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In this Supplemental Material, we first present more details about the Bogoliubov squeezing transformation for
the forward-input Hamiltonian. Then, we derive the master equations of the system including the squeezing-induced
noise for calculating the steady-state transmission of the classical light. We also show more details of the elimination
of the squeezing-induced noise and derive the master equation of the quantum cascaded system without the noise,
to attain the transmission matrix of single-photon pulses. After that, we present the quantum Langevin equations
of the system, in the cases with and without the squeezing-induced noise, for deriving the steady-state analytical
transmissions. Then, we discuss the optimal condition for achieving the maximal isolation ratio. Finally, we derive
the relation between the pump strength 2, and the pump power P,.

I. SQUEEZING PARAMETER IN THE FORWARD-INPUT CASE

For convenience, we recall the Hamiltonian given by Eq. (1) in the main text for the forward-input case

Hiw = Ha +He +Hy,

Ha/h= AZaL a, + i\/2l€ex1(aina26_iAi“t — afnaoemi“t) ,
Q, . , (S1)
Hp/h= A0 b, + —L(e b2 + 0?2

P 070 2

Hy/h=Jo(alb, +a. bl),

where the detuning AZ/ b= Wa/p —wp/2 and Ay, = win —wp/2. By applying the Bogoliubov squeezing transformation
bs = cosh(ry)b + e~ sinh(r,)b! [1-3], we obtain the Hamiltonian in the squeezing picture. Under the condition
AY + Ag\/l — B2 > sinh(rp)Jo, with g = Q,/ Ag, we can apply the rotating-wave approximation and neglect the
counter-rotating terms. Then, the Hamiltonian in the squeezing picture is given by

Hiw = HA +Hp +HT

HLY/ A= AgaT a,, + i\/%(amage_mi“t — afnaoemi“t) ,

o0
s s (S2)
Hy/h= AL bgobso ,
5/h=Ji(al bs, +a,bl.).

[ORE-16)

Here, after the Bogoliubov squeezing transformation, the bare mode b, is transformed to the squeezed mode b, with
detuning

Ab = AD\1 -2, (S3)

and squeezing parameter

(S4)



Consequently, for r, > 0, the coupling rate between the bare mode a, and the squeezed mode b, is exponentially
enhanced [2, 3], and given by

Js = cosh(r,)Jo - (S5)
In a frame rotating at frequency A;,, the Hamiltonian Eq. (S2) can be rewritten as

Hi,/h= AaaL a, + i\/QKexl(ainag — a;fnao) + Agbiobso + JS(aL b, + bioao) , (S6)

where A, = Ag — Ajp = We — Win, A} = Ags R AY
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Fig. S1. (a) The squeezing parameter r, versus 8 € [0,1). (b) The detuning AL® versus 8 € [0,1), Ab/kq = 10. (c) The
enhanced coupling rate Js varying with the squeezing parameter r, € [0, 3].

As depicted in Fig. S1, when the ratio 8 approaches 1, the squeezing parameter increases greatly and the detuning
Aff decreases to 0. Furthermore, increasing the squeezing parameter 7, leads to an exponential enhancement [2, 3]
of the coupling rate J.

II. MASTER EQUATION
A. Squeezing-induced noise and classical-light input

For our system in the forward-input case, the dynamics of the system coupling to a normal vacuum reservoir is
described by a standard master equation

d .
P = —i[Htw, piw] + L[La]ptw + L]Lb]ptw (S7)

where pgy is the density matrix of the system in the forward-input case, Hgy is the Hamiltonian given by Eq. (S1),
and the operators L, = \/kqa,, and Ly = \/kyb describe the decay of the resonator A (Ra) and B (Rp) with rates
kq and Ky, respectively. Moreover, L[o]p = 20po! — ofop — po'o.

