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In this Supplemental Material, we first present more details about the Bogoliubov squeezing transformation for
the forward-input Hamiltonian. Then, we derive the master equations of the system including the squeezing-induced
noise for calculating the steady-state transmission of the classical light. We also show more details of the elimination
of the squeezing-induced noise and derive the master equation of the quantum cascaded system without the noise,
to attain the transmission matrix of single-photon pulses. After that, we present the quantum Langevin equations
of the system, in the cases with and without the squeezing-induced noise, for deriving the steady-state analytical
transmissions. Then, we discuss the optimal condition for achieving the maximal isolation ratio. Finally, we derive
the relation between the pump strength Ωp and the pump power Pp.

I. SQUEEZING PARAMETER IN THE FORWARD-INPUT CASE

For convenience, we recall the Hamiltonian given by Eq. (1) in the main text for the forward-input case

Hfw = HA +HB +HJ ,

HA/~ = ∆a
pa
†
�
a� + i

√
2κex1(aina

†
�
e−i∆int − a†ina�e

i∆int) ,

HB/~ = ∆b
pb
†
	
b	 +

Ωp
2

(e−iθpb†2
	

+ eiθpb2
	

) ,

HJ/~ = J0(a†
�
b	 + a�b

†
	

) ,

(S1)

where the detuning ∆
a/b
p = ωa/b−ωp/2 and ∆in = ωin−ωp/2. By applying the Bogoliubov squeezing transformation

bs = cosh(rp)b + e−iθp sinh(rp)b
† [1–3], we obtain the Hamiltonian in the squeezing picture. Under the condition

∆a
p + ∆b

p

√
1− β2 � sinh(rp)J0, with β = Ωp/∆

b
p, we can apply the rotating-wave approximation and neglect the

counter-rotating terms. Then, the Hamiltonian in the squeezing picture is given by

Hsfw = HsA +HsB +HsJ ,

HsA/~ = ∆a
pa
†
�
a� + i

√
2κex1(aina

†
�
e−i∆int − a†ina�e

i∆int) ,

HsB/~ = ∆bs
p b
†
s	bs	 ,

HsJ/~ = Js(a
†
�
bs	 + a�b

†
s	) .

(S2)

Here, after the Bogoliubov squeezing transformation, the bare mode b	 is transformed to the squeezed mode bs	 with
detuning

∆bs
p = ∆b

p

√
1− β2 , (S3)

and squeezing parameter

rp =
1

4
ln

1 + β

1− β
. (S4)
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Consequently, for rp > 0, the coupling rate between the bare mode a� and the squeezed mode bs	 is exponentially
enhanced [2, 3], and given by

Js = cosh(rp)J0 . (S5)

In a frame rotating at frequency ∆in, the Hamiltonian Eq. (S2) can be rewritten as

Hsfw/~ = ∆aa
†
�
a� + i

√
2κex1(aina

†
�
− a†ina�) + ∆s

bb
†
s	bs	 + Js(a

†
�
bs	 + b†s	a�) , (S6)

where ∆a = ∆a
p −∆in = ωa − ωin, ∆s

b = ∆bs
p −∆in.

Fig. S1. (a) The squeezing parameter rp versus β ∈ [0, 1). (b) The detuning ∆bs
p versus β ∈ [0, 1), ∆b

p/κa = 10. (c) The
enhanced coupling rate Js varying with the squeezing parameter rp ∈ [0, 3].

As depicted in Fig. S1, when the ratio β approaches 1, the squeezing parameter increases greatly and the detuning
∆bs
p decreases to 0. Furthermore, increasing the squeezing parameter rp leads to an exponential enhancement [2, 3]

of the coupling rate Js.

