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In this supplemental material, we derive the recursive boundary Green function, the Zak phase of Hamiltonian,
and provide a detailed derivation of the transfer matrix method. We show that the property of non-reciprocal
single-photon edge states in our system can be used to realize a single-photon circulator. Then, we exhibit that
the single-photon transmission is immune to the backscattering in the non-reciprocal single-photon band gap, and
discuss the effects of the on-site disorder and the number of unit cells on our chiral QE-CROW system. Finally, we
perform a first-principles simulation of our frequency-multiplexed single-photon circulator using the finite-difference
time-domain method.
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I. RECURSIVE BOUNDARY GREEN FUNCTION OF THE SYSTEM

Here, we study the localization properties of edge states and their relationship with the coupling strengths,
{g, J1, J2}, when our system is excited in the CWA−CCWB supermode (forward input). In this case, our QE-CROW
system is equivalent to an L-type trimer chain with each unit cell containing three sites, the QE, the A-sublattice
resonator, and the B-sublattice resonator. The QE is only coupled with the A-sublattice resonator. We divide the
unit cell into A and B sublattice groups, where the A sublattice contains the A-sublattice resonator and the QE, and
the B sublattice only involves the B-sublattice resonator. Therefore, this L-type trimer chain can be treated as an
SSH-like model. We use the recursive boundary Green function method to link the existence of edge states with the
fixed points of the recursion [1, 2]. Hereafter, we consider the case J1 < J2, which corresponds to the situation with
edge states. In contrast, there are no edge states in the opposite case, i.e., J1 ≥ J2.
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Following the calculation steps in Ref. [1], we can relate the boundary Green function GN of this SSH-like chain
with N unit cells to the boundary Green function GN−1 of a chain with (N − 1) unit cells and write the Dyson
equation: (

ε−1
N − VN−1GN−1V

†
N−1

)
GN = I , (S1)

where ε−1
N = Iω − hN is the bare Green function of the Nth unit cell and VN−1 is correlated with coupling strengths

{g, J1, J2}. To prove that our system has edge states located at the left boundary of the chain, we consider the left
boundary Green function and obtain

ε−1
n =


Iω n = 2N − 1(
ω −g
−g ω

)
n = 2N

, Vn =


(

0

J1

)
n = 2N − 1

J2 n = 2N

(S2)

from Eq. (1) in the main text. By iterating the recursion Eq. (S1) from the left boundary, we can obtain a recursion
for the 2Nth and the (2N − 1)th cells,[(

ω −g
−g ω

)
−
(

0
J1

)
GL2N−1

(
0 J1

)]
GL2N = I , (S3a)[(

ω 0
0 ω

)
− J2

2G
L
2N−2

]
GL2N−1 = I , (S3b)

respectively. Here, GL2N and GL2N−2 take the form of a 2× 2 matrix,

GL2N =

(
G2N

11 G2N
12

G2N
21 G2N

22

)
, GL2N−2 =

(
G2N−2

11 G2N−2
12

G2N−2
21 G2N−2

22

)
. (S4)

Substituting Eq. (S4) into Eqs. (S3), we obtain(
ω − J2

2G
2N−2
11

)
GL2N−1 = 1 , (S5a)

G2N
11

(
ω2 − ωJ2

1G
L
2N−1 − g2

)
−
(
ω − J2

1G
L
2N−1

)
= 0 . (S5b)

Then we have

G2N
11 =

ω
(
ω − J2

2G
2N−2
11

)
− J2

1

(ω2 − g2)
(
ω − J2

2G
2N−2
11

)
− J2

1ω
. (S6)

In order to analyze the recursion, we further write it as

G2N
11 −G2N−2

11 = ξL
(
G2N−2

11

)
, (S7)

where the function ξL(x) is defined as

ξL (x) =
ω
(
ω − J2

2x
)
− J2

1

(ω2 − g2) (ω − J2
2x)− J2

1ω
− x. (S8)

The fixed-point boundary Green functions can be obtained by solving the zeros of the function ξL(x). We can write
the solution for Eq. S8 as follows:

x =
ω(ω2 − g2 + J2

2 − J2
1 )±

√
ω2(ω2 − g2 + J2

2 − J2
1 )2 − 4J2

2 (ω2 − g2)(ω2 − J2
1 )

2J2
2 (ω2 − g2)

, (S9)

and expand in power series of (ω ± g),

GLreg = ±J
2
1 − 4g2 − J2

2

8gJ2
2

+O(ω ± g), (S10)
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GLsing =
J2

2 − J2
1

2J2
2 (ω ± g)

± J2
1 − 4g2 − J2

2

8gJ2
2

+O(ω ± g). (S11)

The above fixed-point boundary Green functions characterize the absence and presence of edge states localized on
the left boundary of the chain. Corresponding to the edge state, the band-gap state makes the boundary Green
function singular for ω ± g, see Eq. (S11). In contrast, when the boundary Green function is regular [corresponding

to Eq. (S10)], there are no edge states. Further, when ξ
′

L(x) < 0, it holds a stable fixed point, thus we have

∂ξL
(
GLsing

)
∂x

∣∣∣∣∣
ω=±g

=
J2

1

J2
2

− 1 < 0. (S12)

We can find that only when |J1| < |J2|, the fixed point is stable, which means that there are edge states localized at
the left boundary of the chain.

