operators as:

δẊc = −κcδXc + ∆
′

cδYc + JδYa + i
(
G∗c −Gc

)
δXd1 +

√
2κcXin

c ,

δẎc = −∆
′

cδXc − κcδYc − JδXa −
(
Gc + G∗c

)
δXd1 +

√
2κcY in

c ,

δẊa = −κaδXa + ∆
′

aδYa + JδYc + i
(
G∗a −Ga

)
δXd2 +

√
2κaXin

a ,

δẎa = −∆
′

aδXa − κaδYa − JδXc −
(
G∗a + Ga

)
δXd2 +

√
2κaY in

a ,

δẊd1 = −γ1δXd1 + ω1δYd1 + VδYd2 +
√

2γ1Xin
d,1,

δẎd1 = −
(
Gc + G∗c

)
δXc − i

(
G∗c −Gc

)
δYc − ω1δXd1 − γ1δYd1 − VδXd2 +

√
2γ1Y in

d,1,

δẊd2 = −γ2δXd2 + ω2δYd2 + VδYd1 +
√

2γ2Xin
d,2,

δẎd2 = −G∗a (δXa + iδYa) −Ga (δXa − iδYa) − VδXd1 − ω2δXd2 − γ2δYd2 +
√

2γ2Y in
d,2, (S107)

We proceed to rewrite equations in (S107) as the following compact form

˙̃u(t) = Ãũ(t) + Ñ(t), (S108)

where we induce the fluctuation operator vector

ũ(t) = [δXc, δYc, δXa, δYa, δXd1 , δYd1 , δXd2 , δYd2 ]T , (S109)

the noise operator vector

Ñ(t) =
√

2[
√
κcXin

c ,
√
κcY in

c ,
√
κaXin

a ,
√
κaY in

a ,
√
γ1Xin

d,1,
√
γ1Y in

d,1,
√
γ2Xin

d,2,
√
γ2Y in

d,2]T , (S110)

and the coefficient matrix

Ã =



−κc +∆
′

c 0 J i
(
G∗c −Gc

)
0 0 0

−∆
′

c −κc −J 0 −
(
G∗c + Gc

)
0 0 0

0 J −κa ∆
′

a 0 0 i
(
G∗a −Ga

)
0

−J 0 −∆
′

a −κa 0 0 −
(
G∗a + Ga

)
0

0 0 0 0 −γ1 ω1 0 V
−

(
G∗c + Gc

)
−i

(
G∗c −Gc

)
0 0 −ω1 −γ1 −V 0

0 0 0 0 0 V −γ2 ω2
0 0 −

(
G∗a + Ga

)
−i

(
G∗a −Ga

)
−V 0 −ω2 −γ2


. (S111)

The formal solution of the linearized Langevin equation (S108) is given by

ũ(t) = M̃(t)ũ(0) +

∫ t

0
M̃(t − s)Ñ(s)ds, (S112)

where M̃(t) = exp(Ãt). In the following calculations, we set all the parameters to satisfy the stability conditions derived using
the Routh-Hurwitz criterion [S16]. This means that the real parts of all the eigenvalues of Ã are negative.

For studying the quantum entanglement between the optical mode and the vibrational modes in the photonic-crystal
optomechanical-cavity system, we focus on calculating the steady-state value of the covariance matrix Ṽ, which is defined
by the matrix elements

Ṽkl =
1
2

[〈ũk(∞)ũl(∞)〉 + 〈ũl(∞)ũk(∞)〉], (S113)

for k, l = 1, · · · , 8. Under the stability condition, the covariance matrix Ṽ fulfills the Lyapunov equation

ÃṼ + ṼÃT = −Q̃, (S114)
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FIG. S13: Optomechanical entanglement measures EN , j versus the driving detuning ∆/ωm in the DMU (χ = 0, see the lower horizontal lines
and symbols) and DMB (V/ω j = 0.1 and Θ = π/2, see the upper curves and symbols) regimes. The curves show our proposed predictions,
while the symbols correspond simulated results, which are obtained based on our suggested experimental system and parameters. Clearly,
an excellent agreement between our proposed predictions and the simulated results is seen. This means that our proposed phenomena can be
realized under current experimental conditions. Here we set ∆

