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In this Supplemental Material, we present details about the results in the main text.

(I) MASTER EQUATION OF A TOPOLOGICAL EMITTER ARRAY IN AN ELECTROMAGNETIC
ENVIRONMENT

Figure S1(a) shows a topological emitter array coupled to an electromagnetic environment. The photon exchange
between the emitter array and the environment leads to interaction between emitters. The environment-induced
interaction yields nontrivial effects to the topological emitter array. Here, we show how to derive the master equation
of the system. The Hamiltonian of the whole system is

H = HS +HE +HSE. (S1)

The Hamiltonian of the emitter array is HS = H0 +Htopo, where H0 =
∑
i ~ω0σ

+
i σi and

Htopo =
∑
i

~Jiσ+
i σ
−
i+1 + H.c. (S2)

Here, σ+
i (σ−i ) is the arising (decreasing) operator of the ith emitter. The interaction between emitters is given by

Ji = J1 (J2) for odd (even) value of i. The energy spectrum of the topological emitter array is shown in Fig. S1(b).
Due to topological protection, the degenerate edge states have frequency ω0, as the same as the frequency of a single
emitter. The spectrum width ∆ω characterizes the energy scale of the emitter array in single-excitation subspace.
The Hamiltonian for the electromagnetic environment is

HE =

∫
d3r

∫ ω+

ω−

dω ~ω â†(r,ω)â(r, ω), (S3)
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FIG. S1. (a) Schematic of a topological emitter array coupled to an electromagnetic environment. (b) Coupling between the
topological emitter array and the electromagnetic environment in the frequency regime. The spectrum width ∆ω of the emitter
array is assumed to be much smaller than the width (ω+ − ω−) of the photonic band. Here, ω− and ω+ are lower and upper
bounds of photonic frequencies in the environment.
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where â†(r, ω) (â(r, ω)) represents the creation (annihilation) operator of photons in the electromagnetic environment.
Here, ω− and ω+ denote the lower and upper frequency bounds of photonic modes in the electromagnetic environment.
Spectrum width ∆ω of the emitter array and bandwidth (ω+ − ω−) are characteristic energy scales of the system.
In this work, we are interested in how the electromagnetic environment with continuous photonic modes affects
topological properties. Without loss of generality, we assume the broadband photonic modes with ω− = 0 and
ω+ =∞. Moreover, the spectrum width is much smaller than the emitter frequency, i.e., ∆ω � ω0. The interaction
between the emitters and the environment is

HSE = −
∑
i

∫ ∞
0

dω
(
d̂i ·E(ri, ω) + H.c.

)
, (S4)

with dipole moment operators d̂i = diσ
−
i + d∗i σ

+
i , and electric field E(r, ω) = iη

∫
d3r′

√
εI(r′, ω)G(r, r′, ω)â(r′, ω).

Here, εI is the imaginary part of the permittivity; G(r, r′, ω) is the electric field response at r to a point source at
r′. The dynamics of the whole system is described by

ρ̇ = − i
~

[H, ρ], (S5)

where ρ is the density matrix of the entire system. In the interaction picture U = exp[−i(H0 +HE)t/~], we have

ρ̇int = − i
~

[Htopo +HSE,int, ρint], (S6)

with the interaction Hamiltonian

HSE,int(t) = −
∑
i

∫ ∞
0

dω
(
σ+
i d
∗
i ·E(ri, ω)e−i(ω−ω0)t + H.c.

)
, (S7)

in the rotating wave approximation. By formally integrating Eq. (S6), we obtain

ρint = ρS,int(0)
⊗

ρE0 −
i

~

∫ t

0

dt′[Htopo +HSE,int(t
′), ρint(t

′)], (S8)

where ρS,int(0) and ρE0 represent the initial density matrices for the topological emitter array and environment,
respectively. By tracing over photonic modes of the environment in Eq. (S6), we have

ρ̇S,int = − i
~

[Htopo, ρS,int]−
i

~
TrE{[HSE,int, ρint]}, (S9)

where ρS,int represents the density matrix of the emitter array. Replacing ρint with Eq. (S8), we obtain

ρ̇S,int = − i
~

[Htopo, ρS,int]−
1

~2

∫ t

0

dt′TrE{[HSE,int(t), [Htopo +HSE,int(t
′), ρint(t

′)]]}. (S10)

We have assumed that the mean initial system-environment (SE) coupling is zero. At first, we consider the Born
approximation, which assumes that the coupling between emitters and the electromagnetic environment is weak, such
that the influence of emitters on the environment is small. As a consequence, the density matrix of the environment
is only negligibly affected by the emitter-environment coupling. The state of the whole system can be approximately
expressed as ρint(t) ≈ ρS,int(t)⊗ ρE0. The evolution of the density matrix only depends on its current state under the
Markov approximation [S1].

The Born-Markov approximation can be guaranteed by the condition that the relaxation time of the environment
is much faster than the time scale over which the state of the emitter array varies. Thus, the environment does not
have a memory effect.

