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I. HERMITIAN HIGHER-ORDER WEYL SEMIMETALS

As shown in the main text, we consider the following minimal Hamiltonian

H(k) = (m0 − cos kx − cos ky +m1 cos kz) szσz + (vz sin kz + iγ) sz + sin kxsxσz + sin kysyσz

+ ∆0 (cos kx − cos ky)σx, (S1)

In the absence of the non-Hermitian term (i.e., γ = 0), the Hermitian Hamiltonian H(k, γ = 0) breaks the inversion symmetry
P , but preservers the time-reversal symmetry T = isxσxK, with K being the complex conjugation operator. The eigenenergy E
of the Hamiltonian for γ = 0 is

E2 =

(
|vz sin kz| ±

√
(m0 − cos kx − cos ky +m1 cos kz)

2
+ ∆2 (cos kx − cos ky)

2

)2

+ sin2 kx + sin2 ky. (S2)

According to Eq. (S2), the Hermitian Hamiltonian supports higher-order Weyl nodes located at (kx, ky, kz) = (0, 0, kw),
where kw satisfies

v2z sin2 kw ± (m0 − 2 +m1 cos kw)
2

= 0. (S3)

As shown in Fig. S1(a), there exist four Weyl nodes in momentum space, which are connected through surface Fermi arcs
[see Fig. S1(b)] for the open boundary condition along the x direction. Moreover, when the boundaries along both the x and
y directions are opened, hinge Fermi-arc states appear, which connect the two Weyl nodes closest to kz = 0. Therefore, the
Hermitian HamiltonianH(k, γ = 0) is a hybrid-order Weyl semimetal.
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FIG. S1. (a) Bulk band structure along the kz direction for kx = ky = 0. There exist four Weyl nodes, at which bulk bands are two-fold
degenerate and eigenenergies are zero. (b) Surface band structure along the kz direction under the open boundary condition along the x
direction for ky = 0. Two Weyl nodes located at the negative (positive) kz axis are connected by surface Fermi arcs (red lines). (c) Band
structure of a finite-sized system with 60× 60 unit cells in the x-y plane. The hinge Fermi arcs (red lines) connect two Weyl nodes closest to
kz = 0, which are second-order Weyl nodes. The parameters used here are: m0 = 1.5, m1 = −1, vz = 0.8, γ = 0, and ∆0 = 0.8.
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FIG. S2. First-order (first row) and higher-order (second row) topological semimetals for γ = 0.4. (a) Four Weyl exceptional rings along
the kz direction in the first-order topological semimetal for ∆0 = 0. (b) Real, (c) imaginary, and (d) absolute values of the surface band
structure along the kz direction for ∆0 = 0, when the open boundary condition is imposed along the x direction with 200 sites for ky = 0.
Note that only the modes with zero absolute energy are surface states (red lines). (e) Four Weyl exceptional rings along the kz direction in the
second-order topological semimetal for ∆0 = 0.8. (f) Real and (g) imaginary parts of the surface band structure along the kz direction for
∆0 = 0.8, when the open boundary condition is imposed along the x direction with 200 sites for ky = 0. (h) Absolute values of the band
structure of a finite-sized system with 60× 60 unit cells in the x-y plane. Note that only the modes with zero absolute energy are surface and
hinge states (red lines). The common parameters used here are: m0 = 1.5, m1 = −1, vz = 0.8, and γ = 0.4.

II. WEYL EXCEPTIONAL RINGS

In the presence of the non-Hermitian term, the eigenenergy E of the HamiltonianH(k) can be written as

E2 = (m0 − cos kx − cos ky +m1 cos kz)
2

+ ∆2 (cos kx − cos ky)
2 − (γ − ivz sin kz)

2
+ sin2 kx + sin2 ky

± 2 (iγ + vz sin kz)
[
(m0 − cos kx − cos ky +m1 cos kz)

2
+ ∆2 (cos kx − cos ky)

2
]1/2

(S4)

To have the bands coalescence, we require E2 = 0, namely,

(m0 − cos kx − cos ky +m1 cos kz)
2

+ ∆2 (cos kx − cos ky)
2

= v2z sin2 kz, (S5)