′

c = ∆ and ∆
′

a/ω j = 5, and other parameters used are shown in Table. II.

where

Q̃ = diag
{
κc, κc, κa, κa, γ1(2n̄1 + 1), γ1(2n̄1 + 1), γ2(2n̄2 + 1), γ2(2n̄2 + 1)

}
, (S115)

which is defined by

Q̃ = (C̃ + C̃T )/2, (S116)

where C̃ is the noise correlation matrix, defined by the matrix elements

〈Ñk(s)Ñl(s′)〉 = C̃k,lδ(s − s′). (S117)

Note that the optomechanical entanglement between the optical mode c and the jth mechanical mode d j can be quantified using
the logarithmic negativity EN , j, as shown in Eq. (S34).

Notation Remarks Ref. [S10] Our simutaions
ω j/2π Mechanical frequency of the jth resonator 6 GHz 6 GHz
κc(a)/2π Optical decay rate of the c (a) cavity 1.03 (0.75) GHz 1.03 GHz
gc(a)/2π Single-photon coupling strength 0.76 (0.84) MHz 0.84 MHz

nc(a) Photon number in the c (a) cavity 103 (1.42 × 103) 5.1 × 105 (1.23 × 107)
nth

j Phonon number in the jth resonator 10 10
γ1(2)/2π Mechanical damping rate of the 1st (2nd) resonator 4.3 (5.9) MHz 1 MHz

J/2π Photon-hopping coupling strength 0.1 ∼ 1 GHz< ω j 4.8 GHz< ω j

V/2π Phonon-hopping coupling strength 3 MHz� ω j 0.6 GHz� ω j

TABLE II: Parameters of the photonic-crystal optomechanical-cavity setup reported in the literature [S10] and used in our simulations. The
columns 1 and 2 present the notation and physical meaning of the parameters used, respectively. The parameters in columns 3 and 4 are,
respectively, used in the experimental works [S10] and our numerical simulations.

Next, we show in detail our numerical estimations to evaluate the experimental feasibility of the proposed scheme with
the photonic-crystal optomechanical-cavity systems. To this end, we compare the relevance of the proposed results [based on
Eq. (S1)] and the simulated results [based on Eq. (S106)] by performing numerical estimations. Here, the proposed results
are determined by the three-mode optomechanical model proposed in the main text, while the simulated results are obtained
based on the effective photonic-crystal optomechanical system, which is used to implement our three-mode target model by
adiabatically eliminating one of the cavity modes. In Table II, we listed the experimental parameters used in the photonic-crystal
optomechanical-cavity platform. For comparison, we also present the corresponding parameters of our numerical simulations, as
shown in the right column of Table II. Note that this reported experiment focuses only on the realization of the nonreciprocity of
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FIG. S14: Optomechanical entanglement measures EN , j as functions of the modulation phase Θ, where ∆
′

c = ∆ = ω j. The solid curves are our
proposed predictions, while the symbols represent the simulated results. The excellent agreement between the proposed and simulated results
indicates that the proposed phenomena are relevant for the state-of-the-art experiments. Here ∆

′

a/ω j = 5, and other parameters used are shown
in Table. II.

weak optical signals [S10], and therefore, it requires that the effective optomechanical coulings G j, the photon-hopping coupling
J, and phonon-hopping coupling V are much smaller than the mechanical resonance frequencies (i.e., small intracavity photon
numbers nc(a) = 103 (1.42 × 103), J/2π ≈ 0.1 ∼ 1 GHz < ω j, and V/2π ≈ 3 MHz � ω j). However, to generate a robust dark-
mode-immune and noise-tolerant entanglement, we need to enhance the optomechanical, photon-hopping, and phonon-hopping
couplings. Therefore, we here have assumed the experimental achievable situations: nc(a) = 5.1 × 105 (1.23 × 107), J/2π = 4.8
GHz< ω j, and V/2π = 0.6 GHz� ω j. In addition, a single auxiliary cavity should be in the large-detuning regime ∆

′

a � ω j,
such that this cavity-field mode can be adiabatically eliminated.