At last, we make a second Markov approximation, extending the upper limit of the time integral to infinity. With
the Born-Markov approximation, and after changing the time variable to t′ = t− τ , we obtain

ρ̇S,int = − i
~

[Htopo, ρS,int]−
1

~2

∫ ∞
0

dτTrE{[HSE,int(t), [Htopo +HSE,int(t− τ), ρS,int(t)ρE0]]}. (S11)
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Here, we have replaced ρS,int(t−τ) with ρS,int(t) by ignoring the memory effect due to the Born-Markov approximation.
It is easy to find that TrE{[HSE,int(t), [Htopo, ρS,int(t)ρE0]]} = 0 for the vacuum electromagnetic fields, i.e., 〈â(r, ω)〉 =
0. The commutator in the second term of the above equation becomes

HSE,int(t)HSE,int(t− τ)ρS,int(t)ρE0 −HSE,int(t− τ)ρS,int(t)ρE0HSE,int(t)

−HSE,int(t)ρS,int(t)ρE0HSE,int(t− τ) + ρS,int(t)ρE0HSE,int(t− τ)HSE,int(t). (S12)

For the first term,

TrE{[HSE,int(t)HSE,int(t− τ)ρS,int(t)ρE0]} =
∑
i,j

d∗idj

∫ ∞
0

dωei(ω0−ω)τσ†i (t)σ
−
j (t− τ)ρS,int

×TrE{E(ri, ω)E†(rj , ω)ρE0}. (S13)

Note that the emitter operators σ±i are slowly varying since J1,2 � ω. Therefore, σ−j (t− τ) ≈ σ−j (t). It can be shown
that

TrE{E(ri, ω)E†(rj , ω)ρE0} =
~ω4

πε0c4

∫
d3rεIG(ri, r, ω)G†(rj , r, ω)

=
~
πε0

ω2

c2
Im[G(ri, rj , ω)]. (S14)

In deriving Eqs. (S13) and (S14), we have used TrE{â(r, ω)â†(r′, ω′)ρE0} = δ(r − r′)δ(ω − ω′) and the property [S2]

2i
ω2

c2

∫
d3r′′εIG(r, r′′, ω)G†(r′, r′′, ω) = G(r, r′, ω)−G∗(r, r′, ω). (S15)

Therefore, ∫ ∞
0

dτTrE{HSE,int(t)HSE,int(t− τ)ρS,int(t)ρE0} =
~

πε0c2

∑
i,j

σ+
i (t)σ−j (t)ρS,int(t)

∫ ∞
0

ω2dω

×
∫ ∞

0

dτei(ω0−ω)τd∗i Im[G(ri, rj , ω)]dj . (S16)

We can do the same calculation for other three terms in Eq. (S12). Therefore, the dynamic equation of ρSE,int(t) is
derived by means of time integral over τ . After transforming Eq. (S11) to the Schrödinger picture, we obtain the
master equation

ρ̇(t) = − i
~

[H0 +Htopo +Hph, ρ(t)] +D[ρ], (S17)

with

Hph =

N∑
i,j=1

~gij(σ−i σ
+
j + σ−j σ

+
i ), (S18)

D[ρ] =

N∑
i,j=1

γij(σ
−
i ρσ

+
j −

1

2
σ+
i σ
−
j ρ−

1

2
ρσ+

i σ
−
j ). (S19)

The environment-induced interaction and dissipation are

gij =
ω2

0

~ε0c2
Re[d∗i ·G(ri, rj , ω0) · dj ], (S20)

γij =
2ω2

0

~ε0c2
Im[d∗i ·G(ri, rj , ω0) · dj ], (S21)

respectively.

(II) TOPOLOGICAL PHASE TRANSITION IN THE COHERENT INTERACTION

The electromagnetic environment produces long-range interactions and correlated dissipations between emitters.
We find that the coherent interaction H = Htopo + Hph exhibits translational symmetry when the spacing between
nearest neighboring emitters is properly chosen. This feature allows us to study the topological property of the
environment-coupled emitter array.
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FIG. S2. (a) Environment-induced interaction for the emitter array with d = 3λ0/4 and N = 10. Here, g0 = −γ0/2. The
black-solid and red-dashed curves correspond to g0 and −g0, respectively. (b) Topologies for emitter arrays with different sizes.
The blue-solid and red-dashed curves correspond to emitter arrays with N = 6 and N = 10, respectively. (c) Phase diagram
of systems with even numbers of emitters. We consider open boundary conditions in the dimerized interaction. TP-I is the
topological phase with edge states, TP-II is the topological phase without edge state, NTP denotes the non-topological phase.
The topological phase is protected by the SSH criticality and dissipative topological phase transition from the non-topological
phase.

(II-A) Topological phase transition via chiral symmetry: analytical method

In the main text we consider the topology in auxiliary space for an emitter array with N = 6. For the emitter arrays
N = 6+4n (with n = 0, 1, 2, . . .), the translational symmetry is preserved for photon-mediated long-range interactions.
In Fig. S2(a), we show the photon-mediated interaction for an emitter array with N = 10. Translational symmetry
is found for the nearest neighboring interaction i ↔ (i + 1) and long-range interaction i ↔ (i + 9) with the effective
interaction g0/2. The long-range interaction i↔ (i+ 5) is also translationally invariant with the effective interaction
g0/2. Similarly, the long-range interactions i ↔ (i + 3) and i ↔ (i + 7) preserve the translational symmetry for the
effective interaction −g0/2. Therefore, the translational symmetry is preserved for all interaction ranges. With the
Fourier transformation σ+

A,k =
∑
n e

ikndσ+
A,n, σ+

B,k =
∑
n e

ikndσ+
B,n, where n labels the nth unit cell of the topological

emitter array, we can obtain the Hamiltonian in the quasi-momentum space. The Hamiltonian in momentum space
for the emitter array with N = 10 is H(k) = hx(k)τx + hy(k)τy, with

hx(k) = J1 + J2 cos(k) +
g0

2
(1 + cos(5k)), (S22)

hy(k) = J2 sin(k) +
g0

2
F ′(k), (S23)

where g0 = γ0/2 (−γ0/2) for d = λ0/4 (3λ0/4) and F ′(k) =
∑5
j=1 2(−1)j−1 sin(jk)− sin(5k). Therefore, the coherent

interaction of the system has the chiral symmetry τzH(k)τz = −H(k).
The topology in the auxiliary space (hx(k), hy(k)) is shown in Fig. S2(b). Topologies in the auxiliary space are

distinct for emitter arrays with different sizes. For large arrays, long-range interactions lead to complex topology.
Although the topology in quasi-momentum space is changed by varying the size of the system, the hybridization
between environment-induced interaction and dimerized interaction only yields shift along kx axis. Therefore, emitter
arrays with different sizes have the same topological phase transition, i.e., at γ0 = ∆ω, as shown in Fig. S2(c). The
energy bands are