Next, we apply the Bogoliubov squeezing transformation, b = cosh(r,)bs — e~ sinh(r, )b}, to respectively replace
the Hamiltonian Hg, with H§, [Eq. (S6)] and L, with Lj = \/&p[cosh(r,)bs, — e~ sinh(rp)blo]. Therefore, we can
rewrite Eq. (S7) in the squeezed picture as

d
— prw = —1[HE, prw] + L{La| ptw + L[L7) prw
Pt i[Hew, piw] + L{La]ptw + L[Ly] pr (S8)
= _i[wa7 hW] + E[La]pfw + E[Lbs]pfw + £n[Lbs]pfw 3
Here, we use the operator Lys = /kpbs, and the noise-related Lindblad term
£u[Lbs|ptw = Np['[LbS]pfw + NPL[LZs]pfw - MPL/[Lbs]pfw - M;l:/[LZs]pfw ) (89)

where N, = sinh?(r,), M,, = ¢ cosh(r,) sinh(r,,), and £L'[o]p = 20po — 0op — poo.
In the backward-input case, the Hamiltonian reads

wa/h = Aaagao 4 1V 2Kex1 (ainag — aifnao) + Agbi)bo + Jo(az; b, + bgao) , (S10)



where Ag = wp — win- The corresponding master equation of the system is given by

d .
3P = —i[Hbw, pow] + L[La]pbw + L] Lb] pow - (S11)

Note that the term £,[Lps|prw in Eq. (S8) is induced by quantum squeezing for the forward-input case. This
noise-related term is absent in Eq. (S11) in the backward-input case.
According to the input-output relation [4], we have

Qout = Gin — V 2Kex10 , alutaout a:rnam — V2FKex1 (a;rna + aTain) + 2f$ex1a7a , (S12a)
bout = V2Kex2b , boutbout = 2"fex2b b, (SlQb)

where Kexo is the external decay rate of Rg.
The transmissions are defined as

t b
<‘201T1taou>t> R M , (S13)
iy, @in

Tio)01 = <aT i)

where T;; is the transmission from port 4 to port j, with ¢, j =1, 2, 3. According to Eqgs. (S12) and (S13), replacing

the operators a;, and aiTn with their average value i, and «f, and setting 6, = 0 (by adjusting the phase of the
pump), we can solve the transmission for a coherent signal field by numerically solving Egs. (S8) and (S11).

B. Elimination of squeezing-induced noise and single-photon input

In the forward-input case, to suppress the squeezing-induced noise, we input a broadband squeezed-vacuum field
with squeezing parameter r. and reference phase . into Rg from port 3. The squeezed-vacuum field can be regarded
as a squeezed-vacuum reservoir for CCW modes in Rp. Therefore, the dynamics of the system is described by the
master equation [1]

d S ; SV SV SV, SV S *
g = = il PR+ LILalR, + (Ne + DL[LolpR, + NeLILJoR, — MoL'[Ly]R, = MZL'ILI]AR, . (S14)

where N, = sinh? (r.) and M, = e~ cosh (r.) sinh (r.).

Next, we respectively transform the Hamiltonian Hg, to Hg,,, and the operator Ly to Lj according to the Bogoliubov
squeezing transformation b = cosh(r,)bs —e =" sinh(r,)bl. After the replacement, the master equation for the forward
input can accordingly be written as

d

&p;:v =~ i[Miw. pRe] + LLalpR + (Ne + DLLIR, + NeLILTNoR, — MoL'[LF]pR, — M L'[L3]oR
— i[Hiy, R3] + LILalpt + LILusl by + N2L[Luslpk, + NZLILY ok, — ML [Lysloiy — MELILL o8, |
(S15)
where
N? = cosh? (r,) sinh? (r.) + sinh? (r,) cosh® (r,.) + % sinh (2r,) sinh (2r¢) cos (6, + 0.) , (S16a)
M; =exp (i0,) [sinh (1) cosh (r) + exp [—i(6, + 0c)] cosh (rp) sinh (7)]
X [cosh (rp) cosh (r.) + exp [i(0, + 0.)] sinh (r,,) sinh (r)] . (S16b)
When r, =r, and 0. + 0, = £nw (n =1,3,5,...), we have N7 =0 and M? = 0. Thus, Eq. (S15) becomes
d
dtpfw = [HfW’ p ] + ‘C[ ]pfw + E[Lbs]pfw . (817)

Here, the squezzing-noise-induced term £,,[Lps]psw in Eq. (S8) is cancelled by the squeezed-vacuum field in the forward-
input case. Therefore, the squeezed mode equivalently couples to a normal vacuum bath. As a result, the decay rate of
the squeezed mode equals that of the original bare mode. The term L[Lys|psy with operator Ly, = V/kubs, describes
the decay of the mode b, with a rate ry.