II. MASTER EQUATION

A. Squeezing-induced noise and classical-light input

For our system in the forward-input case, the dynamics of the system coupling to a normal vacuum reservoir is
described by a standard master equation

d

dt
ρfw = −i[Hfw, ρfw] + L[La]ρfw + L[Lb]ρfw , (S7)

where ρfw is the density matrix of the system in the forward-input case, Hfw is the Hamiltonian given by Eq. (S1),
and the operators La =

√
κaa� and Lb =

√
κbb	 describe the decay of the resonator A (RA) and B (RB) with rates

κa and κb, respectively. Moreover, L[o]ρ = 2oρo† − o†oρ− ρo†o.
Next, we apply the Bogoliubov squeezing transformation, b = cosh(rp)bs − e−iθp sinh(rp)b

†
s, to respectively replace

the Hamiltonian Hfw with Hsfw [Eq. (S6)] and Lb with Lsb =
√
κb[cosh(rp)bs	 − e−iθp sinh(rp)b

†
s	 ]. Therefore, we can

rewrite Eq. (S7) in the squeezed picture as

d

dt
ρfw = −i[Hsfw, ρfw] + L[La]ρfw + L[Lsb]ρfw

= −i[Hsfw, ρfw] + L[La]ρfw + L[Lbs]ρfw + £n[Lbs]ρfw ,
(S8)

Here, we use the operator Lbs =
√
κbbs	 and the noise-related Lindblad term

£n[Lbs]ρfw = NpL[Lbs]ρfw +NpL[L†bs]ρfw −MpL′[Lbs]ρfw −M∗pL′[L
†
bs]ρfw , (S9)

where Np = sinh2(rp), Mp = eiθp cosh(rp) sinh(rp), and L′[o]ρ = 2oρo− ooρ− ρoo.
In the backward-input case, the Hamiltonian reads

Hbw

/
~ = ∆aa

†
	
a	 + i

√
2κex1(aina

†
	
− a†ina	) + ∆0

bb
†
�
b� + J0(a†

	
b� + b†

�
a	) , (S10)
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where ∆0
b = ωb − ωin. The corresponding master equation of the system is given by

d

dt
ρbw = −i[Hbw, ρbw] + L[La]ρbw + L[Lb]ρbw . (S11)

Note that the term £n[Lbs]ρfw in Eq. (S8) is induced by quantum squeezing for the forward-input case. This
noise-related term is absent in Eq. (S11) in the backward-input case.

According to the input-output relation [4], we have

aout = ain −
√

2κex1a , a†outaout = a†inain −
√

2κex1

(
a†ina+ a†ain

)
+ 2κex1a

†a , (S12a)

bout =
√

2κex2b , b†outbout = 2κex2b
†b , (S12b)

where κex2 is the external decay rate of RB.
The transmissions are defined as

T12/21 =
〈a†outaout〉
〈a†inain〉

, T23 =
〈b†outbout〉
〈a†inain〉

, (S13)

where Tij is the transmission from port i to port j, with i, j = 1, 2, 3. According to Eqs. (S12) and (S13), replacing

the operators ain and a†in with their average value αin and α∗in and setting θp = 0 (by adjusting the phase of the
pump), we can solve the transmission for a coherent signal field by numerically solving Eqs. (S8) and (S11).

B. Elimination of squeezing-induced noise and single-photon input

In the forward-input case, to suppress the squeezing-induced noise, we input a broadband squeezed-vacuum field
with squeezing parameter re and reference phase θe into RB from port 3. The squeezed-vacuum field can be regarded
as a squeezed-vacuum reservoir for CCW modes in RB. Therefore, the dynamics of the system is described by the
master equation [1]

d

dt
ρsv

fw =− i[Hfw, ρ
sv
fw] + L[La]ρsv

fw + (Ne + 1)L[Lb]ρ
sv
fw +NeL[L†b]ρ

sv
fw −MeL′[Lb]ρsv

fw −M∗eL′[L
†
b]ρ

sv
fw , (S14)

where Ne = sinh2 (re) and Me = e−iθe cosh (re) sinh (re).
Next, we respectively transform the HamiltonianHfw toHsfw, and the operator Lb to Lsb according to the Bogoliubov

squeezing transformation b = cosh(rp)bs−e−iθp sinh(rp)b
†
s. After the replacement, the master equation for the forward