ε±(k) = ±
√
hx(k)2 + hy(k)2. (S24)

The topological phase transition starts from the gap closing of energy bands. In Fig. S2(c), we present the phase
diagram with the open boundary conditions in the dimerized interaction. Namely, for γ0 = 0 (the original SSH
model) the system is in the topological phase with edge states when J1 < J2, but in the non-topological phase when
J1 > J2. For the scenario J1 < J2, i.e., the system is in the topological phase with edge states (TP-I), the environment
produces the topological phase transition with the edge-bulk correspondence between TP-I and the non-topological
phase (NTP). However, when J1 > J2, the system changes from the non-topological phase to the topological phase
without edge state (TP-II) via a topological phase transition without the edge-bulk correspondence. In this work,
we are interested in the topological phase transition with the edge-bulk correspondence, i.e., J1 < J2. In Fig. S3(a),
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FIG. S3. Topologies from the hybridization between Htopo and Hph in auxiliary space (hx(k), hy(k)) for (a) d = 3λ0/4 and (b)
d = λ0/4. Here, we consider ϕ = 0.1π and N = 6.

we show the topologies in the auxiliary space for d = 3λ0/4. The winding number is zero for 0 ≤ J0 ≤ γ0/4, and
becomes one for J0 > γ0/4. Figure S3(b) shows the topologies for d = λ0/4. The winding number is zero at J0 = 0,
and becomes one for J0 > 0. Therefore, for d = λ0/4, the system is topological when J0 > 0. However, the nontrivial
topology in the Hamiltonian does not guarantee the stability of the edge states. The stability is determined by the
Lindblad operator. Actually, the topological phase for d = λ0/4 is not protected by the Lindblad operator.

In Figs. S4(a), S4(b) and S4(c), we show the energy bands for the points A,B and C in Fig. S2(c). Figure S4(a)
presents the energy bands in the topological phase of the SSH model. The topological phase transition takes place
when the band gap is closed at k = ±π, as shown in Fig. S4(b). Without considering the environment, i.e., g0 = 0,
the spectrum width of the topological emitter array becomes

∆ω = ε+(k = 0)− ε−(k = 0),

= 2(J1 + J2), (S25)

and the band gap

δω = ε+(k = π)− ε−(k = π),

= 2|J1 − J2|. (S26)

2

1

-2

-1
0

2

π π0
-1

-2

1

k

(a) (b)

-4

-8

0

8

4

π

(c)

FIG. S4. Band structure for the topological emitter array with (a) ϕ = 0.3π, γ0 = 0, (b) ϕ = 0.5π, γ0 = 0, (c) ϕ = 0.3π, γ0 = ∆ω.
Here, we consider the array with N = 10 emitters.
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In the environment, the dissipation-induced phase transition closes the band gap at k = 0, as shown in Fig. S4(c).
From the band gap closing at k = 0, we can obtain the condition for the dissipative topological phase transition

γ0 = 2(J1 + J2). (S27)

Note that the different band gap closings in Fig. S4(b) and Fig. S4(c) with linear and parabolic dispersions indicate
distinct topological criticalities for the SSH-type topological phase transition and the dissipative topological phase
transition [S3].

(II-B) Topological phase transition via perturbation theory: numerical method

In real space, the environment-mediated effective Hamiltonian of the topological emitter array can be written as

H = γ0H̃ph + J0H̃topo, (S28)

where H̃ph = Hph/γ0 and H̃topo = Htopo/J0. At first, we study the noninteracting emitter array, i.e., J0 = 0. We

consider H̃ph|µm〉 = εm|µm〉, where m changes from −M to M , with M = (N−1)/2. Here, εm denote energy-ordered
eigenvalues with εm ≥ εm−1; |µm〉 are the corresponding eigenvectors.

In Fig. S5(a), the energies εm are shown for N = 5 (red-dashed) and N = 7 (blue-solid). The zero-energy state is
found at emitter spacings d = λ0/4 and d = 3λ0/4. At J0/γ0 = 0, the zero mode in the system is non-topological.
For J0 � γ0, a topological edge state is obtained.

For values of J0/γ0 in between J0 = 0 and J0 � γ0, the competition between these two types of interactions leads
to an unconventional edge state which has both topological and non-topological features. Here, we are interested in
how a topological system with small spectrum width survives in the environment; therefore, J0 is smaller than or
comparable with γ0 (J0 . γ0). From Eq. (S28), we obtain

H/γ0 =

M∑
m=−M

εm|µm〉〈µm|+
J0

γ0

M∑
n,m=−M

αnm|µn〉〈µm|, (S29)
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FIG. S5. (a) Energy spectrum of the environment-mediated interactions. (b) The interactions in the topological emitter array
produces transitions between different eigenstates of Hph. (c) Absolute values of the elements of the transition matrix αnm.
(d) Absolute values of the transition elements between the edge state and the bulk states. (e) Transition elements between the
eigenstates of Hph and the bulk state above the edge state. (f) Energy of the bulk state above the edge state for the emitter
array with N = 11 (black-dotted), N = 21 (blue-dashed) and N = 201 (red-solid), respectively.
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where αnm = 〈µn|H̃topo|µm〉 are the transition matrix elements produced by the SSH interaction, as shown in
Fig. S5(b). In Fig. S5(c), we show |αnm| for d = λ0/4 and d = 3λ0/4. From the diagonal components, we know
that states close to the zero-energy state are significantly shifted. The off-diagonal components show that the SSH
interaction produces couplings between low-energy and high-energy states. The zero-energy state has finite couplings
to other states.