Similarly, when we consider the right boundary Green function, we have:

ε−1
n =


(

ω −g
−g ω

)
n = 2N − 1

Iω n = 2N

, Vn =

{(
J1 0

)
n = 2N − 1

J2 n = 2N
. (S13)

With the same calculation procedure, we can derive the iterative relation:

GR2N =

{
ω − J2

1

[(
ω − J2

2G
R
2N−2

)2 − g2
]−1
}−1

. (S14)

We now rewrite the recursion Eq. (S14) as

GR2N −GR2N−2 = ξR(GR2N−2) , (S15)

with

ξR(x) =

{
ω − J2

1

[(
ω − J2

2x
)2 − g2

]−1
}−1

− x . (S16)

The fixed-point boundary Green function can be obtained by seeking the zeros of Eq. (S16), that is

ωJ4
2x

3 −
(
2ω2J2

2 + J4
2

)
x2 +

[
ω
(
ω2 − g2 + 2J2

2

)
− J2

1

]
x+ g2 − ω2 = 0 . (S17)

The singularity of the solution of Eq. (S17) characterizes the existence of edge states. For this cubic equation, using
the famous Cardano formula, we can find that a singularity only appears at ω = 0. Therefore, this means that there
is a right edge state at zero energy. Indeed, under the condition of J1 < J2, the presence of edge states at zero
energy is a characteristic of this SSH-like chain. Unlike the left edge state, its energy remain unchanged because the
B-sublattice resonator is not coupled with the QE.

II. ZAK’S WINDING PHASE AND CHIRAL SYMMETRY OF HAMILTONIAN

In the nontrivial topological case, i.e., J1 < J2, nonreciprocal single-photon band structures of the chiral QE-CROW
system are shown in Fig. 2 in the main text. The bands are well isolated in both forward- and backward-input cases.
In the single-excitation space, we can define an Abelian Zak’s phase to each band [3, 4]

Zp = i

∫ π

−π
dk〈ζk,p|∂k|ζk,p〉 , (S18)

where p = 1, 2, 3 (p = 1, 2) labels the bands in increasing energy for the forward-input case (the backward-input case).
The Bloch wave function ζk,p is consistent with the main text.

We first consider the backward-input case corresponding to a standard SSH model. The Hamiltonian in wavevector



4

space is

HCCWA−CWB
(k) =

(
0 J1 + J2e

−ik

J1 + J2e
ik 0

)
. (S19)

Using the Pauli matrix σz, we have σzHCCWA−CWB
(k)σ−1

z = −HCCWA−CWB
(k). Therefore, the system possesses the

chiral symmetries in this situation. By diagonalizing Eq. (S19), we obtain

|ζk,1〉 =
1√
2

 −
√
J2
1+J2

2+2J1J2cos(k)

J1+J2eik

1

 , (S20a)

|ζk,2〉 =
1√
2


√
J2
1+J2

2+2J1J2cos(k)

J1+J2eik

1

 . (S20b)

Substituting Eqs. (S20) into Eq. (S18), we get

Z1 = Z2 = π mod(2π) , (S21)

when J2 = 2J1. For this SSH model, topological phase transition occurs at J2/J1 = 1 [3].

FIG. S1. The Zak phase for the lower band versus J2/J1 in different coupling strengthes, g/Ω = 1 × 10−5 in (a) and
g/Ω = 1 × 10−4 in (b). Other parameters are J1/Ω = 3 × 10−4.

Then we discuss the case of the forward input, in which the QEs couple with the A-sublattice resonators to form
an L-shaped trimer chain. The Hamiltonian in wavevector space can be written as

HCWA−CCWB
(k) =

 0 g J1 + J2e
−ik

g 0 0
J1 + J2e

ik 0 0

 . (S22)

By defining a unitary and Hermitian matrix

χ =

 −1 0 0
0 1 0
0 0 1

 , (S23)
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we find that the Hamiltonian of Eq. (S22) satisfies

χHCWA−CCWB
χ−1 = −HCWA−CCWB

. (S24)

Thus, in the forward-input case, the system still preserves the chiral symmetry. By diagonalizing Eq. (S22), we obtain

|ζk,1〉 =

√
J2

1 + J2
2 + 2J1J2cos(k)√

2 [g2 + J2
1 + J2

2 + 2J1J2cos(k)]

 −
√
g2+J2

1+J2
2+2J1J2cos(k)