input can accordingly be written as

d

dt
ρsv

fw =− i[Hsfw, ρsv
fw] + L[La]ρsv

fw + (Ne + 1)L[Lsb]ρ
sv
fw +NeL[Ls†b ]ρsv

fw −MeL′[Lsb]ρsv
fw −M∗eL′[L

s†
b ]ρsv

fw

=− i[Hsfw, ρsv
fw] + L[La]ρsv

fw + L[Lbs]ρ
sv
fw +Ns

eL[Lbs]ρ
sv
fw +Ns

eL[L†bs]ρ
sv
fw −Ms

eL′[Lbs]ρsv
fw −Ms∗

e L′[L
†
bs]ρ

sv
fw ,

(S15)
where

Ns
e = cosh2 (rp) sinh2 (re) + sinh2 (rp) cosh2 (re) +

1

2
sinh (2rp) sinh (2re) cos (θp + θe) , (S16a)

Ms
e = exp (iθp) [sinh (rp) cosh (re) + exp [−i(θp + θe)] cosh (rp) sinh (re)]

× [cosh (rp) cosh (re) + exp [i(θp + θe)] sinh (rp) sinh (re)] . (S16b)

When re = rp and θe + θp = ±nπ (n = 1, 3, 5, ...), we have Ns
e = 0 and Ms

e = 0. Thus, Eq. (S15) becomes

d

dt
ρsv

fw = −i[Hsfw, ρsv
fw] + L[La]ρsv

fw + L[Lbs]ρ
sv
fw . (S17)

Here, the squezzing-noise-induced term £n[Lbs]ρfw in Eq. (S8) is cancelled by the squeezed-vacuum field in the forward-
input case. Therefore, the squeezed mode equivalently couples to a normal vacuum bath. As a result, the decay rate of
the squeezed mode equals that of the original bare mode. The term L[Lbs]ρfw with operator Lbs =

√
κbbs	 describes

the decay of the mode bs	 with a rate κb.
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In the backward-input case, the squeezed-vacuum field from port 3 has no influence on the system dynamics. So
the motion of the system coupling to a normal vacuum bath is governed by the master equation

d

dt
ρbw = −i[Hbw, ρbw] + L[La]ρbw + L[Lb]ρbw . (S18)

Then, we use a quantum cascaded system to simulate the propagation of single-photon pulses incident to ports 1
and 2 simultaneously [5–7]. In this quantum cascaded system, single-photon pulses emitted from the source resonator
are input into our optical nonreciprocal device. Therefore, when the squeezing-vacuum field is applied, the master
equation describing the quantum cascaded system for the forward-input case is given by

d

dt
ρsv

qcs,fw = −i[Hd, ρsv
qcs,fw]− i[Hsqcs,fw, ρ

sv
qcs,fw] + L[Ld]ρ

sv
qcs,fw + L[La]ρsv

qcs,fw + L[Lbs]ρ
sv
qcs,fw + £qcs,fwρ

sv
qcs,fw , (S19)

where Hd = ∆dd
†d is the Hamiltonian of the source resonator, ∆d = ωd − ωin, ωd is the resonance frequency of the

source resonator, and ρsv
qcs,fw is the joint density matrix of the source resonator and our device in the forward-input

case. Here we set ∆d = 0. The Hamiltonian of the quantum cascaded system is Hsqcs,fw = ∆aa
†
�
a� + ∆s

bb
†
s	bs	 +

Js(a
†
�
bs	 + b†s	a�). The Lindblad operator Ld =

√
κex0d describes the external decay of the source resonator, where

κex0 is the decay rate from the source resonator to the device. To apply a Gaussian-like single-photon pulse, we set
κex0(t) = κa exp(−(t− τd)2/2τ2

p ), where τp is the pulse duration and τd is the pulse delay [8, 9]. The relevant Lindblad

terms are L[Ld]ρ = κex0(2dρd† − d†dρ− ρd†d) and £qcs,fwρ =
√

4κex0κex1

(
[a†

�
, dρ] + [ρd†, a� ]

)
.