For small values of J0/γ0, we can obtain the energies of the hybridized eigenstates by perturbation theory,

Em/γ0 = εm +
J0

γ0
αmm +

J2
0

γ2
0

∑
n 6=m

|αnm|2

εm − εn
+O

(
J3

0

γ3
0

)
. (S30)

Figure S5(d) shows the norm of the transition matrix elements between the zero-energy mode and the other modes
|α0m|. It can be seen that |α0m| is symmetric and α00 = 0. Therefore, E0/γ0 is independent of J0/γ0. In Fig. S5(e),
we show α1m for d = λ0/4 and d = 3λ0/4. The SSH interaction yields a large energy shift to the state with m = 1,
but small couplings to other states. In Fig. S5(f), we show the energy E1 versus J0/γ0 for d = 3λ0/4. The energy gap
between the bulk state and the edge state is closed at J0/γ0 = 1/4 for the system with a large number of emitters.

In the main text, we have studied the energy spectrum from the hybridization between the interactions in the
topological emitter array Htopo and photon-mediated interactions Hph for systems with an odd number of emitters.
A non-topological edge state appears in the topologically trivial phase. It seems that the bulk-edge correspondence
is broken, however, it is not.

In Fig. S6, we show the energy spectrum for the system with an even number of emitters. Figure S6(a) plots
the spectrum in the regime |J0/γ0| ≤ 1. The regimes with J0/γ0 < 0 and J0/γ0 > 0 correspond to the emitter
spacing d = λ0/4 and d = 3λ0/4, respectively. When J0 = 0, only the environment-induced interactions appear. As
expected, the system is in the non-topological phase. We now see how the dimerized interactions Htopo perturb the
environment-induced interactions. With a small portion of negative J0, the system becomes topological immediately.
Interestingly, this topological phase transition takes place without closing the band gap. Hence, the energy levels of
edge states are separated from each other and they suffer from dissipation. For the positive values of J0, the band gap
is reduced. At the critical value J0/γ0 = 1/4, the bangap is closed, representing a topological phase transition. After
the critical point, two degenerate edge states appear and they are dissipationless. Therefore, the topological phases
for d = λ0/4 and d = 3λ0/4 have edge states with different dissipative properties. They correspond to dissipative
and dissipationless topological phases, respectively. In Fig. S6(b), we consider the energy spectrum versus γ0/J0 in a
complementary parameter regime of Fig. S6(a). We find that the environment nontrivially affects energies of the edge
states for d = λ0/4 and d = 3λ0/4. The edge states for d = λ0/4 are rapidly separated from each other when |γ0/J0|
increases. However, the edge states for d = 3λ0/4 have a small splitting for γ0/J0 � 1. They become degenerate
when γ0/J0 further increases until the DTPT at γ0/J0 = 4 (see Fig. S6(a)).
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FIG. S6. Energy spectrum from the hybridization between Htopo and Hph in the array with an even number of emitters
versus (a) J0/γ0 and (b) γ0/J0. Two topological phase transitions are shown in (a): one is the topological phase transition
without closing the band gap at J0/γ = 0, the other one is the DTPT closing the band gap at J0/γ0 = 1/4. Here, we consider
ϕ = 0.3π,N = 20.
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(III) TOPOLOGICAL PROTECTION: HAMILTONIAN VERSUS LINDBLAD OPERATOR

We have studied the topology in the Hamiltonian. The hybridization between the dimerized interactions and
photon-mediated interactions gives rise to topological phase transitions. Can the chiral symmetry in the Hamiltonian
protect edge states from dissipation? In the following, we pinpoint the roles played by the Hamiltonian and Lindblad
operator in protecting the edge states from dissipation.

(III-A) Hybridization in the Hamiltonian and its consequence in dissipative/dissipationless topological phase

Also, it is helpful to understand how the environment affects the topological emitter array and dissipative property
of edge states by considering small values of γ0. In Fig. S7(a), we show the energy spectrum versus γ0 for the system
with N = 21, i.e., a single edge state. From the energy spectrum, the edge state couples to a few bulk states which
show anti-crossings at γ0 = 0, even though the energy level of the edge state is not shifted. The reason for the
unshifted edge state can be understood from perturbation theory, similar to Eq. (S30), i.e., the first perturbation is
vanishing, the second perturbations are symmetric.

In Fig. S7(b), we present |Γ00/γ0| versus γ0. We can find that γ0 changes |Γ00/γ0| in different ways for d = λ0/4
and d = 3λ0/4: |Γ00/γ0| quickly reduces to zero for d = 3λ0/4, however, it increases rapidly for d = λ0/4. This sudden
change of the scaled decay rate |Γ00/γ0| of the edge state shows distinct dissipative features of these two topological
phases. Hence, the decay rate Γ00 is large in the dissipative topological phase, and reduces to zero in the dissipationless
topological phase. For the weak coupling 0 < γ0 � 1, the edge state has low decay rate. In Fig. S7(c), we present
|Γ00/γ0| and Γ00 for a broad range of γ0. In the regime γ0 < 0, i.e., d = λ0/4, the decay rate Γ00 from the edge
state to environment becomes larger with increasing |γ0|. However, it becomes zero for 0 < γ0 < 4J0, i.e., d = 3λ0/4.
Therefore, the topological phases for d = λ0/4 and d = 3λ0/4 are dissipative and dissipationless, respectively.
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FIG. S7. (a) Energy structure of the Hamiltonian Htopo + Hph. The parameter regimes γ0 < 0 and γ0 > 0 correspond to
d = λ0/4 and d = 3λ0/4, respectively. (b) The scaled decay rate |Γ00/γ0| (red-solid) and decay rate Γ00 (blue-dashed) versus
γ0. (c) Changes of |Γ00/γ0| and Γ00 in a large regime of γ0. Note that for increasing γ0 from −10, |Γ00/γ0| increases slowly, and
suddenly drops down. And then it keeps zero and increases near the critical point. Here, we consider J0 = 1, ϕ = 0.3π,N = 21.