J1+J2eik

g
J1+J2eik

1

 , (S25a)

|ζk,2〉 =
1√

g2 + J2
1 + J2

2 + 2J1J2cos(k)

 0

J1 + J2e
−ik

g

 , (S25b)

|ζk,3〉 =

√
J2

1 + J2
2 + 2J1J2cos(k)√

2 [g2 + J2
1 + J2

2 + 2J1J2cos(k)]


√
g2+J2

1+J2
2+2J1J2cos(k)

J1+J2eik

g
J1+J2eik

1

 . (S25c)

Using Eqs. (S25) and (S18), we show the Zak phase as a function of J2/J1, see Fig. S1. The coupling to QEs breaks
the inversion symmetry of the forward-input system. It leads to a change in bulk-band structure of the original SSH
model. When the QE-resonator strength is small, such as g/Ω = 10−5, this change is negligible. The Zak phases are
still quantized both for the upper and lower bulk bands, see Fig. S1(a). But as g increases, the situation is different.
The effect of QE-resonator coupling emerges. The Zak phase of the lower band is no longer quantized, especially in the
vicinity of the critical point J2 = J1, showing a trend of continuous change, see Fig. S1(b). There is no well-defined
topological invariant due to the broken-inversion symmetry [2, 5, 6].

Likewise, the original left edge state is also changed because of the coupling of the QEs to the A-sublattice res-
onator. It becomes doublet, forming two superstates of the A-sublattice resonators and the QEs, with an energy split
proportional to the coupling strength g. This change suggests that the left edge states of the L-shaped chain have a
topological origin inherited from the SSH model.

III. THE TRANSFER MATRIX FORMALISM OF OUR CHIRAL QE-CROW SYSTEM

We derive the transfer matrix formalism to treat the dynamics of our chiral QE-CROW system. We find that the
single-photon dispersion relations solved by the transfer matrix are consistent with the results obtained by solving
the Hamiltonian directly in the main text.

Our chiral 1D-CROW system is shown in the main text. Each resonator, with a resonance frequency Ω and an
internal dissipation γin, supports two degenerate optical whispering-gallery modes: clockwise and counterclockwise
modes. The adjacent resonators are separated by Λ. The resonators are divided into two groups A and B, where the
A-sublattice resonator couples with a two-level QE in a chiral way and the B-sublattice resonator decouples from the
QEs. As the light travels in the CROW, the excited propagation modes in the A and B sublattices are opposite, thus
forming N unit cells. We assume that QEs couple to the clockwise mode in the A-sublattice resonator, but decouple
from the counterclockwise mode.

The chiral QE-light interaction implies that only the clockwise-circulating single photon interacts with the QE and
passes through it with a transmission coefficient tqe; but the counterclockwise-circulating single photon decouples
from the QE. We can treat the QE in the resonator as a quantum scatterer in an optical waveguide [7]. Then, we
obtain tqe by calculating the single-photon transmission in the QE-waveguide system [8],

tqe =
ω − ωq + i(γ − Γ)

ω − ωq + i(γ + Γ)
, (S26)

where ω (ωq) is the central (resonance) frequency of the incident photon (the QE), γ is the dissipation rate of the

QE. Γ is the decay rate from the QE into the resonator, and the QE-resonator coupling strength is g ≈
√

2Γ×F [7],
where the F is the free spectral range of the resonator.

Note that the chiral QE-light interaction leads to a vanishing reflection of the single-photon propagation [8]. The
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FIG. S2. The unit cell presented in the main text, with the sublattices A and B. The yellow/blue arrows represent the circulating
direction of the clockwise/counterclockwise whispering-gallery modes.

QEs can modify the phase and amplitude of the single-photon field propagating along the clockwise direction in the
A-sublattice resonators, but do not excite the counterclockwise-circulating field via radiation as a normal achiral
system.

Theoretically, the QE chirally coupled to the resonator can be treated as a “single-photon phase-amplitude modu-
lator” [7]. For simplicity, we take tqe ≡ exp(iϕ) (ϕ = ϕ1 + iϕ2), where ϕ1(ω) = arg(tqe) and exp(−ϕ2) = |tqe| describe
the changes in phase and amplitude, respectively. From Eq. (S26), we have |tqe| ≈ 1 and ϕ2 ≈ 0 when γ � Γ. In this
case, the QEs only change the phase ϕ1 of the single-photon field of the clockwise mode.