Based on both the proposed predictions and the simulated results, we display in Figs. S13(a) and S13(b) the optomechanical
entanglement measures EN , j as functions of the driving detuning ∆ of the cavity mode c, when the system operates in both
the DMU and DMB regimes. Clearly, Figure S13 shows an excellent agreement between the proposed (curves) and simulated
(symbols) results. Moreover, we find that in the numerical simulations based on both the proposed predictions and the simulated
results, the optical mode and the mechanical modes are separable in the DMU regime (EN , j = 0, see the lower horizontal lines
and symbols), but they are entangled in the DMB regime [EN , j > 0, see the upper curves and symbols]. These results indicate
that our proposed phenomena are relevant for the state-of-the-art experiments.

To further show the dependence of the optomechanical entanglement on the synthetic magnetism, in Figs. S14(a) and S14(b),
we plot the entanglement measures EN , j as functions of the modulation phase Θ by using both the proposed and simulated
results. Here, the solid curves are plotted using the proposed results, while the symbols are based on the simulated results. We
have shown that our proposed results and the simulated results are matched well with each other. In particular, we find that in
the numerical simulations using both the proposed predictions and the simulated results, a multimode quantum device can be
flexibly switched between separable and entangled states by tuning the modulation phase Θ. These numerical simulations imply
that our physical model and the proposed phenomena can be effectively implemented under current experimental conditions in
the photonic-crystal optomechanical-cavity systems.

B. Experimental realization of the proposed model based on the circuit electromechanical system

In this subsection, we propose another experimental implementation of the proposed physical model using the circuit
electromechanical system [S2, S5, S26–S29], which consists of N micromechanical resonators (MRs) d j=1···N and a microwave
cavity described by the equivalent inductance L and capacitance C, as shown in Fig. S15(a). Specifically, the displacement
x j=1···N of each MR independently modulates the total capacitance through C j=1···N(x j), and therefore the resonance frequency
of the cavity ωc. This leads to inducing the electromechanical coupling, which is described by g j=1···N = (ωc/2C)∂C j(x j)/∂x j.
Meanwhile, an effective phase-dependent phonon-hopping interaction (i.e., the phase in a loop coupling induces an effective
synthetic magnetism) between the nearest-neighboring MRs can be introduced by coupling them to a superconducting charge
qubit, as shown in Fig. S15(b). The detailed derivation of an effective phase-dependent phonon-hopping coupling between the
nearest-neighboring MRs is presented below.

In Fig. S15(b), a superconducting charge qubit is coupled to the two MRs. In this circuit, a Josephson junction (with
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FIG. S15: (a) Schematics of a circuit electromechanical system consisting of a microwave cavity represented by (N + 1) capacitances [C
and C j=1···N(x j)] and an inductance (L). The jth capacitance C j=1···N(x j) depends on the jth micromechanical resonator (MR) d j. The
displacement x j of each MR modulates the total capacitance and hence the cavity frequency ωc. The phase-dependent phonon-hopping
interaction χ(eiΘd†1d2 + e−iΘd†2d1) between the nearest-neighboring MRs is generated via a superconducting circuit shown in panel (b). (b)
Schematics of the superconducting quantum circuit: A Josephson junction with Josephson energy EJ and capacitance CJ is connected to three
gate voltages V j=1,2,3(t) through the corresponding gate capacitances C j=1,2(x j) and C3. Two MRs are coupled to the superconducting charge
qubit through the gate capacitances C j=1,2(x j). The gate voltages are properly designed such that a phase-dependent phonon-hopping interaction
between the two MRs can be induced. The phases drop across these capacitors and the Josephson junction, and they are marked as φ j and
φ, respectively. (c) Energy levels and relevant resonance frequencies of this coupled qubit-resonator system. The two mechanical resonators
with resonance frequency ωm are phase-dependently coupled to the superconducting charge qubit with energy separation ω0. Through the gate
capacitors, we apply ac gate voltages (with frequency ωd) to the qubit.