(III-B) Dissipationless edge states in finite systems

The environment-induced long-range interactions greatly modify the edge states (see Figs. S7(a) and S7(b)). In the
original SSH model, the edge states are exponentially localized on the odd- and even-site emitters, depending on the
parameter ϕ. For example, the left-localized edge state is

|ψ0〉L =
1√
N

∑
n

(
−J1

J2

)n−1

|A〉n,

=
1√
N

∑
n

(−1)n−1
(

tan
ϕ

2

)2n−2

|A〉n, (S31)

where n denotes the nth unit cell of the emitter array and |A〉n = σ+
A,n|G〉. Here, N is a normalization factor.

The polarizations of edge states are protected by the chiral symmetry of the system. In our model, the long-range
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FIG. S8. Logarithm of the scaled decay rate of the edge state ln(Γ00/γ0) for emitter arrays with (a) N = 3, (b) N = 7
and (c) N = 11. Wave function of edge state for topological emitter arrays with (d) N = 3, (e) N = 7, (f) N = 11; and
J0/γ0 = 0.5, ϕ = 0.3π. The black-dotted and white-dashed lines denote the SSH criticality and DTPT, respectively. Here, we
consider emitter spacing d = 3λ0/4.

interactions induced by the environment preserve the chiral symmetry τzH(k)τz = −H(k). Therefore, the polarization
of the edge states are protected. However, the interplay between the long-range interactions and dimerized interactions
leads to various forms of edge states. Namely, the concrete forms of edge states depend on the parameters J0/γ0 and
ϕ. By considering the Lindblad operator, we can study dissipation properties of the edge states. In Figs. S8(a)-S8(c),
we show the dissipative property of edge states in small systems with N = 3, 7 and 11, respectively. The minimum
of ln(Γ00/γ0) represents the parameter space where the edge state becomes dissipationless. The white-dashed and
black-dotted lines denote the DTPT and the SSH criticality, respectively.

In particular, when the environment-induced decay rate γ0 is half of the spectrum width ∆ω, the edge states have
the same amplitudes at the (4i + 1)th and the (4i + 3)th emitters, different from the original SSH model. For the
minimal system with N = 3 emitters, shown in Fig. S8(a), the edge state at J0/γ0 = 0.5 is the equal superposition
between the first and third emitters as shown in Fig. S8(d). In Fig. S8(e), we present the wave function of the edge
state at J0/γ0 = 0.5 and ϕ = 0.3π for the emitter array with N = 7. The exponentially localized dissipationless edge
state is ∣∣∣∣ψ0

(
J0

γ0
→ 1

2

)〉
=

1√
N

M∑
n=0

(−1)n
(

tan
ϕ

2

)2n

|ψ〉n, (S32)

with M = Quotient[N, 4] and |ψ〉n = (σ+
4n+1 + σ+

4n+3)|G〉. The (4n + 1)th and (4n + 3)th emitters have the same
amplitude. The edge state for N = 11 with J0/γ0 = 0.5 and ϕ = 0.3π is shown in Fig. S8(f).

The local minima of ln(Γ00/γ0) demonstrates the dark edge state. It can be seen from Figs. S8(a), S8(b) and S8(c)
that more dark edge states can be found in the topological phase for larger systems.

Figure S9(a) shows ln(Γ00/γ0) versus γ0/J0 and ϕ for the emitter array with N = 15. In the topological phase,
the edge state has much lower dissipation than in the non-topological phase. As the system gets close to the SSH
criticality (black-dotted line), the edge state becomes more dissipative, except for some trajectories characterized by
the minima of ln(Γ00/γ0). In the system with an odd number of emitters, there is a single edge state. This edge
state is localized to the left boundary if the value of ϕ ∈ [0, π/2), and localizes to the right boundary for ϕ ∈ (π/2, π].
In Fig. S9(b), we study the dissipation property of edge states for the emitter array N = 20. In arrays with an
even number of emitters, non-topological phase is found in parameter regimes 1) π/2 < ϕ ≤ π and γ0/J0 < 4 , 2)
0 ≤ ϕ < π/2 and γ0/J0 > 4. The topological phase without edge state (TP-II) is found in the regime π/2 < ϕ ≤ π
and γ0/J0 > 4. These parameter regimes imply the protection of the topological edge states by the Lindblad operator.
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FIG. S9. Logarithm of the scaled decay rate ln(Γ00/J0) of the edge state (in the topological phase TP-I) for emitter arrays
with (a) N = 15 and (b) N = 20. The black-dotted and white-dashed lines denote the SSH criticality and DTPT, respectively.
The white-solid line is the topological phase transition between the non-topological phase (NTP) and the topological phase
without edge state (TP-II).