In the backward-input case, the squeezed-vacuum field from port 3 has no influence on the system dynamics. So
the motion of the system coupling to a normal vacuum bath is governed by the master equation

d .
&pbw = *Z[,wa, wa] + E[La]pbw + E[Lb]pbw . (818)

Then, we use a quantum cascaded system to simulate the propagation of single-photon pulses incident to ports 1
and 2 simultaneously [5-7]. In this quantum cascaded system, single-photon pulses emitted from the source resonator
are input into our optical nonreciprocal device. Therefore, when the squeezing-vacuum field is applied, the master
equation describing the quantum cascaded system for the forward-input case is given by

d v . 3% [yS SV SV SV SV SV
ap(sqcs,fw = _Z[Hdﬂ pzlcs,fw} - Z[Hqcs,fw7 pqcs,fw] + ﬁ[Ld]pqcsﬁfw + ‘C[La]pqcs,fw + ‘C[Lbs]pqcs,fw + £QCS,prqcs,fw ’ (Slg)

where Hy = Aqd’d is the Hamiltonian of the source resonator, Ay = wq — Win, wq is the resonance frequency of the
source resonator, and pgi; ¢, is the joint density matrix of the source resonator and our device in the forward-input

case. Here we set Ay = 0. The Hamiltonian of the quantum cascaded system is Hflcsvfw = Aaag a,, + Agb‘;obso +
Js(a}; bs + bl o a.,). The Lindblad operator Lq = \/Rexod describes the external decay of the source resonator, where

Kexo 18 the decay rate from the source resonator to the device. To apply a Gaussian-like single-photon pulse, we set
Fexo(t) = Kq exp(—(t — 74)?/2772), where 7, is the pulse duration and 74 is the pulse delay [8, 9]. The relevant Lindblad

terms are L[Lqlp = kexo(2dpd" — dfdp — pd'd) and £qes fwpP = VAKex0Kex1 ([a;f) ,dp] + [pd, ao}).

In the backward-input case, the master equation of the quantum cascaded system is given by

d . .
qucs,bw = —Z[%d, pqcs,bw} - Z[Hqcs,bW7 pqcs,bw} + E[Ld]pqcs,bw + E[La]pqcs,bw + E[Lb}pqcs,bw + £qcs,bwpqcs,bw ) (820)

where Hyes bw = Aaaj)ao + Agbg b, + Jo(ango + bZao) and £qcs,bwp = VAKex0Kex1 ([a‘;,dp] + [pd, ao]), and pycs,bw
is the joint density matrix of the source resonator and our device in the backward-input case.

According to Egs. (S12) and (S13), we can attain the propagation (left panel in Fig. S2) and transmissions (right
panel in Fig. S2) of the single-photon pulses by solving Egs. (S19) and (S20) numerically. As show in Fig. S2, the system
can function as a three-port quasi-circulator, allowing single-photon pulses propagating along port 1 — 2 — 3 [10].

III. QUANTUM LANGEVIN EQUATION

According to Eq. (S8), the quantum Langevin equation for an arbitrary system operator @ in the forward-input
case is given by

Q= ilH3,, Q)+ LILQ + £IL4s]Q + £alL1a]Q (s21)
where L, = /Raa,, Ly = Robss, £allss]Q = NpL[Lys)Q + N,L[L1Q — M,L'[Los)Q — MIL/[L]}]Q, LI0]Q =