capacitance CJ and Josephson energy EJ) is connected to three gate voltages V j=1,2,3(t) via the corresponding gate capacitances
C j=1,2(x j) and C3, in which the two gate capacitors with capacitances C j=1,2(x j) are formed by one MR and one fixed plate, and
the third capacitor has a constant capacitance. We denote the phase drops across these capacitors and the Josephson junction as
φ j and φ, respectively. In this circuit, the total kinetic energy, which is stored in these capacitors [S30], is written as

T =
1
2

CJΦ̇2 +
∑
j=1,2

1
2

C j(x j)Φ̇2
j +

1
2

C3Φ̇2
3, (S118)

where Φ and Φ j=1,2,3 denote the generalized magnetic fluxes, which are associated with the phase drops φ and φ j across the
Josephson junction and the capacitances C j, respectively. We define the relation between the phase drop and the generalized
magnetic flux as φ j=1,2,3 = 2πΦ j/Φ0, with Φ0 being the magnetic flux quanta. The Josephson energy is identified as the potential
energy, which takes the form as U = −EJ cos

(
2π
Φ0

Φ
)

[S30], with EJ being the Josephson energy of this junction.
By using these voltages relations in these loops, the relations can be expressed as V j(t) + Φ̇ j + Φ̇ = 0, for j = 1, 2, 3, and then
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we obtain the Lagrangian of this system:

L = T − U =
∑
j=1,2

1
2

C j(x j)V2
j (t) +

1
2

C3V2
3 (t) +

1
2

∑
j=1,2

C j(x j) + C3 + CJ

 Φ̇2

+

∑
j=1,2

C j(x j)V j(t) + C3V3 (t)

 Φ̇ + EJ cos
(

2π
Φ0

Φ

)
. (S119)

By introducing the momentum canonically conjugate to Φ, we obatin P = ∂L
∂Φ̇

=
[∑

j=1,2 C j(x j)V j(t) + C3V3(t)
]

+[∑
j=1,2 C j(x j) + C3 + CJ

]
Φ̇, and then the Hamiltonian of this circuit is derived as [S30]

H =
1
2

4e2

CΣ (x1, x2)

[
n̂ − ng (x1, x2, t)

]2
− EJ cos

(
2π
Φ0

Φ

)
−

1
2

∑
j=1,2

C j(x j)V2
j (t) + C3V2

3 (t)

 , (S120)

where the gate capacitance CΣ (x1, x2), the Cooper-pair number n, and the gate Cooper-pair number ng are, respectively, defined
by

CΣ(x1, x2) =
∑
j=1,2

C j(x j) + C3 + CJ , P = 2en, and ng(x1, x2, t) =
1
2e

∑
j=1,2

C j(x j)V j(t) + C3V3 (t)

 . (S121)

We below perform the quantization of this circuit by introducing the phase operator φ̂ and the number operator n̂, and then, the
Hamiltonian in the eigenrepresentation of the number operator can be expressed as

H =
1
2

4e2

CΣ(x1, x2)

∑
n∈Z

[
n − ng(x1, x2, t)

]2
|n〉 〈n| −

EJ

2

∑
n∈Z

(|n〉 〈n + 1| + |n + 1〉 〈n|) −
1
2

∑
j=1,2

C j(x j)V2
j (t) + C3V2

3 (t)

 .(S122)

Here, we assume that this circuit works in the charge qubit regime EC � EJ , with EC = 4e2/CΣ being the Coulomb energy.
In addition, the gate charge in the vicinity of 1/2 is chosen, such that the states |0〉 and |1〉 have almost degenerate energies. In
this case, other states have higher energies, and thus, they can be safely ignored in the our discussions. Then, the Hamiltonian in
Eq. (S122) becomes