(III-C) Dissipation spectrum: how the Lindblad operator protects dissipationless edge states

To further understand the dissipative properties of topological phases, we study the Lindblad operator

D[ρ] =

N∑
i,j=1

γij(σ
−
i ρσ

+
j −

1

2
σ+
i σ
−
j ρ−

1

2
ρσ+

i σ
−
j ). (S33)

We consider the dissipative matrix γ with matrix elements γij in the Lindblad operator. For the emitter spacings
d = λ0/4 and d = 3λ0/4, the systems have the same dissipative matrix γ, as shown in Fig. S10. Interestingly, the
dissipation exhibits the parity property, i.e., the odd-site (even-site) emitters only dissipate to odd-site (even-site)
emitters. Owing to the parity in the Lindblad operator, the variations of edge states in the Hamiltonian for d = λ0/4
and d = 3λ0/4 will yield distinct dissipative properties. To study this, we diagonalize the dissipative matrix

γ =
∑
m

χm|χm〉〈χm|. (S34)

The dissipation spectrum χm is shown in Fig. S11(a). We find that there are two radiating modes with large decay
rates. Their wave functions are shown in Figs. S11(b) and S11(c). They correspond to polarized states of even- and
odd-site emitters, respectively. Note that in the system with odd number of emitters, the odd-site polarized radiating
mode has larger decay rate than the even-site polarized mode. The decay rate Γ00 from the edge state to environment

odd-site dissipations

even-site dissipations

FIG. S10. Environment-induced dissipations between emitters for d = λ0/4 and d = 3λ0/4 in the Lindblad operator. The
dissipation has the parity property: odd-site (even-site) emitters only dissipate to odd-site (even-site) emitters.
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FIG. S11. (a) Dissipation spectrum. Two modes are found to be radiating. (b) The radiating mode |χN−1〉 has even-site
polarization. (c) The other radiating mode |χN 〉 has odd-site polarization. (d) Logarithm of the overlap 〈Ψ0|χN 〉 between the
edge state |Ψ0〉 and the radiating mode |χN 〉. Here, we consider N = 21 in (a,b,c) and N = 7 in (d).

can be rewritten as

Γ00 = 〈Ψ0|γ|Ψ0〉
=
∑
m

χm〈Ψ0|χm〉2. (S35)

Namely, the decay rate Γ00 is controlled by the overlap between the edge state and radiating modes in the Lindblad
operator. Similarly, the decay rate between the edge state and the nth bulk state is

Γn0 =
∑
m

χm〈Ψ0|χm〉〈χm|Ψn〉. (S36)

Therefore, the dissipative properties of edge states are determined by how they overlap with these two radiating
modes. In other words, the dissipationless edge state is obtained by 〈Ψ0|χm〉 ≈ 0 for m = N − 1 and N . Owing to
the chiral symmetry, the edge states are polarized with the odd- or even-site emitters.

In the system with odd number of emitters, there is a single edge state polarized with odd-site emitters. So, the
parameter space for dissipationless edge state is determined by the condition that the edge state has vanishing overlap
with the odd-site polarized mode, i.e., 〈Ψ0|χN 〉 ≈ 0, as shown in Fig. S11(d). The parameter space is as same as the
one in Fig. (S8)(b). Therefore, the chiral symmetry in the photon-mediated interaction not only plays an important
role in determining the topology of the Hamiltonian, but also yields the parity property in the Lindblad operator. The
interplay between edge states and polarized radiating modes in the Lindblad operator gives rise to the parameter
space protecting edge states from dissipation. When the topological emitter array is large enough, the parameter
space for dissipationless edge states spans the whole topological phase.

(III-D) Robustness of dissipationless edge states

In Fig. S12(a), we present the energy structure of the Hamiltonian H = Htopo + Hph. The Lindblad operator
is responsible for the decay of the edge state excitation, including the dissipation Γ00 from the edge state to the
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FIG. S12. (a) Environment-induced dissipations of the topological emitter array. Here, Γ00 denotes radiation from the edge
state to the environment, Γm0 is the radiation from the edge state to the mth bulk state. (b) Effective model by taking into
account the dissipative coupling in the Lindblad operator.

environment and the dissipations Γm0 from the edge state to bulk states. Here, the edge-bulk dissipations are
reciprocal: Γm0 = Γ0m. In the main text, we show that the edge states can be dissipationless for the emitter spacing
d = 3λ0/4 due to the protection of chiral symmetry. However, when the emitter spacing deviates from 3λ0/4, the
chiral symmetry might be broken.

To investigate if the dissipationless edge states are robust to disorder in the emitter spacing, we study the decay rate
Γ00 from the edge state to the environment in Fig. S13(a). Surprisingly, Γ00 is low for the emitter spacings around
3λ0/4 when γ0/J0 is changed. A window for low-decaying edge state emerges. We also consider the largest decay rate
Γm′0 from the edge state to bulk states in Fig. S13(b). A similar window is found around 3λ0/4 for the edge-bulk
dissipation. Because of the dissipationless window, we can expect that the dissipationless edge state is robust to the
variation in the emitter spacing.

To further confirm the existence of the dissipationless window, we describe the whole system with a non-Hermitian
effective Hamiltonian

Heff = Htopo +Hph +H ′ph, (S37)

where H ′ph denotes the environment-induced dissipative (non-Hermitian) coupling contained in the Lindblad operator.
The non-Hermitian effective Hamiltonian can be written as a diagonalized form

Heff =
∑
j

(Ẽj − iΓ̃j)|Ψ̃R
j 〉〈Ψ̃L

j |, (S38)

where |Ψ̃R
j 〉 and 〈Ψ̃L

j | are the right and left eigenvectors, and they form the biorthogonal basis with 〈Ψ̃L
j |Ψ̃R

j′〉 = δjj′ .