Then, using the notation from Fig. S2, we can write the transfer matrix formalism for the 1D-CROW system:

xj+1 = P2Q2P1Q1xj . (S27)

Here, xj = (aA,j bA,j cA,j dA,j)
T

is a vector of the wave-packet amplitudes. The above matrices {P1, P2} and {Q1, Q2}
describe inter-sublattice and intra-sublattice transfer, respectively. We refer to P1,2 and Q1,2 as coupling and propa-
gation matrices, and they can be written as:

P1 =

(
Mc,1 0

0 Mc,1

)
, Q1 =

(
Mp,A 0

0 Mp,B

)
, (S28a)

P2 =

(
Mc,2 0

0 Mc,2

)
, Q2 =

(
Mp,B 0

0 Mp,B

)
, (S28b)

Mc,1 =
1

κ1

(
1 −t1
t∗1 −1

)
, Mc,2 =

1

κ2

(
1 −t2
t∗2 −1

)
, (S28c)

Mp,A =

(
e−iθ(R) 0

0 ei[θ(R)+ϕ]

)
, Mp,B =

(
e−iθ(R) 0

0 eiθ(R)

)
, (S28d)

where {t1, t2} and {κ1, κ2} are the transmission and coupling coefficients of the intrasite and intersite resonators.
According to waveguide mode coupling theory, t1/2 are real, κ1/2 are imaginary, and |t1/2|2 + |κ1/2|2 = 1. Note that

the coupling strengths between resonators can be deduced from J1/2 = Im
(
κ1/2

)
× F [7]. The factor θ(L) = πβL

is the propagation phase change dependent on the path L of the light propagating in the resonator, where β is the
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propagation constant, given by β = neffω/c. From Eqs. S28, we can find that the propagation modes in each resonator

are decoupled. In other words, the transfer relation of the wave-packet amplitudes are only from (a, b) to
(
a

′
, b

′
)

and

from (c, d) to
(
c
′
, d

′
)

. Therefore, when we consider one of them, we can study it in the form of a 2 × 2 matrix as

shown in the main text.
Using Bloch’s theorem [9, 10], we can obtain the eigenvalue equations of the system under two excitation modes

(i.e., the CWA − CCWB supermode and the CCWA − CWB supermode),

Det|Mc,2Mp,BMc,1Mp,A − exp(−2iKΛ)| = 0, (S29)

and

Det|Mc,2Mp,BMc,1Mp,B − exp(−2iKΛ)| = 0, (S30)

respectively. Above, K is the Bloch quasi-momentum and 2Λ is the unit spacing. Solving the above equations, we
have the dispersion relation

cos (2KΛ) = [cos (2θ)− t1t2] /κ1κ2 (S31)

for the CCWA − CWB supermode and the dispersion relation

cos
(

2KΛ− ϕ

2

)
=
[
cos
(

2θ +
ϕ

2

)
− t1t2cos

(ϕ
2

)]
/κ1κ2 (S32)

for the CWA − CCWB supermode.
Obviously, the dispersion relation of the CWA−CCWB supermode is different from Eq. (S31). This nonreciprocal

single-photon dispersion property occurs because the chiral QE-light coupling breaks the time-reversal symmetry of
the system. In the CWA−CCWB supermode, the QE interacts with the single-photon evanescent field and introduces
an additional propagating phase ϕ to the single-photon field. In contrast, this extra phase factor disappears in the
CCWA − CWB supermode. In the absence of the QEs, we have ϕ = 0 and then Eq. (S32) reduces to the reciprocal
case Eq. (S31). In this case, the single-photon dispersion in two counter-propagating cases becomes reciprocal.

FIG. S3. The single-photon band structures calculated by the Hamiltonian and transfer matrix method, respectively. (a) The
system is excited in the CCWA −CWB supermode and (b) is excited in the CWA −CCWB supermode. Other parameters are
Γ/Ω = 1.5 × 10−5 corresponding to g/Ω = 3 × 10−4, κ1 = κ2 = 0.1i corresponding to J1/Ω = J2/Ω = 3 × 10−4, and γ = 0.

Now we consider a simple example, κ1 = κ2, which means that the coupling strengths between resonators are
equal, i.e., J1 = J2. Considering the resonators with a radius of r = 40 µm, Ω/2π = 195 THz and neff = 2, we
obtain F/2π = 0.6 THz. We take κ1 = κ2 = 0.1i and Γ/Ω = 1.5 × 10−5, thus J1/Ω = J2/Ω = 3 × 10−4 and
g/Ω = 3 × 10−4. These parameter settings are consistent with Fig. 4 in the main text. Figure S3 shows the single-
photon band structures of our system under two different excitation modes. The red dotted curves are the dispersion
relations corresponding to the real solutions of Eqs. (S31) and (S32). And the blue solid curves are the results of
directly solving the eigenequations of the Hamiltonian. It can be found that the results of transfer matrix calculation
are consistent with solving the eigenvalues and eigenstates of the Hamiltonian.
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IV. TUNNELING ENABLED SINGLE-PHOTON CIRCULATOR

FIG. S4. Nonreciprocal probability distribution and transmission of the chiral QE-CROW system at zero-energy frequency.
(a-c) for the backward input without coupling to the QEs, g = 0. (d-f) for the forward input with coupling to the QEs,
g/Ω = 3 × 10−4. The number of cells is N = 3 in (a, b, d, e) and N = 20 in (c, f). Other parameters are J1/Ω = 3 × 10−4,
J2 = 2J1.