H ≈
1
2

4e2

CΣ (x1, x2)

[
ng (x1, x2, t)2 |0〉 〈0| +

[
1 − ng (x1, x2, t)

]2
|1〉 〈1|

]
−

EJ

2
(|0〉 〈1| + |1〉 〈0|) −

1
2

∑
j=1,2

C j(x j)V2
j (t) + C3V2

3 (t)

 . (S123)

We introduce the Pauli operators σz = |0〉 〈0| − |1〉 〈1| and |0〉 〈0|+ |1〉 〈1| = I, and the Hamiltonian in Eq. (S123) can be expressed
as

H =
1
2

4e2

CΣ (x1, x2)

[
ng (x1, x2, t) −

1
2

]
σz −

EJ

2
σx + M, (S124)

where

M =
1
4

4e2

CΣ (x1, x2)

[
1 − 2ng (x1, x2, t) + 2n2

g (x1, x2, t)
]
−

1
2

∑
j=1,2

C j(x j)V2
j (t) + C3V2

3 (t)

 (S125)

denotes the ac voltage driving term on the two MRs. We consider the case where the voltage drivings are far-off-resonance to the
two mechanical vibrations, i.e., the driving frequencies of the two voltages are much smaller than the resonance frequencies of
the two MRs. In this case, the term M can be safely discarded in our following discussions. Below, we assume that the distances
between the fixed plate and the rest MR of the capacitors are much larger than the vibration amplitudes of the MRs, and thus,
we can approximately express the capacitances as

C j

(
x j=1,2

)
≈ C j0

(
1 −

x j

l j

)
, (S126)
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where the parameters l j and C j0 are, respectively, the rest distances between the fixed plate and the MRs in these gate capacitors
and the capacitances of the gate capacitors when the MRs are rest. In addition, for our purpose we also choose the gate voltages:
V j=1,2 (t) = V j0 cos

(
ω jt + ϕ j

)
and V3 (t) = (e−C10V1(t)−C20V2(t))/C3. In this case, we can easily obtain the following relation:

ng (x1, x2, t) =
1
2
−

∑
j=1,2

C j0V j0

2e
x j

l j
cos

(
ω jt + ϕ j

)
. (S127)

We perform the rotation for the qubit σz → τx and −σx → τz, and the Hamiltonian upto the first order of the mechanical
displacements x1 and x2 can be obtained as

HI ≈
EJ

2
τz −

EC

2

∑
j=1,2

C j0V j0

2e
x j

l j
cos

(
ω jt + ϕ j

) τx, (S128)

where EC = 4e2/CΣ0 under CΣ (x1, x2) ≈ (C10 + C20 + CJ) ≡ CΣ0. Note that the mechanical displacement terms in
CΣ (x1, x2) only introduce the second-order terms of x j=1,2/l j, which have been neglected in our considerations. By including
the free Hamiltonian of the two mechanical resonators and using the relations x j=1,2 =

√
~/(2mωm)(d j + d†j ) and p j=1,2 =

−i
√
~mωm/2(d j − d†j ), the total Hamiltonian of this circuit system becomes

HI ≈ ωm

∑
j=1,2

d†j d j +
ω0

2
τz −

∑
j=1,2

g j(d j + d†j )(e
i(ωd t+ϕ j) + e−i(ωd t+ϕ j))

 (τ+ + τ−), (S129)

where we consider the case of ω1 = ω2 = ωd, and then we define the parameters: g j =
EC
4

C j0V j0

2e
x j0

l j
and ω0 = EJ with

x j0 =
√
~/(2mωm) being the zero-point fluctuation of the jth MR. To analyze the physical processes in this system, we now

work in the rotating frame with respect to H0 = ωm
∑

j=1,2 d†j d j +
ω0
2 τz, then we can obtain

VI(t) = −g1(τ+d†1ei(ω0+ωm+ωd)teiϕ1 + d1τ−e−i(ω0+ωm+ωd)te−iϕ1 ) − g2(τ+d†2ei(ω0+ωm+ωd)teiϕ2 + d2τ−e−i(ω0+ωm+ωd)te−iϕ2 )