20fQo — Qo'o — of0oQ, and L£'[0]Q = 20Qo — Qoo — 00Q. Hence, we have the equations of motion for the specific
operators Q = {a,, bs, aébso, biobso, a;f) a,, } reading as

d

% = —(1Aq + Ka)a,, + V2kex1in — iJsbs (S22a)
d N ,

&bsO = —(iA} + kp)bs, —iJsa,, (S22b)
d N o

&al bs, = (iA5, — nab)ag bs, + \/2Hexla;fnbso —1Js=2, (S22¢)
d T (g f t

Sl by = i(al bo — L) = 200 b + Proise - (S22d)
d .

aal a, = —st(aL bs, — aoblo) + V2Kex1 (ainaL + agnao) - QKJGCLIJ a, . (S22e)
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Fig. S2. (a) and (c) Propagation of single-photon pulses with a duration of 27 x 6, . The arrows indicate the propagating
directions of the pulses. Blue (red) curves are for the incident (solid curves) and transmitted (dashed curves) pulses for the
forward (backward) input. (b) and (d) Transmission matrix of the three-port quasi-circulator. (a) and (b) for the normal mode
splitting (NMS) scenario with k, = Kp = K, Kex1,2/Kk = 0.99, Jo/k = 0.99, A} /k = 10.3, Q,/k = 10, and A, = A} = 0. (c) and
(d) for tgle mode resonance shift (MRS) scenario with ke = Kt = K, Kex1,2/k = 0.99, Jo/k = 2.8, Ab/k = 15, Q,/k = 13, and
A, = AY = 2.62k.

Here, ¥, oise = 2sinh2(rp)/<;b, Ay = Ay — Af, Kap = Kq + kp and E = aéaobsoblo — aoa;f)bzobso. To a good
approximation, using the commutation relations [a,a'] = 1 and [bs,bl] = 1, we can derive = = ai) a, — blobsO. By

setting %Q = 0, we can obtain the steady-state mean values of the operators

(ZAIS) + Kb) V 2Kex1in

(900 = G+ )iy + ) + T2 (523a)
(bso)es = A ;;J)éz_ii:) R (S23b)
<aL ao>ss = 2Heﬂ|ain|2g(:;§ ) + Maoise (S23c)
<blobso>ss = W + 0Nnoise - (S23d)

Here, Nuoise = #b(Ka + £p) sinh2(rp)Js2 / Q;. The mean value i, = {a;,) is the coherent amplitude of the input signal
field. We also have Gy = J4 +2J2(kakp — AgAf) + (k2 + A2) (k7 + A5?), Qp = J2(Ka + k)% + Kakn|(Ka + kp)2 + A2,
and ¢ = J2(ko + Kp) + Kal(Ka + Kp)? + Azbz]/[(na + k) J2].

According to Egs. (S13) and (S23), the steady-state transmission for port 1 — 2 is

— ‘];L + QCSJE + As + 2’§3ex1~/\/‘noise

T
2 gs |ain|2

: (524)

where (s = Fahp — 2Kpkext — AgAf and Ay = [(ka — 2kex1)? + A2](k7 + A3?).

Similarly, according to Eq. (S11), we obtain the quantum Langevin equation for an arbitrary system operator @ in



the backward-input case
d .
79 = How, Q] + LIL]Q + LIL]Q - (525)

Thus, we have the equations of motion for the specific operators Q = {a, b,,, aL b, bL b, a]; a,}:

d

7% = —(iDa + Ka)ay, + V2kex1ain — iJob,, (S26a)
%bo = —(iA} + kp)b,, —iJoa, , (S26b)
%aLbO = (iAY), — kap)al b, +V2heaal b, —iJoZ | (S26¢)
%bgbo =iJo(al b, —a,bl) —2mbl b, (S26d)
%aL a, = fiJo(aL b, —a, bg) + %(ainag + a;rnao) - QHGaL Qg - (S26¢)

Here, we use the notation AY, = A, — A), = = a:fj a, — bi} b, . Setting %Q = 0, we obtain the steady-state solutions

(IAY + Kp)v/2hex1 Qin
= 2
(20 ) (iA + ko) (A + kp) + T2 (527a)
_ZJO Vv 2Iicxlain
b = 27b
(e )y (i0g + Ka) (IA) + Kp) + I3 (S27b)