In the backward-input case, the master equation of the quantum cascaded system is given by

d

dt
ρqcs,bw = −i[Hd, ρqcs,bw]− i[Hqcs,bw, ρqcs,bw] + L[Ld]ρqcs,bw + L[La]ρqcs,bw + L[Lb]ρqcs,bw + £qcs,bwρqcs,bw , (S20)

where Hqcs,bw = ∆aa
†
	
a	 + ∆0

bb
†
�
b� +J0(a†

	
b� + b†

�
a	) and £qcs,bwρ =

√
4κex0κex1

(
[a†

	
, dρ] + [ρd†, a	 ]

)
, and ρqcs,bw

is the joint density matrix of the source resonator and our device in the backward-input case.

According to Eqs. (S12) and (S13), we can attain the propagation (left panel in Fig. S2) and transmissions (right
panel in Fig. S2) of the single-photon pulses by solving Eqs. (S19) and (S20) numerically. As show in Fig. S2, the system
can function as a three-port quasi-circulator, allowing single-photon pulses propagating along port 1→ 2→ 3 [10].

III. QUANTUM LANGEVIN EQUATION

According to Eq. (S8), the quantum Langevin equation for an arbitrary system operator Q in the forward-input
case is given by

d

dt
Q = i[Hsfw, Q] + L[La]Q+ L[Lbs]Q+ £n[Lbs]Q , (S21)

where La =
√
κaa� , Lb =

√
κbbs	 , £n[Lbs]Q = NpL[Lbs]Q + NpL[L†bs]Q − MpL′[Lbs]Q − M∗pL′[L

†
bs]Q, L[o]Q =

2o†Qo − Qo†o − o†oQ, and L′[o]Q = 2oQo − Qoo − ooQ. Hence, we have the equations of motion for the specific
operators Q = {a� , bs	 , a

†
�
bs	 , b

†
s	bs	 , a

†
�
a�} reading as

d

dt
a� = −(i∆a + κa)a� +

√
2κex1ain − iJsbs	 , (S22a)

d

dt
bs	 = −(i∆s

b + κb)bs	 − iJsa� , (S22b)

d

dt
a†

�
bs	 = (i∆s

ab − κab)a†�bs	 +
√

2κex1a
†
inbs	 − iJsΞ , (S22c)

d

dt
b†s	bs	 = iJs(a

†
�
bs	 − a�b

†
s	)− 2κbb

†
s	bs	 + Ψnoise , (S22d)

d

dt
a†

�
a� = −iJs(a†�bs	 − a�b

†
s	) +

√
2κex1(aina

†
�

+ a†ina�)− 2κaa
†
�
a� . (S22e)
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Fig. S2. (a) and (c) Propagation of single-photon pulses with a duration of 2π × 6κ−1
a . The arrows indicate the propagating

directions of the pulses. Blue (red) curves are for the incident (solid curves) and transmitted (dashed curves) pulses for the
forward (backward) input. (b) and (d) Transmission matrix of the three-port quasi-circulator. (a) and (b) for the normal mode
splitting (NMS) scenario with κa = κb = κ, κex1,2/κ = 0.99, J0/κ = 0.99, ∆b

p/κ = 10.3, Ωp/κ = 10, and ∆a = ∆0
b = 0. (c) and

(d) for the mode resonance shift (MRS) scenario with κa = κb = κ, κex1,2/κ = 0.99, J0/κ = 2.8, ∆b
p/κ = 15, Ωp/κ = 13, and

∆a = ∆0
b = 2.62κ.

Here, Ψnoise = 2 sinh2(rp)κb, ∆s
ab = ∆a − ∆s

b, κab = κa + κb and Ξ = a†
�
a�bs	b

†
s	 − a�a

†
�
b†s	bs	 . To a good

approximation, using the commutation relations [a, a†] = 1 and [bs, b
†
s] = 1, we can derive Ξ = a†

�
a� − b†s	bs	 . By

setting d
dtQ = 0, we can obtain the steady-state mean values of the operators

〈
a�

〉
ss

=
(i∆s

b + κb)
√

2κex1αin

(i∆a + κa)(i∆s
b + κb) + J2

s

, (S23a)

〈
bs	
〉

ss
=

−iJs
√

2κex1αin

(i∆a + κa)(i∆s
b + κb) + J2

s

, (S23b)〈
a†

�
a�

〉
ss

=
2κex1|αin|2(κ2

b + ∆s
b
2)