We can obtain the effective decay rate Γ̃j0 of the edge state, as schematically shown in Fig. S12(b). We find that there
is indeed a dissipationless window around d = 3λ0/4 for various values of γ0/J0, as shown in Fig. S14(a). Interestingly,

0

1

2

3

0.7 0.75 0.8
0

4

2
0

1

2

3

0.7 0.75 0.8
0

4

2

(a) (b)

FIG. S13. (a) Decay rate Γ00 from the edge state to the environment. (b) Absolute value of the largest decay rate |Γm′0| from
the edge state to bulk states. Here, we consider N = 11, ϕ = 0.3π.
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FIG. S14. (a) Logarithm of the scaled decay rate Γ̃j0/J0 of the edge state for various values of d/λ0 and γ0/J0. A dissipationless
window for the edge state exists for various values of γ0 in the topological phase, except for weak system-environment coupling,
γ0 � J0. (b) Scaled decay rate Γ̃j0/J0 of the edge state for γ0 = 2J0. The dissipationless window is about 0.07λ0. (c) Γ̃j0/J0
versus γ0/J0 for the disorder strength ς ∈ [−0.002, 0.002]. (d) Γ̃j0/J0 affected by the strong disorder ς ∈ [−0.02, 0.02]. The
parameters are: N = 11, ϕ = 0.3π.

the dissipationless window becomes wider when γ0/J0 is increased. This means that the strong system-environment
coupling makes the edge state more robust. When γ0 � J0, the edge state becomes dissipative and the window
disappears. In Fig. S14(b), we show the effective decay rate of the edge state at γ0/J0 = 2. The dissipationless
window width becomes ∆d ≈ 0.07λ0. This actually provides a large range of parameter space to tolerate disorder in
the emitter spacing.

The dissipationless window provides a protection to disorder in the emitter spacing. It guarantees the feasibility for
the experimental observation of dissipationless edge states. The electromagnetic-controlled topological emitter array
can be implemented in superconducting quantum circuits where the interaction between emitters and the coupling
between emitters and 1D continuous photonic modes have been realized.

The electromagnetic environment can be realized with a one-dimensional waveguide. Without loss of generality, we
assume that the frequency of superconducting artificial atoms ω0/2π ∼ 5GHz. Therefore, the wavelength λ0 of the
photons with that frequency in the waveguide is about 0.06 m. The typical size of the superconducting artificial atom
is ∼ 100 µm. We assume that the position of the ith atom is xi = (i− 1)d+ ςλ0, where ς is the disorder parameter.
In Fig. S14(c), we consider the disorder of emitter positions ς ∈ [−0.002, 0.002], i.e., the disorder strength is about
the size of superconducting artificial atom. The decay rate of the edge state is almost not affected. In Fig. S14(d), we
consider the strong disorder ς ∈ [−0.02, 0.02], i.e., the disorder strength is about 10 times the size of superconducting
artificial atom. The dissipation of the edge state is not sensitive to the strong disorder in the weak coupling regime for
the reason that there is no window. When γ0/J0 is increased, the effective decay rate of the edge state becomes larger
for two reasons: 1) the dissipationless window is narrow, 2) the decay rates are large near the window boundaries (see
Fig. S14(b)). As γ0/J0 further increases, the disorder becomes not important because the dissipationless window is
large enough (see Fig. S14(a)). For the potential experimental realization (scenario of Fig. S14(c)), the dissipationless
edge state can be observed.

We also consider the effective decay rate for the emitter spacing d = λ0/4 in Fig. S15(a). Compared with the edge
state at d = 3λ0/4, the dissipation is significantly changed when the emitter spacing varies around d = λ0/4. In
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FIG. S15. (a) Effective decay rate of the edge state for the emitter spacing d = λ0/4. (b) Effective decay rate of the edge state
for the emitter spacings d = λ0/2 and d = 3λ0/4, for the disorder strength ς ∈ [−0.002, 0.002] of the emitter spacing. The light
blue curve is the effective decay rate for d = λ0/2 without considering the disorder. Here, we assume ϕ = 0.3π,N = 11.

this work, we focus on the study of emitter spacings d = λ0/4 and d = 3λ0/4. Actually, for the emitter spacings
d = nλ0/2 (n = 0, 1, 2, · · · ), the photon-mediated interactions are zero. Therefore, the chiral symmetry is also
preserved. However, the Lindblad operator does not protect the edge state from dissipation, as shown in Fig. S15(b).
Compared with d = 3λ0/4, the effective decay rate of the edge state for d = λ0/2 is more sensitive to the disorder
in emitter spacing. This indicates important roles of the photon-mediated interactions and the interplay between the
Hamiltonian and Lindblad operator. The dissipationless window for d = 3λ0/4 provides a practical protection for
observing dissipationless edge states in experiments.

The dissipationless window for d = 3λ0/4 shows the robustness of edge states to the disorder in long-range
interactions. It is interesting to ask if the dissipationless window provides a protection for edge states from the
disorder of dimerized interaction. We consider the dimerized interaction with disorder J1,2 + ξJ0, where ξ is the
disorder parameter. We study the effect of disorder in dimerized interaction with the disorder strength ξ ∈ [−0.1, 0.1]
in Fig. S16(a) and ξ ∈ [−0.3, 0.3] in Fig. S16(b). Different from the disorder in emitter spacing as we studied in
Fig. S14(d), the dissipationless window does not protect the edge states from the disorder in the dimerized interaction.
In other words, as the window is increased for large γ0/J0 (see Fig. S14(a)), the effect of disorder is not suppressed.
However, the edge states are protected from dissipation when disorder in the dimerized interaction is introduced. This
is because in the topological phase, the dissipation of the edge state is not sensitive to the change of J0 (see Fig. 4(a)
in the main text).