(
|vz sin kz| −

√
(m0 − cos kx − cos ky +m1 cos kz)

2
+ ∆2 (cos kx − cos ky)

2

)2

+ sin2 kx + sin2 ky = γ2. (S6)

In the above, without loss of generality, we have required vz > 0. According to Eqs. (S5) and (S6), we have

sin2 kx + sin2 ky = γ2, (S7)

and

(m0 − cos kx − cos ky +m1 cos kz)
2

+ ∆2 (cos kx − cos ky)
2

= v2z sin2 kz. (S8)

III. EFFECTIVE SURFACE HAMILTONIAN IN THE GAPPED REGIMES

For ∆0 = 0, the Hamiltonian H(k) in Eq. (S1) is a first-order topological semimetal with the Weyl exceptional rings [see
Fig. S2(a-d)], while the ∆0 leads to a higher-order Weyl-exceptional-ring semimetal [see Fig. S2(e-h)]. Thus, the ∆0 term
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FIG. S3. |λ1,R| and |λ2,R| versus kz , according to Eq. (S18), with m0 = 1.5, m1 = −1, vz = 0.8, and γ = 0.4. The horizontal dashed black
line denotes |λ| = 1, which is just guided for eyes. The projections of four exceptional rings of H0 are located at k1, k2, k3 and k4. As kz
increases from 0 to π (or decreases from 0 to −π), the non-Hermitian systemH0 first supports two surface states localized for k2 < kz < k3
at the boundary x = 1, and then only one surface state localized for k1 < kz < k2 or k3 < kz < k4 at the boundary as |kz| exceeds a critical
value (i.e., k2 and k3).

gaps out the surface bands in the finite kz region in the first Brillouin zone. In this part, we derive the low-energy effective
Hamiltonians of surface bands in the gapped bulk-band regime for the relatively small γ and ∆0. We label the four surfaces of a
cubic sample as I, II, III, IV, corresponding to the boundary states localized at x = 1, y = 1, x = L, and y = L.

We first consider the system under open boundary condition along the x direction, and periodic boundary conditions along
both the y and z directions. After a partial Fourier transformation along the kx direction, the Hamiltonian H(k) in Eq. (S1)
becomes

Hx(ky, kz) =
∑

x,ky,kz

Ψ†x,ky,kz [(m0 − cos ky +m1 cos kz) szσz + (vz sin kz + iγ) sz + sin kysyσz

−∆0 cos kyσx] Ψx,ky,kz +
∑

x,ky,kz

[
Ψ†x,ky,kz

(
−1

2
szσz −

i

2
sxσz +

∆0

2
σx

)
Ψx+1,ky,kz + H.c.

]
, (S9)

where x is the integer-valued coordinate taking values from 1 to L, and Ψ†x,ky,kz creates a fermion with spin and orbital degrees
of freedom on site x and momentum ky and kz . By assuming a small ∆0 and taking ky to be close to 0, we rewrite Hx as
Hx = H0 +H1, with

H0 =
∑

x,ky,kz

Ψ†x,ky,kzMΨx,ky,kz +
∑

x,ky,kz

(
Ψ†x,ky,kzTΨx+1,ky,kz + H.c.

)
, (S10)

where M = (m0 − cos ky +m1 cos kz) szσz + (vz sin kz + iγ) sz , and T = − 1
2szσz −

i
2sxσz , and

H1 =
∑

x,ky,kz

Ψ†x,ky,kz (sin kysyσz −∆0 cos kyσx) Ψx,ky,kz +
∑

x,ky,kz

(
Ψ†x,ky,kz

∆0

2
σxΨx+1,ky,kz + H.c.