In this section, we discuss the influence of edge-state tunneling. When a single photon enters port 1 or 3, it excites
the CWA−CCWB supermode of the CROW, which corresponds to the forward input, see Fig. 1 in the main text. The
photon incident to ports 2 and 4 (backward input) excites the oppositely propagating mode, i.e., the CCWA −CWB

supermode. We consider the case with edge states, that is J1 < J2. As the discussion in the main text, the edge
states in our chiral QE-CROW system exhibit a nonreciprocal characteristic. This unique property can be used to
achieve a single-photon circulator via single-photon edge-state tunneling effect.

In the backward case, the QEs have no interaction with the resonators. The two degenerate zero-energy eigenstates
are odd and even superpositions of states localized exponentially on the left and right boundaries. When the number
of cells is small, such as N = 3, there is an exponentially small overlap between the left and right edges [3], see
Fig. S4(a). This leads to a probability that the photon passes through the CROW, that is, an edge-state tunneling.
In stark contrast, there is negligible overlap of left and right edge states at the zero-energy frequency, as shown in
Fig. S4(d), because of the energy splitting of left edge state. Due to the coupling with the QEs, the left single-photon
edge state becomes a doublet with an energy splitting proportional to the coupling strength g, while the energy of the
right single-photon edge state is still zero. As a result, this edge-state tunneling effect disappears at the zero-energy
frequency in the forward case. Therefore, we can realize a single-photon circulator via the nonreciprocal SPESs with
few unit cells.

Figures S4(b) and (e) show the nonreciprocal single-photon transmission at the zero-energy frequency induced by
edge-state tunneling in the number of cells N = 3. When a single photon is incident to port 2, corresponding to the
backward case, the transmission T23 can reach about 0.93 because of the edge-state tunneling effect, see Fig. S4(b).
But for the forward input, i.e., the single photon entering port 1, the light cannot enter the CROW at all, and thus
T14 ≈ 0 (T12 ≈ 1), see Fig. S4(e). Due to the symmetry of the CROW, we have T34 = T12 and T41 = T23. As a
result, we can construct a single-photon circulator using the edge-state tunneling with a circling photon transport
1 → 2 → 3 → 4 → 1 at the zero-energy frequency. The fidelity and the average photon survival probability of the
circulator are calculated as {0.96, 0.99}. The negligible transmission near the zero energy in the inset of Fig. S4(e)
results from the single-photon flat band. The small dips appearing at (ω − Ω) = ±g correspond to the eigenvalue of
the left edge states, and their depth decreases with increasing QE-resonator coupling strength g.

When the number of cells becomes large, this edge-state tunneling vanishes for the backward case due to the
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absence of overlap between the left and right edges. In this case, the single-photon circulator cannot be constructed
at zero-energy frequency, see Figs. S4(c) and (f). The slight transmission at zero energy in Fig. S4(f) is caused by the
single-photon flat band for the forward input.

V. THE EFFECT OF THE SCATTERER

FIG. S5. Schematic of a chiral QE-CROW system containing N unit cells and the input and output waveguides. Inset: we
position one scatterer in the middle of the B-sublattice resonator.

In this section, we discuss the effect of the scatterer in our chiral 1D-CROW system shown in Fig. S5. We position
one scatterer in the B-sublattice resonator in the middle cell of the CROW. The scatterer will couple the two fields
of CW and CCW modes in the B-sublattice resonator. Therefore, the transfer matrix of the scatterer which couples
the (a, b) and (c, d) fields together is given by

Qscatt =
1

ts


1 0 0 −rs
0 1 0 0

0 0 1 0

rs 0 0 1

 , (S33)

where ts and rs are the transmission and reflection coefficients introduced by the scatterer, respectively. They satisfy
|ts|2 + |rs|2 = 1 when the dissipation of the scatterer is neglected [7, 10]. We assume the scatterer to be weak, thus
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we have

ts = cos ε ≈ 1− ε2

2
, rs = i sin ε ≈ iε, (S34)

with ε� 1. The coupling strength of the backscattering can be derived as h = ε×F [7].
The input and output coupling matrices between the resonators and the waveguides, Pin and Pout, can be written

as

Pin =
1

κin


−tin 1 0 0

−1 t∗in 0 0

0 0 −tin 1

0 0 −1 t∗in

 , Pout =
1

κout


1 −tout 0 0

t∗out −1 0 0

0 0 1 −tout

0 0 t∗out −1

 , (S35)

where {tin, tout, κin, κout} are the transmission and coupling coefficients and they satisfy |tin/out|2 + |κin/out|2 = 1.
Without loss of generality, we put the scatterer in the middle of the B-sublattice resonator, see the inset in Fig. S5.