−g1(τ+d†1ei(ω0+ωm−ωd)te−iϕ1 + d1τ−e−i(ω0+ωm−ωd)teiϕ1 ) − g2(τ+d†2ei(ω0+ωm−ωd)te−iϕ2 + d2τ−e−i(ω0+ωm−ωd)teiϕ2 )

−g1(τ+d1ei(ω0−ωm+ωd)teiϕ1 + d†1τ−e−i(ω0−ωm+ωd)te−iϕ1 ) − g2(τ+d2ei(ω0−ωm+ωd)teiϕ2 + d†2τ−e−i(ω0−ωm+ωd)te−iϕ2 )

−g1(τ+d1ei(ω0−ωm−ωd)te−iϕ1 + d†1τ−e−i(ω0−ωm−ωd)teiϕ1 ) − g2(τ+d2ei(ω0−ωm−ωd)te−iϕ2 + d†2τ−e−i(ω0−ωm−ωd)teiϕ2 ). (S130)

This system has eight physical processes determined by the four detunings ω0 +ωm ±ωd and ω0 −ωm ±ωd. From the viewpoint
of the MRs and the qubit, the terms ω0−ωm±ωd and ω0 +ωm±ωd are, respectively, the corotating terms and the counterrotating
terms. Here, our aim of the introduction of the ac voltages V1(t) and V2(t) is that we can pick up the phase-sensitive interactions
between the MRs and the charge qubit. To this end, the ac voltages with the frequency ωd is chosen for picking up the terms
with ω0 − ωm − ωd, i.e., the parameters satisfy the following conditions:

ω0 + ωm ± ωd � ω0 − ωm + ωd � ω0 − ωm − ωd. (S131)

We find that the terms (with ω0 + ωm ± ωd and ω0 − ωm + ωd) are far-off resonant, and that the terms (with ω0 − ωm − ωd) are
the target terms, which work in the large-detuning regime. The energy levels and these involved resonance frequencies of this
coupled qubit-resonator system are shown in Fig. S15(c). In this case, the qubit-resonator interactions work in the large-detuning
regime: ∆ � g j=1,2

√n j, with n j being the maximal excitation number in the jth vibration. Then, the phase-dependent photon-
hopping interaction between the two MRs can be obtained, and this effective phase is the difference between the two phases ϕ1
and ϕ2, which are associated with the qubit-resonator couplings. An approximate Hamiltonian, based on the above analyses, can
be obtained as

VI (t) ≈ −
[
τ+

(
g1d1e−iϕ1 + g2d2e−iϕ2

)
ei∆t +

(
g1d†1eiϕ1 + g2d†2eiϕ2

)
τ−e−i∆t

]
, (S132)

where ∆ = ω0 − ωm − ωd. By going back to the Schrödinger representation, we can eliminate the time factor, and then write the
Hamiltonian of the system as

Heff = ωm

∑
j=1,2

d†j d j +
ω0 − ωd

2
τz − τ+

(
g1d1e−iϕ1 + g2d2e−iϕ2

)
− τ−

(
g1d†1eiϕ1 + g2d†2eiϕ2

)
. (S133)

In this work, we consider the case where the physical process associated with the detuning ∆ works in the large detuning regime.
As a result, the qubit coherence in the physical processes can be adiabatically eliminated, and then, we can obtain an effective
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Notation Remarks Ref. [S26] Our simutaions
ω1(2)/2π Mechanical frequency of the 1st (2nd) resonator 10 (11.3) MHz 10 MHz
κ/2π Cavity-field decay rate 1.38 MHz 2 MHz
G1(2) Effective optomechanical-coupling strength 0.1 ∼ 0.5 MHz 2 MHz
nth

1(2) Phonon number in the 1st (2nd) resonator 41 (30) 100
γ1(2)/2π Mechanical damping rate of the 1st (2nd) resonator 106 (144) Hz 100 Hz
χ/2π Phonon-hopping coupling strength no coupling 1 MHz� ω1(2)