)
, (S11)

whereH1 is treated as a perturbation.
Since the Hamiltonian H0 in Eq. (S10) is non-Hermitian, we calculate its left and right eigenstates. We first solve the right

eigenstates. In order to solve the surface states localized at the boundary x = 1, we choose a trial solution ψR(x) = λxRφR,
where λR is a parameter determining the localization length with |λR| < 1, and φR is a four-component vector. Plugging this
trial solution into HamiltonianH0 in Eq. (S10) for ky = 0, we have the following eigenvalue equations:(

λ−1R T † +M + λRT
)
φR = EφR, in the bulk, (S12)

and

(M + λRT )φR = EφR, at the boundary x = 1. (S13)
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By considering the semi-infinite limit L → ∞, and requiring the states have the same eigenenergy in the bulk and at the
boundary, we have λ−1R T †φR = 0. This leads to E = 0, and two corresponding eigenstates ψ1,R and ψ2,R. The eigenstate ψ1,R

is written as

ψ1,R = N1(λ1,Rφ1,R, λ
2
1,Rφ1,R, λ

3
1,Rφ1,R, . . . ), (S14)

with

φ1,R = (−i, 0, 1, 0)T , and λ1,R = 1−m0 −m1 cos kz − vz sin kz − iγ. (S15)

The eigenstate ψ2,R is

ψ2,R = N2(λ2,Rφ2,R, λ
2
2,Rφ2,R, λ

3
2,Rφ2,R, . . . ), (S16)

with

φ2,R = (0, − i, 0, 1)T , and λ2,R = 1−m0 −m1 cos kz + vz sin kz + iγ. (S17)

For the surface states localized at the boundary x = 1, we require |λ1,R| < 1 and |λ2,R| < 1, then we have[
(1−m0 −m1 cos kz − vz sin kz)

2
+ γ2

]1/2
< 1, and

[
(1−m0 −m1 cos kz + vz sin kz)

2
+ γ2

]1/2
< 1. (S18)

According to Eq. (S18), as kz increases from 0 to π (or decreases from 0 to −π), the non-Hermitian system H0 first supports
two surface states localized at the boundary x = 1, and then only one surface state as |kz| exceeds a critical value (i.e., one of
exceptional points at which a phase transition takes place). As shown in Fig. S3, two surface states exist only in a finite region
of kz inbetween two exceptional rings closest to kz = 0 for small γ. A surface energy gap, or a mass term, can exist only when
two surface eigenstates coexist. Thus, the hinge states, regarded as boundary states between domains of opposite masses, appear
only in a finite range of kz .

We now proceed to solve the left eigenstates with a trial solution ψL(x) = λxLφL. As the same procedure for deriving the
right eigenstates, we have the following eigenvalue equations:(

λ−1L T † +M† + λLT
)
φL = EφL, in the bulk, (S19)

and (
M† + λLT

)
φL = EφL, at the boundary x = 1. (S20)

By considering the semi-infinite limit, we have E = 0, and two corresponding eigenstates ψ1,L and ψ2,L. The eigenstate ψ1,L

is written as

ψ1,L = N ∗1 (λ1,Lφ1,L, λ
2
1,Lφ1,L, λ

3
1,Lφ1,L, . . . ), (S21)

with

φ1,L = (−i, 0, 1, 0)T , and λ1,L = 1−m0 −m1 cos kz − vz sin kz + iγ. (S22)

The eigenstate ψ2,L is

ψ2,L = N ∗2 (λ2,Lφ2,L, λ
2
2,Lφ2,L, λ

3
2,Lφ2,L, . . . ), (S23)

with

φ2,L = (0, − i, 0, 1)T , and λ2,L = 1−m0 −m1 cos kz + vz sin kz − iγ. (S24)

In Eqs. (S14, S16, S21, S23), the constants N1 and N2 are solved by biorthogonal conditions as

N1 =

√(
1− λ∗1,Lλ1,R

)
/
(

2λ∗1,Lλ1,R

)
, (S25)
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N2 =

√(
1− λ∗1,Lλ1,R

)
/
(

2λ∗1,Lλ1,R

)
. (S26)

For the kz region where the system supports two surface states, projecting the HamiltonianH1 in Eq. (S11) into the subspace
spanned by the above left and right eigenstates as HI

surf,αβ = ψ∗α,LH1ψβ,R, we have the effective boundary Hamiltonian in the
surface I as

HI
surf,x(ky, kz) = kyσz − (η − ξ)σx, (S27)

where we have ignored the terms of order higher than ky , and η and ξ are given by

η = 2∆0N1N2λ1,Rλ2,R/ (1− λ1,Rλ2,R) , (S28)