Therefore, the transfer matrix of the unit cell is given by:

Cmiddle = P2 ·Q2

(
R

2

)
·Qscatt ·Q2

(
R

2

)
·P1 ·Q1 (R) . (S36)

FIG. S6. Robust one-way transmission of the chiral QE-CROW system. Single-photon transmission in the conventional 1D
CROW without coupling the QEs (a) and in a chiral QE-CROW system (b). Other parameters are N = 10, Γ/Ω = 1.5× 10−5

(g/Ω = 3 × 10−4), κ1 = κ2 = 0.1i (J1/Ω = J2/Ω = 3 × 10−4), κin = κout = 0.25i, and γ = 0.

We consider a scatterer embedded in the middle cell of a chiral QE-CROW system, with N = 10, r = 40 µm,
Ω/2π = 195 THz, and neff = 2. The free spectral range of the resonator is calculated as F/2π = 0.6 THz. We
take Γ/Ω = 1.5 × 10−5, κ1 = κ2 = 0.1i, and κin = κout = 0.25i, so g/Ω = 3 × 10−4, J1/Ω = J2/Ω = 3 × 10−4

and the external dissipations of resonators can be calculated as γex/2π = 19.4 GHz [setting γin = 0.02γex, thus
γtol/2π = (γex + γin)/2π = 19.8 GHz] [7]. These parameter settings are consistent with Fig. 4 in the main text.

The single-photon transmission in our system is robust against backscattering. To justify this, we compare the
transmission T23 and the backscattering of our chiral QE-CROW system and a conventional CROW system. This
scatterer induces a strong backscattering h = 50γin between the CW and CCW mode in the resonator. The single
photon inputs to port 2. In the conventional CROW system equivalent to the case without the QEs, see Fig. S6(a),
the scatterer causes a considerable decrease in the transmission T23, reducing it from unity to 0.63. The backscattering
also generates a reflection to port 2 and unwanted photon transport to port 4 with equal probability about 18%. In
stark contrast, as shown in Fig. S6(b), the scatterer has little influence on photon transmission in our system because
the chiral QE-light interaction results in a large frequency splitting ∆Ω in the A-sublattice resonator.
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VI. THE MAXIMAL ON-SITE DISORDER

FIG. S7. Band structures versus the disorder strength σ. (a) for the CCWA − CWB supermode without coupling to the QEs,
g/Ω = 0. (b) for the CWA − CCWB supermode with coupling to the QEs, g/Ω = 1 × 10−4. Other parameters are N = 20,
J1/Ω = 3 × 10−4, J2 = 2J1.

We now address the effect of the random disorder in the resonance frequency of each resonator. This frequency
fluctuation manifests as on-site disorder. The chiral symmetry of the system is broken when considering on-site
disorder [11]. The Hamiltonian with a random on-site potential in the rotating frame can be written as

ĤCWA−CCWB
=

N∑
j

(
εa,j â

†
j,�âj,� + εb,j b̂

†
j,	b̂j,	

)

+

N∑
j

(
gâ†j,�σ̂j + J1â

†
j,�b̂j,	 + H.c.

)
+

N−1∑
j

(
J2â
†
j+1,�b̂j,	 + H.c.

) (S37)

for the forward-input case and

ĤCCWA−CWB
=

N∑
j

(
εa,j â

†
j,	âj,	 + εb,j b̂

†
j,�b̂j,�

)

+

N∑
j

(
J1â
†
j,	b̂j,� + H.c.

)
+

N−1∑
j

(
J2â
†
j+1,	b̂j,� + H.c.

) (S38)

for the backward-input case. Here, εa,j (εb,j) is a random variable that obeys a Gaussian distribution with a mean
of zero and a standard deviation σ. We define the standard deviation σ as the disorder strength. By diagonalizing
Eqs. (S37) and (S38) for N = 20 unit cells, we show the band structures as a function of the disorder strength σ
in the case of J2 = 2J1, see Fig. S7. The fluctuation of the resonator frequency leads to the diffusion of each band.
As a result, with the increase of the disorder strength, the edge-state spectra gradually overlap with the bulk-state
spectra, see Fig. S7. We evaluate the maximum on-site disorder when the edge-state and the bulk-state bands begin to
overlap. For the backward-input case, the band of edge state overlaps with the upper and lower bulk bands at about
σ/Ω = 1×10−4. Therefore, the maximal on-site disorder is σmax/Ω = 1×10−4 [see the red dashed line in Fig. S7(a) ].
Figure S7(b) corresponds ot the forward-input case. In this case, the maximal disorder is about σmax/Ω = 0.4× 10−4

when g/Ω = 1× 10−4.
Figure S8 shows the maximal disorder σmax as a function of g in the forward-input case. When the coupling strength

g is small, σmax is limited by the flat-band diffusion. The maximal disorder increases with the increasing g due to
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FIG. S8. The maximal disorder versus the coupling strength g in the forward-input case. Other parameters: N = 20,
J1/Ω = 3 × 10−4, J2 = 2J1.

the splitting of the edge-state eigenenergies with respect to the zero energy, see Fig. 2(c) in the main text. It reaches
a maximum at g/Ω = 2.8× 10−4, about σmax/Ω = 1× 10−4, when the edge-state bands first overlap with the upper
and lower bulk bands. After that, the maximal disorder gradually decreases due to the limitation of the diffusion of
bulk bands.