2Kext |ain|? (K2 + A02)
§ b b
<ao ao>ss = G , (S27¢)
2Kex1 |in|? JE
T o 0
<bo bO>SS = e (S27d)

where Gy = Ji 4 2J¢ (kakp — DgAY)) + (k2 + AZ) (k7 + Agz). According to Eqgs. (S13) and (S27), the steady-state

transmissions in the backward-input case are given by

J¢+260J2 + Ao
Go 7

4"{“’6)(1 fiex2t]g

Go ’

T21 = (8283)

Tos = (S28b)

where (g = Kokp — 2Kpkex1 — DgAY) and Ag = [(kq — 2Kex1)? + AZ](K7 + A22).

After applying a phase-matched squeezed-vacuum field to drive Rp, as discussed in Sec. II B, the squeezing-induced
noise can be completely eliminated. In this case, we have ks = kp. Thus, the term E[Lbs]bz obSo with the operator
Lys = /kpbs describes the decay of the mode bs; with a rate rp. Therefore, when the squeezed-vacuum field is
applied, we can rewrite Eq. (S22d) as

Lot by, =i, (al b bl 2kpb! b 29

a5080_28<a080_a050>_F‘-/bSOSC)' ( )
Note that the noise term Wypise in Eq. (S22d) is eliminated, but Egs. (522a)-(S22¢) and (S22¢) have no change in this
case. So, we can derive the steady-state mean value of the mode a, which is given by

2K ex1 |in|? (K2 + ASQ)
<a1} ao>sb = G b b2 (S30)

Here, the noise term M,oise in Eq. (S23c) is also eliminated in this case.

Therefore, the steady-state noise-free transmissions are obtain as

Sy = (JE 26T+ A /G, TSy =Tor, Ty =To. (S31)



From Eq. (S24), we can see that the noise-related term 2kex1 Mpoise / |ain|2 in the transmission 772 can be completely
eliminated by applying the squeezed-vacuum field.

The isolation ratio of transmissions between ports 1 and 2 in the case without the squeezed-vacuum field is defined
as

n= 10 10g1o(T12/T21) . (832)

The isolation ratio in the case with the squeezed-vacuum field is defined as

Y = 1010g10(Tls§/T2S¥) . (S33)

IV. THE MAXIMAL ISOLATION RATIO

To achieve the maximal available isolation ratio nmax, we need to find the condition for the maximal forward
transmission and the minimal backward transmission. In our cases, the forward transmission of interest is close to
unity. As a result, the isolation ratio is dominantly determined by the near-zero backward transmission. Thus, we pay
more attention to find an optimal condition allowing a vanishingly small backward transmission 75, = T35 because
Tmax 18 crucially dependent on the near-zero T5;. In our backward-input case, our system can be modeled as the
standard cavity system consisting of two coupled optical microring resonators. For simplicity in our analysis below,
we take A, = A% = A and k, = kp = k.

From Eqgs. (S28a) and (S32), we obtain the minimal transmission 75" and the corresponding maximal isolation
ratio fmax under the optimal condition [(J§ + k7) — (k24 + A?)]? + (2k;A)? ~ 0, where &; is the intrinsic decay rate
of Ra and k; + Kex1 = k. Below we discuss the isolation ratio ny,ax in the NMS and MRS scenarios, respectively.

A. 7max in the normal mode splitting scenario

In the NMS scenario, we apply Jy ~ k and x; < k. In this case, the optimal coupling gives to an optimal detuning
A = 0. Then, we obtain the minimal transmission
(J§ — ke + k)2
(J2 + r2)2

Toin = (S34)

We consider the practical implementations ey > k; and apply the approximation k & kex1 and J& ~ k2., for the
exact optimal coupling J& + 7 = k2, because £? is small. In this case, we have

min "Q;l
o~ m , (S35)

yielding the maximal isolation ratio

2fﬁ/\/-noise) 4‘](4)1:| (836)

|vin |2 H?

Nmax ~ 101ogy, [(1 — 0+

where o ~ 4.J2k2/ [(J2 + k2)? + K2A?].