Gs
+Nnoise , (S23c)〈

b†s	bs	

〉
ss

=
2κex1|αin|2J2

s

Gs
+ %Nnoise . (S23d)

Here, Nnoise = κb(κa + κb) sinh2(rp)J
2
s

/
Qs. The mean value αin = 〈ain〉 is the coherent amplitude of the input signal

field. We also have Gs = J4
s + 2J2

s (κaκb−∆a∆s
b) + (κ2

a+ ∆2
a)(κ2

b + ∆s
b
2), Qs = J2

s (κa+κb)
2 +κaκb[(κa+κb)

2 + ∆s
ab

2],

and % = J2
s (κa + κb) + κa[(κa + κb)

2 + ∆s
ab

2]
/

[(κa + κb)J
2
s ].

According to Eqs. (S13) and (S23), the steady-state transmission for port 1→ 2 is

T12 =
J4
s + 2ζsJ

2
s + Λs

Gs
+

2κex1Nnoise

|αin|2
, (S24)

where ζs = κaκb − 2κbκex1 −∆a∆s
b and Λs = [(κa − 2κex1)2 + ∆2

a](κ2
b + ∆s

b
2).

Similarly, according to Eq. (S11), we obtain the quantum Langevin equation for an arbitrary system operator Q in
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the backward-input case

d

dt
Q = i[Hbw, Q] + L[La]Q+ L[Lb]Q . (S25)

Thus, we have the equations of motion for the specific operators Q = {a	 , b� , a
†
	
b� , b

†
�
b� , a

†
	
a	}:

d

dt
a	 = −(i∆a + κa)a	 +

√
2κex1ain − iJ0b� , (S26a)

d

dt
b� = −(i∆0

b + κb)b� − iJ0a	 , (S26b)

d

dt
a†

	
b� = (i∆0

ab − κab)a†	b� +
√

2κex1a
†
inb� − iJ0Ξ , (S26c)

d

dt
b†
�
b� = iJ0(a†

	
b� − a	b

†
�

)− 2κbb
†
�
b� , (S26d)

d

dt
a†

	
a	 = −iJ0(a†

	
b� − a�b

†
	

) +
√

2κex1(aina
†
	

+ a†ina	)− 2κaa
†
	
a	 . (S26e)

Here, we use the notation ∆0
ab = ∆a −∆0

b , Ξ = a†
	
a	 − b†�b� . Setting d

dtQ = 0, we obtain the steady-state solutions

〈
a	

〉
ss

=
(i∆0

b + κb)
√

2κex1αin

(i∆a + κa)(i∆0
b + κb) + J2

0

, (S27a)

〈
b�
〉

ss
=

−iJ0

√
2κex1αin

(i∆a + κa)(i∆0
b + κb) + J2

0

, (S27b)

〈
a†

	
a	

〉
ss

=
2κex1|αin|2(κ2

b + ∆0
b
2
)

G0
, (S27c)〈

b†
�
b�

〉
ss

=
2κex1|αin|2J2

0

G0
. (S27d)

where G0 = J4
0 + 2J2

0 (κaκb − ∆a∆0
b) + (κ2

a + ∆2
a)(κ2

b + ∆0
b
2
). According to Eqs. (S13) and (S27), the steady-state

transmissions in the backward-input case are given by

T21 =
J4

0 + 2ζ0J
2
0 + Λ0

G0
, (S28a)

T23 =
4κex1κex2J

2
0

G0
, (S28b)

where ζ0 = κaκb − 2κbκex1 −∆a∆0
b and Λ0 = [(κa − 2κex1)2 + ∆2

a](κ2
b + ∆0

b
2
).