ξ = ∆0N1N2λ1,Rλ2,R (λ1,R + λ2,R) / (1− λ1,Rλ2,R) . (S29)

When the system is under open boundary condition along the y direction, and periodic boundary conditions along both the x
and z directions, after a partial Fourier transformation along the ky direction, the HamiltonianH(k) in Eq. (S1) becomes

Hy(kx, kz) =
∑

y,kx,kz

Ψ†y,kx,kz [(m0 − cos kx +m1 cos kz) szσz + (vz sin kz + iγ) sz + sin kxsxσz

+∆0 cos kxσx] Ψy,kx,kz +
∑

y,kx,kz

[
Ψ†y,kx,kz

(
−1

2
szσz −

i

2
syσz −

∆0

2
σx

)
Ψy+1,kx,kz + H.c.

]
, (S30)

where y is an integer-valued coordinate taking values from 1 to L. By assuming a small ∆0, and taking kx to be close to 0, we
rewriteHy asHy = H̃0 + H̃1, with

H̃0 =
∑

y,kx,kz

Ψ†y,kx,kzM̃Ψy,kx,kz +
∑

y,kx,kz

(
Ψ†y,kx,kz T̃Ψy+1,kx,kz + H.c.

)
, (S31)

where M̃ = (m0 − cos kx +m1 cos kz) szσz + (vz sin kz + iγ) sz , and T̃ = − 1
2szσz −

i
2syσz , and

H̃1 =
∑

y,kx,kz

Ψ†y,kx,kz (sin kxsxσz + ∆0 cos kxσx) Ψy,kx,kz −
∑

y,kx,kz

(
Ψ†y,kx,kz

∆0

2
σxΨy+1,kx,kz + H.c.

)
. (S32)

where H̃1 is treated as a perturbation. We first solve the right eigenstates. In order to solve the surface states localized at the
boundary y = L, we choose a trial solution ψ̃R(y) = λ̃yRφ̃R, where λ̃ is a parameter determining the localization length with∣∣∣λ̃R∣∣∣ > 1, and φ̃R is a four-component vector. Plugging this trial solution into the Hamiltonian H̃0 in Eq. (S31) for kx = 0, we
have the following eigenvalue equations:(

λ̃−1R T̃ † + M̃ + λ̃RT̃
)
φ̃R = Eφ̃R, in the bulk, (S33)

and (
λ̃−1R T̃ † + M̃

)
φ̃R = Eφ̃R, at the boundary y = L. (S34)

By considering the semi-infinite limit along the y-axis in a negative direction, and requiring the states have the same
eigenenergies in the bulk and at the boundary, we have λ̃RT̃ = 0, which leads to E = 0, and two corresponding eigenstates
ψ̃1,R and ψ̃2,R. The eigenstate ψ̃1,R is written as

ψ̃1,R = Ñ1(λ̃1,Rφ̃1,R, λ̃
2
1,Rφ̃1,R, λ̃

3
1,Rφ̃1,R, . . . ), (S35)

with

φ̃1,R = (1, 0, 1, 0)T , and λ̃1,R = 1/ (1−m0 −m1 cos kz − vz sin kz − iγ) , (S36)

and the eigenstate ψ̃2,R is

ψ̃2,R = Ñ2(λ̃2,Rφ̃2,R, λ̃
2
2,Rφ̃2,R, λ̃

3
2,Rφ̃2,R, . . . ), (S37)
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with

φ̃2,R = (0, 1, 0, 1)T , and λ̃2,R = 1/ (1−m0 −m1 cos kz + vz sin kz + iγ) , (S38)

here λ1,R = 1/λ̃1,R and λ2,R = 1/λ̃2,R. For the surface states localized at the boundary y = L, we require
∣∣∣λ̃1,R∣∣∣ > 1 and∣∣∣λ̃2,R∣∣∣ > 1, then we have

[
(1−m0 −m1 cos kz − vz sin kz)

2
+ γ2

]1/2
< 1, and

[
(1−m0 −m1 cos kz + vz sin kz)

2
+ γ2

]1/2
< 1. (S39)

According to Eq. (S39), as kz increases from 0 to π (or decreases from 0 to −π), the non-Hermitian system H0 first supports
two surface states localized at the boundary y = L, and then only one surface state localized at the boundary as |kz| exceeds a
critical value (i.e., one of exceptional points at which a phase transition takes place). The critical values of kz correspond to ones
at which two exceptional rings closest to kz = 0 locate for the case of small γ. Because the domain-wall states, as discussed
below, only appear ifH0 supports two surface states, the hinge Fermi-arc states exist only for a finite regime of kz .