B. 7max in the mode resonance shift scenario

In the MRS scenario, the coupling rate Jy and the detuning A are larger than x. Thus, we need a small k; to meet
the optimal condition that J& + k? = k2, + A? and r;A ~ 0.

x1

(J§ — rea + wDR;  (J§ — K*)K7

Tmin — ~
2t (JE + K2)K? Jer?

(S37)



Here, we use the approximation Kk & kex1. Thus, the maximal isolation ratio is

25Nnoise ) J02 K?
( .

ol ) (F =)0

Tmax = 10logy, {(1 + (S38)

Here, we apply a good approximation AAF £ k% ~ AAS with [AAZ] > k2.

V. SECOND-ORDER NONLINEAR PARAMETRIC PROCESS

We now consider the full quantum description of the degenerate nonlinear parametric process in Rg. Then, the

Hamiltonian for the forward-input case is given by (for simplicity, we replace a, with a, b, with b, and c, with c)

H/h =waa'a + wpb'b + wecle + Jo(aTb 4+ bTa) + g (bT2C + b2cT)
+ 1V 2Kex1 Qin (aTefi“’i“t — ae™mt) +iy /260 Ha, (cTe*iwpt — cent)

where w, /; is the resonance frequency of the fundamental signal mode in Ra or Rp, w is the frequency of the second-
harmonic modes in Rp, aj, = /27 Py, /hwiy, is the coherent amplitude of the incident signal light with the power Py,
ap = /27 P, /hw,, corresponds to the pump light with the power P, and the angular frequency w,, k., is the external
decay rate for the pump field mode in Rp, and g is the nonlinear single-photon coupling strength in the parametric
nonlinear process. Note that the factor 27 in «a;, and o, is needed to keep the dimension consistent in the angular
frequency. In the rotating frame defined by U = exp[(—i“2a'a — i“2b'b — iw,clc)t], the Hamiltonian becomes

(S39)

H/h=Agata+ AT+ Ascle+ Jo(alb + bla) + g (e + b2

(S40)
+ 1V 2Kex1 Qin (aTefiA‘“t — aem‘“t) + 14/ 2H£X205p (CT — c) ,

where Ag/b = Wa/p — Wp/2, Ap = we — wp, and Ay, = wiy — wp/2. The dynamical equation of ¢ can be solved by the
Heisenberg equation

¢=i[H,c] = kpec = —(IA5 + Kp)c + 1/ 2KL 00 — igh?® . (S41)

Here, we consider a strong continuous pump field to excite the mode ¢ in Rg with amplitude (c) > (b). In this strong
pump case, we can omit the terms related to g in Eqgs. (S40) and (S41) for the purpose of calculating the steady state

of mode c. In doing so, we obtain the reduced Hamiltonian H, = A;CTC +iy/2k0 50y, (¢ — ¢) and the steady-state
solution

2k 5,
= X __=x2 & S42
(0 = Yool (542)

For a slowly varying mode ¢, we can replace ¢ with its steady-state mean value (c) ., in the Hamiltonian Eq. (540).
Then, the Hamiltonian Eq. (S40) can be rewritten as

H/h= AZaTa + Angb + Jo(a'b +bTa) + g (bT2 (c) + b <c>;) + iV 2Kex1 0t (aTe At — getfint) (S43)
Comparing Eq. (S43) with Eq. (S1), we can estimate the amplitude and phase of the pump as

p
TrKerPP

P g| <C>ss | g (AIC;2 + n%)hwp p rg[<c>ss] ( )

The resonance pump field at frequency w, = w, leads to A7 = 0. The pump power is given by

w202
pippp ) (S45)

ex2

P 16mg2%k



To evaluate the optical transistor, we define the gain of the transistor as

P)in 8 in ZkP 2 2 > 2o
G = “AT = 22 Fexain A Zlex2d Yin Ap (S46)
P, wpk2Q2 K22

Here, owing to Ag < {wq, Wy, Win, wp}, we have applied the following approximations, w, = 2win, kp = 2K,, and

P 5 = 2Kex2, to obtain the final form of the gain.
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