After applying a phase-matched squeezed-vacuum field to drive RB, as discussed in Sec. II B, the squeezing-induced
noise can be completely eliminated. In this case, we have κbs = κb. Thus, the term L[Lbs]b

†
s	bs	 with the operator

Lbs =
√
κbbs	 describes the decay of the mode bs	 with a rate κb. Therefore, when the squeezed-vacuum field is

applied, we can rewrite Eq. (S22d) as

d

dt
b†s	bs	 = iJs

(
a†

�
bs	 − a�b

†
s	

)
− 2κbb

†
s	bs	 . (S29)

Note that the noise term Ψnoise in Eq. (S22d) is eliminated, but Eqs. (S22a)-(S22c) and (S22e) have no change in this
case. So, we can derive the steady-state mean value of the mode a� which is given by

〈
a†

�
a�

〉
ss

=
2κex1|αin|2(κ2

b + ∆s
b
2)

Gs
. (S30)

Here, the noise term Nnoise in Eq. (S23c) is also eliminated in this case.

Therefore, the steady-state noise-free transmissions are obtain as

T sv
12 = (J4

s + 2ζsJ
2
s + Λs)

/
Gs , T sv

21 = T21 , T sv
23 = T23 . (S31)



7

From Eq. (S24), we can see that the noise-related term 2κex1Nnoise

/
|αin|2 in the transmission T12 can be completely

eliminated by applying the squeezed-vacuum field.

The isolation ratio of transmissions between ports 1 and 2 in the case without the squeezed-vacuum field is defined
as

η = 10 log10(T12/T21) . (S32)

The isolation ratio in the case with the squeezed-vacuum field is defined as

ηsv = 10 log10(T sv
12/T

sv
21 ) . (S33)

IV. THE MAXIMAL ISOLATION RATIO

To achieve the maximal available isolation ratio ηmax, we need to find the condition for the maximal forward
transmission and the minimal backward transmission. In our cases, the forward transmission of interest is close to
unity. As a result, the isolation ratio is dominantly determined by the near-zero backward transmission. Thus, we pay
more attention to find an optimal condition allowing a vanishingly small backward transmission T21 = T sv

21 because
ηmax is crucially dependent on the near-zero T21. In our backward-input case, our system can be modeled as the
standard cavity system consisting of two coupled optical microring resonators. For simplicity in our analysis below,
we take ∆a = ∆0

b = ∆ and κa = κb = κ.

From Eqs. (S28a) and (S32), we obtain the minimal transmission Tmin
21 and the corresponding maximal isolation

ratio ηmax under the optimal condition [(J2
0 + κ2

i )− (κ2
ex1 + ∆2)]2 + (2κi∆)2 ≈ 0, where κi is the intrinsic decay rate

of RA and κi + κex1 = κ. Below we discuss the isolation ratio ηmax in the NMS and MRS scenarios, respectively.

A. ηmax in the normal mode splitting scenario

In the NMS scenario, we apply J0 ∼ κ and κi � κ. In this case, the optimal coupling gives to an optimal detuning
∆ = 0. Then, we obtain the minimal transmission

Tmin
21 =

(J2
0 − κ2

ex1 + κ2
i )

2

(J2
0 + κ2)2

. (S34)

We consider the practical implementations κex1 � κi and apply the approximation κ ≈ κex1 and J2
0 ≈ κ2

ex1 for the
exact optimal coupling J2

0 + κ2
i = κ2

ex1 because κ2
i is small. In this case, we have

Tmin
21 ≈ κ4

i

4J4
0

, (S35)

yielding the maximal isolation ratio

ηmax ≈ 10 log10

[(
1− σ +

2κNnoise

|αin|2

)
4J4

0

κ4
i

]
, (S36)

where σ ≈ 4J2
sκ

2
/ [

(J2
s + κ2)2 + κ2∆s

b
2
]
.

B. ηmax in the mode resonance shift scenario

In the MRS scenario, the coupling rate J0 and the detuning ∆ are larger than κ. Thus, we need a small κi to meet
the optimal condition that J2

0 + κ2
i = κ2

ex1 + ∆2 and κi∆ ∼ 0.

Tmin
21 =

(J2
0 − κ2

ex1 + κ2
i )κ

2
i

(J2
0 + κ2

i )κ
2

≈ (J2
0 − κ2)κ2

i

J2
0κ

2
. (S37)
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Here, we use the approximation κ ≈ κex1. Thus, the maximal isolation ratio is

ηmax ≈ 10 log10

[(
1 +

2κNnoise

|αin|2

)
J2

0κ
2

(J2
0 − κ2)κ2

i

]
. (S38)

Here, we apply a good approximation ∆∆s
b ± κ2 ∼ ∆∆s

b with |∆∆s
b| � κ2.