TABLE III: Parameters of a circuit electromechanical system reported in the literature [S26] and used in our simulations. The columns 1 and 2
present the notation and physical meaning of the used parameters, respectively. The parameters in columns 3 and 4 are used in the experimental
work [S26] and our numerical simulations, respectively.

phonon-hopping coupling between the two MRs by performing the second-order perturbation. By using the method of the
Frohlich-Nakajima transformation [S31, S32], we can derive an effective Hamiltonian to describe the interactions. For this
purpose, the effective Hamiltonian Heff = H0 + HI can be expressed as:

H0 = ωm

∑
j=1,2

d†j d j +
ω0 − ωd

2
τz, HI = −τ+

(
g1d1e−iϕ1 + g2d2e−iϕ2

)
− τ−

(
g1d†1eiϕ1 + g2d†2eiϕ2

)
. (S134)

Furthermore, we introduce the operator S = 1
∆
τ+

(
g1d1e−iϕ1 + g2d2e−iϕ2

)
− 1

∆

(
g1d†1eiϕ1 + g2d†2eiϕ2

)
τ−, determined by the equation

HI + [H0, S ] = 0. This equation means that the first-order physical process is eliminated. An effective Hamiltonian describing
the second-order physical interaction can then be obtained as

H′eff = H0 +
1
2

[HI , S ] =
∑
j=1,2

ω
′

md†j d j + χ
(
d†1d2eiΘ + d†2d1e−iΘ

)
+
ω0 − ωd

2
τz +

(
g2

1 + g2
2

)
∆

τ+τ−, (S135)

where ω
′

m = (ωm +
g2

j

∆
τz), χ =

g1g2
∆
τz, and Θ = ϕ1 − ϕ2. The above Hamiltonian shows that there is no transition in the qubit

states, and that a conditional phase-dependent interaction between the two mechanical resonators is introduced. By assuming
that the qubit is initial in its ground state |g〉 (τz|g〉 = −|g〉), we can obtain a phase-dependent phonon-hopping interaction (i.e.,
the phase in a loop coupling leads to a synthetic magnetism).

To demonstrate that the proposed phenomena are relevant for the state-of-the-art experiments based on the circuit
electromechanical system (see Fig. S15), we present both the parameters reported in experiments and the parameters used
in our numerical simulations, as shown in Table III. Note that all the simulations presented in the main text are based
on these parameters (see Table III) related to the circuit electromechanical system. In these simulations, though we did
not use the exact experimental parameters, all the used parameters are of the same order of magnitude of the reported
parameters [S2, S5, S26, S27], and our used parameters are also often set in previous works [S1]. From the viewpoint
of the experimental implementation, all the elements, except the phase-dependent phonon-hopping interaction, have been
realized in experiments [S2, S5, S26, S27]. Therefore, a theoretical scheme for realizing the phase-dependent phonon-hopping
interaction (i.e., the phase in a loop coupling leads to an effective synthetic magnetism) has been presented using the circuit
electromechanical system in Sec. V B. These analyses indicate that the present scheme is experimentally accessible under
current experimental conditions, and that the proposed phenomena can be observed in the state-of-the-art experiments based
on the circuit electromechanical system.
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[S11] N. R. Bernier L. D. Tóth, A. Koottandavida, M. A. Ioannou, D. Malz, A. Nunnenkamp, A. K. Feofanov, and T. J. Kippenberg,
Nonreciprocal reconfigurable microwave optomechanical circuit, Nat. Commun. 8, 604 (2017).

[S12] Z. Shen, Y.-L. Zhang, Y. Chen, F.-W. Sun, X.-B. Zou, G.-C. Guo, C.-L. Zou, and C.-H. Dong, Reconfigurable optomechanical circulator
and directional amplifier, Nat. Commun. 9, 1797 (2018).
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Stabilized entanglement of massive mechanical oscillators, Nature (London) 556, 478 (2018).
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