For the left eigenstates under the open boundary condition along the y direction, we assume a trial solution ψ̃L(y) = λ̃yLφ̃L.
Considering the same procedure for deriving the right eigenstates, we obtain the left eigenstates ψ̃1,L and ψ̃2,L as

ψ̃1,L = Ñ ∗1 (λ̃1,Lφ̃1,L, λ̃
2
1,Lφ̃1,L, λ̃

3
1,Lφ̃1,L, . . . ), (S40)

with

φ̃1,L = (1, 0, 1, 0)T , and λ̃1,L = 1/ (1−m0 −m1 cos kz − vz sin kz + iγ) , (S41)

and

ψ̃2,L = Ñ ∗2 (λ̃2,Lφ̃2,L, λ̃
2
2,Lφ̃2,L, λ̃

3
2,Lφ̃2,L, . . . ), (S42)

with

φ̃2,L = (0, 1, 0, 1)T , and λ̃2,L = 1/ (1−m0 −m1 cos kz + vz sin kz − iγ) , (S43)

For the kz region where the system supports two surface states, projecting the Hamiltonian H̃1 in Eq. (S32) into the subspace
spanned by the above right and left eigenstates as HIV

surf,αβ = ψ̃∗α,LH̃1ψ̃β,R, we have the effective boundary Hamiltonian in the
surface IV

HIV
surf,y(kx, kz) = kxσz + (η − ξ)σx, (S44)

where we have ignored the terms of order higher than kx.
By using the same procedure above, we have the effective Hamiltonian for boundary states localized at surfaces II and III as

HII
surf,y(kx, kz) = −kxσz + (η − ξ)σx, (S45)

HIII
surf,x(ky, kz) = −kyσz − (η − ξ)σx. (S46)

According to the surface Hamiltonians in Eqs. (S27) and (S44-S46), as well as the condition in Eq. (S18), the surface states,
in the gapped regime and a finite kz region, show the same kinetic energy coefficients, but the mass terms on two neighboring
surfaces always have opposite signs. Therefore, the mass domain walls appear at the intersection of two neighboring surfaces,
and these two surfaces can share a common zero-energy boundary state (analogous to the Jackiw-Rebbi zero modes [1]) in spite
of complex-valued µ, which corresponds to the hinge Fermi-arc states at each kz . Moreover, these hinge Fermi-arc states exist
only in a finite kz region limited by the condition in Eq. (S18). This explains why the Hamiltonian H(k) shows both first-order
and higher-order topological features for small γ.
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FIG. S4. (a) Schematic diagram of a unit cell of a cubic lattice realized by electric circuits. The unit-cell electric circuits consist of four
nodes, and each node is connected to grounded electric elements for simulating the diagonal entries in the Hamiltonian H1(x, y, z). The
on-site gain and loss are realized by resistive elements RA and RB . C1 and L1 denote capacitances and inductances. (b) Negative impedance
converter with current inversion (INIC) used for the hopping with imaginary amplitudes. (c-e) Diagrams of the electric circuits for simulating
Hamiltonians H2(x, y, z), H3(x, y, z), and H4(x, y, z), respectively. Here, C2, C3 and C4 are capacitances, L2, L3 and L4 denote
inductances, Rx and Rz represent resistances of INICs.
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IV. POSSIBLE EXPERIMENTAL REALIZATIONS USING TOPOELECTRIC CIRCUITS

Recently, non-Hermitian first-order and higher-order topological insulators [2, 3], 3D Hermitian higher-order topological
insulators [4] and topological semimetals [5] have been experimentally observed in topoelectric circuits. These indicate that
electric circuits are excellent platforms to realize complicated and exotic topological structures. In this section, we propose to
realize the lattice model in Eq. (1) in the main text using topoelectric circuits. Without loss of generality, we set m1 = −1,
m0 > 0, vz > 0 and γ > 0.