FIG. S9. Influence of the on-site disorder on transmission spectra. In (a-c) the CCWA − CWB supermode is driven, where
g = 0, σ/Ω = 1 × 10−5 for (a, b), and σ/Ω = 2 × 10−5 for (c). In (d-f) the CWA − CCWB is excited, where g/Ω = 3 × 10−4,
σ/Ω = 1 × 10−5 for (d, e), and σ/Ω = 2 × 10−5 for (e). Other parameters are N = 10, J1/Ω = 3 × 10−4, J2 = J1, and
κin = κout = 0.25i.

Next, we study the effect of the on-site disorder on the transmission spectra in the case of J1 = J2. By introducing
random disorders to each resonator frequency in the transfer matrix, that is Ω̃j for the jth resonator, we can evaluate
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the influence of the on-site disorder as shown in Fig. S9. The random variable Ω̃j follows a Gaussian distribution,
with a mean of Ω and a standard deviation of σ. For the backward input, the on-site disorder, with a strength
σ/Ω = 1 × 10−5, causes fluctuations in the transmission spectra, see Fig. S9(a) and Fig. S9(b) zoomed in a specific
single-frequency window. A maximum allowable disorder, about σmax/Ω = 2 × 10−5, corresponds to the complete
indistinguishability of transmissions T21 and T23. In contrast, in the case of forward input, working in the nonreciprocal
band gap, the transmission spectra are hardly affected by the on-site order, see Fig. S9(d-f). The band gap protects
the transmission spectra from the on-site disorder. Therefore, a high performance of the frequency-multiplexed single-
photon circulator can also be obtained even in a large on-site disorder. Note that similar results can also be obtained
for the on-site disorder subject to uniform distribution.

VII. INFLUENCE OF THE NUMBER OF UNIT CELLS

FIG. S10. Transmission of the chiral QE-CROW system with N = 5 in (a) and (b) and N = 20 in (c) and (d). In (a) and
(c) the single photon incidents to port 2. In (b) and (d) the single photon incidents port 1 with Γ/Ω = 1.5 × 10−5. Other
parameter are γ = 0, κin = κout = 0.25i, and κ1 = κ2 = 0.1i.

In this section, we study the effect of the number of unit cells N on the frequency-multiplexed channels of the
single-photon circulator.

On the one hand, as we discussed in the main text, when the single photon is incident into the port 2, the excited
CCWA − CWB modes decouple from the QEs. In this case, the number of transmitted peaks and dips formed is
proportional to 2N , see Figs. S10(a) and (c) for N = 5 and N = 20, respectively.

On the other hand, the bandwidth of the edge state formed by the input in the opposite direction, i.e., the port 1,
depends only on the QE-resonator coupling strength g, and does not depend on the number of unit cells. Therefore,
at a given decay rate Γ for determining the QE-resonator coupling strength by g ≈

√
2Γ×F , we can increase and

adjust the frequency-multiplexed channels of the single-photon circulator by increasing the number of cells N . For
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example, there are 4 and 14 nonreciprocal windows for N = 5 and N = 20 with Γ/Ω = 1.5× 10−5, see the blue dots
in Figs. S10(b) and (c), respectively.

VIII. FIRST-PRINCIPLE ANALYSIS USING FDTD METHOD

FIG. S11. Transmission of the chiral QE-CROW system using N = 3. (a) and (b) are the results of our simulation using FDTD
method. (c) and (d) are calculated by the transfer matrix method. In (a, c) the CCWA − CWB supermode is driven. In (b,
d), the CWA − CCWB is excited.

It is an open question to analyze the interaction between resonators and QEs from the first-principle analysis,
especially in quantum regime. Here, we show an equivalent numerical method using finite-difference time-domain
(FDTD) to simulate the propagation of a single photon in our chiral QE-CROW system. To simulate the chiral
interaction between the QEs and resonators, we divide the system into two parts, the forward-input and the backward-
input cases, and analyze them separately.