V. SECOND-ORDER NONLINEAR PARAMETRIC PROCESS

We now consider the full quantum description of the degenerate nonlinear parametric process in RB. Then, the
Hamiltonian for the forward-input case is given by (for simplicity, we replace a� with a, bs	 with b, and c	 with c)

H/~ =ωaa
†a+ ωbb

†b+ ωcc
†c+ J0(a†b+ b†a) + g

(
b†

2
c+ b2c†

)
+ i
√

2κex1αin

(
a†e−iωint − aeiωint

)
+ i
√

2κpex2αp
(
c†e−iωpt − ceiωpt

)
,

(S39)

where ωa/b is the resonance frequency of the fundamental signal mode in RA or RB, ωc is the frequency of the second-

harmonic modes in RB, αin =
√

2πPin/~ωin is the coherent amplitude of the incident signal light with the power Pin,

αp =
√

2πPp/~ωp corresponds to the pump light with the power Pp and the angular frequency ωp, κ
p
ex2 is the external

decay rate for the pump field mode in RB, and g is the nonlinear single-photon coupling strength in the parametric
nonlinear process. Note that the factor 2π in αin and αp is needed to keep the dimension consistent in the angular
frequency. In the rotating frame defined by U = exp[(−iωp

2 a
†a− iωp

2 b
†b− iωpc†c)t], the Hamiltonian becomes

H/~ =∆a
pa
†a+ ∆b

pb
†b+ ∆c

pc
†c+ J0(a†b+ b†a) + g

(
b†

2
c+ b2c†

)
+ i
√

2κex1αin

(
a†e−i∆int − aei∆int

)
+ i
√

2κpex2αp
(
c† − c

)
,

(S40)

where ∆
a/b
p = ωa/b − ωp/2, ∆c

p = ωc − ωp, and ∆in = ωin − ωp/2. The dynamical equation of c can be solved by the
Heisenberg equation

ċ = i[H, c]− κpc = −(i∆c
p + κp)c+

√
2κpex2αp − igb2 . (S41)

Here, we consider a strong continuous pump field to excite the mode c in RB with amplitude 〈c〉 � 〈b〉. In this strong
pump case, we can omit the terms related to g in Eqs. (S40) and (S41) for the purpose of calculating the steady state

of mode c. In doing so, we obtain the reduced Hamiltonian Hp = ∆c
pc
†c + i

√
2κpex2αp

(
c† − c

)
and the steady-state

solution

〈c〉ss =

√
2κpex2αp

i∆c
p + κp

. (S42)

For a slowly varying mode c, we can replace c with its steady-state mean value 〈c〉ss in the Hamiltonian Eq. (S40).
Then, the Hamiltonian Eq. (S40) can be rewritten as

H/~ = ∆a
pa
†a+ ∆b

pb
†b+ J0(a†b+ b†a) + g

(
b†

2 〈c〉ss + b2 〈c〉∗ss
)

+ i
√

2κex1αin

(
a†e−i∆int − aei∆int

)
. (S43)

Comparing Eq. (S43) with Eq. (S1), we can estimate the amplitude and phase of the pump as

Ωp = 2g| 〈c〉ss | = 4g

√
πκpex2Pp

(∆c
p

2 + κ2
p)~ωp

, θp = −Arg[〈c〉ss] . (S44)

The resonance pump field at frequency ωp = ωc leads to ∆c
p = 0. The pump power is given by

Pp =
~ωpκ2

pΩ
2
p

16πg2κpex2

. (S45)
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To evaluate the optical transistor, we define the gain of the transistor as

G =
Pin

Pp
∆T =

8ωing
2κpex2α

2
in

ωpκ2
pΩ

2
p

∆T =
2κex2g

2α2
in

κ2
aΩ2

p

∆T . (S46)

Here, owing to ∆b
p � {ωa, ωb, ωin, ωp}, we have applied the following approximations, ωp = 2ωin, κp = 2κa, and

κpex2 = 2κex2, to obtain the final form of the gain.
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