In the main text, we have shown that the strong coupling leads to the degeneracy of edge states. The edge-
state degeneracy is protected by the chiral symmetry in the emitter spacing d = 3λ0/4. If the chiral symmetry is
broken, the degeneracy might be shifted. In Fig. S17(a), we show the energy splitting between edges states versus
the emitter spacing. The degeneracy between edge states is not guaranteed for general emitter spacings. However,

FIG. S16. Effect of disorder in the dimerized interaction Ji +ξJ0, with ξ being the disorder parameter. The disorder parameter
is (a) ξ ∈ [−0.1, 0.1] and (b) ξ ∈ [−0.3, 0.3]. We consider N = 11, ϕ = 0.3π.
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FIG. S17. (a) Energy splitting between edge states. (b) The total dissipation from the subspace of edge states to the
environment. We consider N = 20, ϕ = 0.3π.

around the emitter spacing d = 3λ0/4, the degeneracy is still preserved. The energy degeneracy makes the edge states
dissipationless. In Fig. S17(b), we present the total dissipation from the subspace of edge states to the environment.
The subspace is dissipationless when the edge states are degenerate around d = 3λ0/4.

In experiments, emitters can have disorder in their frequencies. In superconducting quantum circuits, frequencies
of superconducting artificial atoms can be well-controlled. The disorder in emitter frequency is equivalent to disorder
in emitter position. For example, in the experiment by Wen et al. [S4], the relative frequency difference between two
qubits is (ω2−ω1)/ω1 ≈ 7.98×10−4 with qubit frequencies ω1 = 5.01×2π GHz and ω2 = 5.014×2π GHz. Therefore,
the wavelengths for photons with frequencies ω1 and ω2 are λ1 = 2πc/ω1 = 59.88 mm and λ2 = 2πc/ω2 = 59.83 mm.
The relative difference between λ1 and λ2 is (λ1 − λ2)/λ1 ≈ 8.4 × 10−4. For the emitter spacing d = 3λ0/4 (with
λ0 = λ1), the disorder in emitter frequency is equivalent to disorder in emitter position ∼ 1.12 × 10−3d. The edge
states in the topological system with such disorder are protected by the dissipationless window (see Fig. S15(b)).

(IV) EXPERIMENTAL POSSIBILITY TO OBSERVE THE DISSIPATIVE TOPOLOGICAL PHASE
TRANSITION (DTPT)

This work shows the potential for electromagnetic manipulation of topological quantum matter with vacuum fields.
Our proposal can be realized in many quantum systems. In the following, we discuss the experimental feasibility for
superconducting quantum circuits.

(IV-A) Simulation of the dissipative topological emitter array with superconducting qubits

The dissipative topological phase transition and dissipationless edge states can be realized in present experimental
setups. For example, in superconducting quantum circuits, which are currently used for quantum computation and
quantum simulation, the qubits have been coupled to 1D electromagnetic environments [S4, S5]. Without loss of
generality, we assume that the frequency of qubits is about ω0/2π ∼ 5 GHz in superconducting quantum circuits [S4,
S5]. The environment-induced decay rate γ0/2π has been realized with ∼ 100 MHz [S5]. Namely, the photon-qubit
coupling g/2π =

√
γ0c/2π ≈ 69.1 MHz and is much weaker than the single qubit frequency ω0/2π ∼ 5 GHz. Hence,

the Born-Markov approximation is guaranteed.

The interaction JAB/2π between two qubits A and B can be changed via the tunable coupler, e.g., from 0 to 55
MHz [S6]. Hence, the maximum value of J0/2π is about 27.5 MHz because we consider a dimerized interaction of the
form Ji = J0[1 + (−1)i cosϕ]. Therefore, the parameter regime for observing the DTPT can be realized by changing
J0. The regime for larger γ0/J0 can be realizable by consider smaller values of J0.
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FIG. S18. (a) Population dynamics of |ψ0〉 (the zero-energy edge state) for J0/γ0 = 0.245 (red-solid), 0.25 (blue-dashed)
and 0.255 (green-dotted). (b) Decay rate Γ00 of the edge state versus J0/γ0. (c) Population |ψ0|2 of the edge state at time
T = 10/γ0. Here, we consider ϕ = 0.3π and N = 21.

(IV-B) Accessing DTPT via multi-emitter dynamics

Detection of topological phase transitions is an important task in studying topological matter. The topological
phase transition can be characterized by changes in the topological invariants, e.g., Berry phase and Chern number.
The Berry phase has been directly observed in various systems. Due to the bulk-edge correspondence, a topological
phase transition leads to the appearance or disappearance of edge states. In our system, the edge states exhibit
different dissipative properties around the dissipative topological phase transition. This feature can be beneficial for
the experimental observation of the topological criticality.

As we studied in the main text, the critical point γ0 = 4J0 represents the dissipative topological phase transition.
Due to the different dissipative properties of the edge state near the critical point, we use multi-emitter population
dynamics to probe the dissipative topological phase transition.

In Fig. S18(a), we show the population dynamics of the edge state in the emitter array N = 21. For J0/γ0 = 0.245
(red-solid), the population displays fast decay and oscillations. At the critical point J0/γ0 = 0.25, the population
shows slower decay (blue-dashed). The population revival is suppressed for the weak correlated decays between the
edge state and the bulk states. In the topological phase at J0/γ0 = 0.255, the edge state has exponential decay without
population oscillations. In finite systems, the weak emitter-environment coupling, i.e., large J0/γ0, leads to the
increased decay rate of edge state in the topological phase (J0/γ0 > 1/4), as shown in Fig. S18(b). Such behavior of
the edge state can be witnessed from its population. Figure S18(c) shows the population of the edge state at time
T = 10/γ0. We find that a large decay rate yields fast population relaxation of the edge state.
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