In the backward-input case, the system reduces to a classical CROW due to the decoupling of the QEs with the
A-sublattice resonators. We can simulate the transport of single photons in this system with the FDTD slover of
the Lumerical software. For the sake of computational resources and time, we set the number of the unit cells to
be N = 3 and the radius of each microring resonator to be r = 4 µm, to display a physical picture. We use silicon,
with a refractive index neff = 3.48, to simulate microring resonators and waveguides. The microring resonators and
waveguides are 0.45 µm wide and 0.22 µm thick. Through the numerical simulation with FDTD method, we obtain
an intrinsic quality factor of Qin ≈ 1×105 at the wavelength λr ∼ 1.546 µm, and a mode volume Vm ∼ 1.67 µm3. The
corresponding resonance frequency and the intrinsic decay rate of microring resonators are Ω/2π ≈ 194.11 THz and
γin/2π ≈ 1.9 GHz, respectively. The relatively low quality factor of microring resonators is due to the large spatial
grid in the simulation, limited by available computational resources. The gap between the waveguide and microring
resonators is set to 0.13 µm. The spacing between the A-sublattice and B-sublattice resonators is 0.2 µm. The input
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light is exclusively transversally polarized. As a result, the evanescent filed of each microring resonator is almost
perfectly circularly polarized with its polarization locked to the propagating direction [12–14].

In the forward-input case, the QEs are coupled to the resonators and the system becomes an L-shaped chain. In
the single-excitation space we are interested in, Fock state of an optical cavity can be truncated up to |1〉, which
is equivalent to a two-level QE [15]. Therefore, we can use a side-coupled microring resonator to model the two-
level QE when we consider the transport of single photons. In this treatment, a microring resonator supporting
the directional-circulating whispering-gallery mode is equivalent to the two-level QE chirally interacting with the
A-sublattice resonator [16]. Thus, by setting the side-coupled resonators with the same resonance frequency as the
QEs, we can use the FDTD method to numerically simulate the transport of a single photon in the case of forward
input. The gap between the A-sublattice resonator and the side-coupled resonator is set to 0.1 µm. Other parameters
in the FDTD simulation are the same as those in backward-input case.

Now, we numerically evaluate the performance of our frequency-multiplexed single-photon circulator. As expected,
the results of the FDTD simulation show a nonreciprocal transmission spectra, see Figs. S11(a) and S11(b). For the
backward input, the system is excited in the CCWA − CWB supermode. Taking the input to port 2 as an example,
there are six peaks in the transmission T23 and six dips in T21, as shown in Fig. S11(a). Two reasons cause the loss
of the transmission T23: one is the intrinsic decay of microring resonators, such as the large bending losses for such
small-radius microring resonators; the other is that the backscattering caused by the large grid of differential space
in the FDTD simulation. By further decreasing the spatial grid in the simulation and correspondingly increasing the
computation resources, we can eliminate the backscattering, and thus improve the transmission T23.

For the forward input, we take the light to be incident from port 1. Because of the large computational complexity,
the simulation time will be very long, if we want to obtain a smooth transmission below unity. As a result, some
values of the transmission T12 exceed 1, see the blue solid curve in Fig. S11(b). These abnormal values can disappear
when the simulation time is long enough. Considering the symmetry of the CROW, we have T12 = T34 and T23 = T41.
Thus, we can obtain a frequency-multiplexed single-photon circulator with four optimized frequency windows at
ω/2π ≈ {194.16, 194.12, 194.08, 194.04} THz. The circling photon transport direction is 1 → 2 → 3 → 4 → 1. The
corresponding fidelity and average photon survival probability of the circulator are calculated as {0.96, 0.99, 0.99, 0.99}
and {0.79, 0.82, 0.83, 0.79}, respectively. The average insertion loss for these four frequency windows is about 1.12 dB.
Note that the simulated single-photon survival probability is smaller than the real value. By reducing the spatial grid
in the simulation to eliminate the backscattering, we can get more accurate single-photon survival probability.

The results calculated by the transfer matrix method agree well with the simulation results, see Figs. S11(c) and
S11(d). We take κin = κout = 0.2i, κ1 = κ2 = 0.1i, γin/2π = 25 GHz, and g/Ω = 1.5× 10−3. A higher transmission
T23, corresponding to the case without the differential-induced backscattering, can be obtained as shown in Fig. S11(c).
Therefore, we can actually get a better performance frequency-multiplexed single-photon circulator.

We also demonstrate how our single-photon circulator works by simulating the steady-state distribution of the
magnetic field H component of the incident light field, see Fig. S12. When a single photon is incident to port 2 at
the transmission peak indicated by the open circles in Fig. S11, it exits from port 3. The small amount of light field
escaping from port 4 originates from the differential-induced backscattering. It can be eliminated by decreasing the
spatial grid in the FDTD simulation. In contrast, due to the nonreciprocal band gap, the photon incident from port
1 exits totally from port 2. According to the symmetry of the CROW, the photon incident from port 3 (port 4) will
be emitted from port 4 (port 1). Therefore, our chiral QE-CROW system promises a perfect frequency-multiplexed
single-photon circulator.
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FIG. S12. Distribution of the magnetic component H of the light field in the backward-input case (a) and in the forward-input
case (b). The frequency chosen in our simulation is ω/2π = 194.12 THz (λ/µm = 1.5444). Other parameters are the same as
Fig. S11. Note that the field in the resonators in (a) is stronger than that in the waveguide because of the effect of resonator
enhancement.
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