The real-space Hamiltonian H(x, y, z) for Eq. (1) in the main text reads H(x, y, z) = H1(x, y, z) + H2(x, y, z) +
H3(x, y, z) +H4(x, y, z), where

H1(x, y, z) =
∑
x,y,z

Ψ†x,y,z (m0szσz + iγsz) Ψx,y,z, (S47)

H2(x, y, z) =
∑
x,y,z

[
Ψ†x,y,z

(
−1

2
szσz −

i

2
sxσz +

∆0

2
σx

)
Ψx+1,y,z + H.c.

]
, (S48)

H3(x, y, z) =
∑
x,y,z

[
Ψ†x,y,z

(
−1

2
szσz −

i

2
syσz −

∆0

2
σx

)
Ψx,y+1,z + H.c.

]
, (S49)

and

H4(x, y, z) =
∑
x,y,z

[
Ψ†x,y,z

(
−1

2
szσz − i

vz
2
sz

)
Ψx,y,z+1 + H.c.

]
. (S50)

We now consider a 3D electric-circuit network forming a cubic lattice. The electric-circuit network consists of various nodes
labeled by a. According to Kirchhoff’s law, the current Ia entering the circuit at a node a equals the sum of the currents Iab
leaving it to other nodes or ground

Ia =
∑
b

Iab =
∑
b

Xab(Va − Vb) +XaVa, (S51)

where Xab = 1/Zab is the admittance between nodes a and b (Zab is the corresponding impedance), Xa is the admittance
between node a and the ground, and Va is voltage at node a. Using Eq. (S51), the external input current Ia and the node voltage
Va can be rewritten into the following matrix equation

I(ω) = J(ω)V(ω), (S52)

where I = (I1, I2, · · · , IN ), V = (V1, V2, · · · , VN ), and N is the physical dimension. Here the N × N matrix J(ω) is the
circuit Laplacian, which can be used to simulate the system HamiltonianH(k), having the form [6–8]

J(ω) = iωL(ω) = iωC +
1

iωL
+

1

R
, (S53)

where C, L and R are the capacitance, inductance and resistance matrices, respectively.
To simulate the Hamiltonian H(x, y, z), we require L = H. Figure S4(a) plots the unit-cell circuit for the cubic lattice

consisting of four nodes. Each node is connected to grounded electric elements for simulating the diagonal entries in the
HamiltonianH1(x, y, z) in Eq. (S47). The on-site gain and loss are realized by the resistive elements RA and RB . The electric
circuits for simulating Hamiltonians H2(x, y, z), H3(x, y, z), and H4(x, y, z) are shown in Fig. S4(c-e). The inductors and
capacitors between two neighboring nodes contribute hopping terms with positive and negative amplitudes [7], respectively. For
the hopping with imaginary amplitude, we use a negative impedance converter with current inversions (INICs) [7], as shown in
Fig. S4(b). When the current flows towards the INICs (the large arrow), the resistance is negative, and it is positive when the
direction is opposite.

As indicated in the electric circuits in Fig. S4, the Laplacian that simulates the Hamiltonian H(k) in Eq. (1) in the main text
reads

L(ω) = (ME − JE cos kx − JE cos ky − JE cos kz) szσz + (vE sin kz + iγE) sz + tE1 sin kxsxσz + tE2 sin kysyσz

+ ∆E (cos kx − cos ky)σx + iλEI, (S54)
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where

ME = C1 = 1/(ω2L1), γE = 1/(2ωRB)− 1/(2ωRA), (S55)

λE = −1/(2ωRB)− 1/(2ωRA), JE = C2/2 = 1/(2ω2L2), (S56)

vE = 1/(2ωRz), tE1 = 1/(2ωRx), tE2 = C4/2 = 1/(2ω2L4), ∆E = C3/2 = 1/(2ω2L3), (S57)

and I is identity matrix. Note that the last non-Hermitian term does not change the topological features of the system. This
electric circuit can be utilized to investigate the non-Hermitian higher-order Weyl-exceptional-ring semimetals studied in this
work.
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